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Abstract

Solving flames in scalar or composition space usually requires the modeling of scalar dissipation rates,
or scalar gradients, which appear in the Jacobian of the transformation from the physical-space
coordinates to the scalar space coordinates attached to the flame surface. Recently, Scholtissek et
al. (2019) have discussed a self-contained solution for freely propagating premixed flames, in which
the gradient distribution of the coordinate is also solved in scalar space. This approach is here
extended to include curvature, strain and effects of unsteadiness. The resulting method is applied
to a constant pressure and homogeneous ignition case, a stagnation flame, a tubular flame and a
spherical expanding flame, capturing accurately effects of unsteadiness, strain and curvature. The
results are systematically validated against physical-space solutions and experiments. In addition
to the possibility of exploring these various canonical problems with a single set of equations, it
is shown that another major outcome of this new formulation lies in the possibility of studying
steady flames subjected to negative strain.
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1. Introduction

In most combustion systems the fraction of the flow occupied by the reaction zones stays very
small. The characteristic thicknesses over which intermediate radical chemical species evolve are
orders of magnitude smaller than the characteristic length of the large-scale flow motion, which
carries the turbulence kinetic energy driving the mixing of the reactants. To deal with this strong
multi-scale character of combustion physics [I], scalar or composition space coordinates attached to
the flame surface are usually introduced, to analyse results of both experiments and simulations [2].

Such scalar space coordinates were first designed for conveniently focussing theoretical analyses
on the molecular diffusion layers feeding the thin reaction zones in laminar diffusion flames [3].
Then, scalar coordinate systems have been used systematically in flame theory, up to fuel-spray
flames [4]. Composition or scalar space coordinates were also introduced for turbulent combustion
modeling, in diffusion flamelets 5] [6], in premixed flamelets [7H9], in conditional moment closure
(CMC) [10] or again in the transport of probability density functions (PDF) [ITIHI3]. Even though
the underlying physical hypotheses required to complete the modeling can differ between these
approaches, they all rely on the definition of a scalar space coordinate system centered on the thin
diffusive-reactive layers.

Along these lines, strategies were developed to solve laminar and canonical combustion problems
directly in scalar space. The most commonly used is the mixture fraction (Z = 0 in the oxidizer
stream, Z = 1 in the fuel feeding stream), which is a passive scalar that can be related to
the local equivalence ratio of the mixture in non-premixed systems and that can be defined in
multicomponent flows from a set of representative species mass fractions [14] [15]. The solving of
one-dimensional counter-flowing diffusion flames was for instance intensively studied in mixture
fraction space, including various levels of complexity [16-H19]. Sometimes scalars are combined with
other coordinates. In the context of reacting mixing layers in stagnation-type flows subject to both
time-varying strain and pressure, a thermal-conductivity-weighted transverse coordinate was found
to be very effective [20)].

The normalized progress variable (¢ = 0 in the fresh gases, ¢ = 1 in the fully burnt products) is
widely used for premixed flames and the solving of freely propagating laminar premixed flames in
progress variable space was reported |21}, 22]. Finally, the combination of both mixture fraction

and progress variable allows for addressing partially premixed and non-premixed flames in a



two-dimensional scalar space [23], 24].

Up to very recently, the scalar space formalism was not self-consistent. Indeed, the jacobian for
transformation between the physical and scalar coordinates contains the physical-space gradient of
the scalar coordinates, which was left as a free parameter in the balance equations. To overcome
this strong limitation, in [22] the balance equation for the gradient is also projected in scalar space,
to come up with a fully self-consistent scalar space solution for freely propagating unstrained one-
dimensional premixed flames. It is proposed in this work to extend and generalise this self-consistent
solution procedure.

First, premixed flamelet equations for temperature, species mass fractions and progress variable
gradient are derived incorporating effects of strain and curvature, with only flow quantities as
flamelet parameters. The equation set is expressed with respect to the progress variable, which
spans the scalar space. Subsequently, numerical methods for solving the flamelet equations are
briefly revisited. It is shown that the asymptotic limit of the zero-dimensional and constant pressure
ignition problem is well recovered by the proposed formulation. Then, three canonical configurations,
namely the stagnation flame, the tubular flame and the spherical expanding flame, are simulated in
progress variable space with detailed chemistry and complex transport properties. Three fuels are
studied: hydrogen, methane and ethanol. By comparison to physical space reference solutions and
experimental measurements of the literature, it is demonstrated that effects of unsteadiness, strain
and curvature are well captured by the novel set of premixed flamelet equations, including negative

stretch, opening new perspectives for turbulent combustion modeling.

2. Flame and flow parameters

2.1. Budget equations

The instationary balance equations for temperature T" and the species mass fractions Y; serve
as a starting point for the flamelet model derivation. They can be expressed with respect to the 3D

physical space as
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where p is the density, ¢, the specific heat capacity, A the thermal conductivity, u the velocity
vector and V. the diffusion velocity vector of species k. The quantities wr and w; denote the source
terms due to gas phase chemistry for temperature and species, respectively.

The progress variable is defined as a combination of species according to Y. = > «;Y;, where
«; is a species specific weighting factor and ng, is the total number of species. The analogous

summation over Eq. yields a balance equation for the progress variable:

oY, .
P +pu-VY, ==V (pY.V.) +w., (3)

where the diffusive flux of the progress variable is defined as Y.V, = > «;Y;V; and the source
term as w, = Z?S a;w;. A fundamental requirement for the choice of the progress variable is that it
varies strictly monotonically throughout the flame front. Note that its definition depends on the

fuel-oxidizer system and is not always trivial to identify [25-27].

2.2. Flame speed and displacement speed

The flame is assumed to be a thin sheet of finite thickness, which is not necessarily flat, and
which can be represented by a collection of Y.-isosurfaces (analogy to FGM [2§]). The motion of

each surface is described by the kinematic condition [28] 29]

dy, oY,
dt ot

+Sf-v}/;:0, (4)

which states that a point on the isosurface of Y, remains on this surface for all . For a fixed observer
the flame moves with the apparent flame speed s; in the physical space, which is composed of the
flow velocity vector u and the flame displacement speed s4 directed opposite to the normalized
gradient n. = VY, /|VY,|

Sf=U— S5¢0N. (5>
Introducing Eq. in Eq. one obtains

Y.
P~ o

+pu- VY, = psg VY|, (6)



which further yields an expression for the local mass burning rate ps; of a premixed flame sheet,
when further employing Eq. to replace the left hand side in the above equation

PSd (—V : (pYCVC) + LOC) . (7)

1
VY

2.8. Flame stretch, strain and curvature

Flame stretch is a key quantity influencing a flame’s structure, extinction behavior, and its
mass burning rate. Here, important characteristics of the flame stretch concept are briefly revisited
before incorporating stretch effects into the flamelet model.

A first generic definition of flame stretch was given by Williams [30]

1dA
A_ZE7 (8)

which describes the fractional area change of a small flame surface element moving with an infinitely
thin flame sheet. In this context, extensive theory has been developed and many practical flame
configurations have been studied and discussed [29] [31H33]. The formulation for flame stretch was
later on extended by de Goey and ten Thije Boonkkamp [34] considering the mass M (¢) in an

infinitesimal volume V' (¢) moving in the flame of finite thickness

1 dM
K=——— with M(t :/ pdV . 9
L 0=/ (9

While the formulation by Williams [30] is also referred to as weak stretch, the latter is referred to
as strong stretch further accounting for the resolved diffusive layer in the vicinity of the flame [2§].

The stretch rate K can be defined as [34]

0
pK = 224V - (psy) | (10)

and can be rewritten using Eq. according to [34]
pK ==V - (psan.) , (11)

which illustrates that the stretch rate is related to variations of the normal mass flux through
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the flame surface [34]. Expanding Eq. , the single contributions to flame stretch can be
examined [34]

1 /0 10
K:V~sf+;(a—f+sf-Vp>:V-ut—sf/ic—l—nc-st—i—;a—f, (12)
where the curvature of the Y,-isosurface is defined as
ke=—V -n., (13)

the flame-tangential (flow) velocity vector is defined as u; = u — (n. - u)n, and sy = sy - n, is
the projected flame speed in flame-normal direction. The first and the second term on the right
side of Eq. can also be found from weak stretch theory [31H33] and can be interpreted as
flame-tangential strain and flame stretch through instationary movement of a curved flame sheet.
The third term in Eq. arises from instationary flame-normal stretch, such that the flame-normal
velocity sy varies between different Y.-isosurfaces. The fourth term in Eq. originates from
density variations along flame isosurfaces. Due to the fact that isosurfaces of p are assumed to align
with Y -isosurfaces, the last two terms in Eq. cancel, which is readily seen from the kinematic

condition Eq. (4.

forward stagnation flame outwardly propagating flame
flow
flame
positive stretch positive stretch
K=V -u>0 K==5kK:2>0
rearward stagnation flame inwardly propagating flame
flow
flame
negative stretch negative stretch
|K:V~ut<0 K:fsfnc<0|

Figure 1: Schematic flame configurations which experience stretch due to strain (left column) or stretch due to
curvature (right column) [35].



The relevant effects described by the first two terms in Eq. are shown in Fig. (1| for lames
which exhibit either stretch due to flame-tangential strain (left column) or stretch due to movement
of a curved flame sheet (right column). For the latter, the flame moves in the flame-normal direction
such that the flame surface increases (positive stretch, outward flame propagation) or decreases
(negative stretch, inward flame propagation). Hence, stretch conditions can be readily associated
with the surface-based stretch definition, see Eq. . For the flames in a forward or rearward
stagnation flow, flame-tangential straining can be understood by considering the flow velocity
components projected into the flame-tangential plane (thick arrows). Of the flames depicted in
Fig.[I] only the positively stretched flames can be studied under controlled conditions in a laboratory.
The rearward stagnation flame is inherently unstable and the inwardly propagating flame cannot
reproducibly be ignited in perfect spherical (or cylindrical) shape before it starts to propagate.
Overall, it is hardly possible to establish significant negative strain conditions with laboratory
ﬂamesﬂ, however, large negative strain rates can be identified in turbulent flames [37, [38]. It will be
shown further below that the composition space flame model developed here allows to study also
negative strain conditions, which is, with few exceptions [39] 40|, not possible with conventional

physical space flame solvers.

3. Progress variable space formulation

3.1. Transformation rules

The governing equations are transformed from physical space (¢,x) to the progress variable
space (7, Y.(t,x)), where 7 represents a flamelet time defined by 7 = ¢. The corresponding temporal

transformation rule reads for the exemplary scalar quantity ¢

09 _ 09, 0Y. 09
ot or ot 9y,

(14)

'The Bunsen flame, which exhibits negative stretch, is one of the few exceptions. However, it has been realized
recently that the structure of a Bunsen flame is controlled by rather complicated physics [36]. Its stretch conditions
are non-uniform and have to be considered at least two-dimensional.



For any quantity ¢ = ¢(Y.), the following spatial transformation rules are verified:

_ 99
Vo = Vg, (15)
¢ O
2 _ 2 2
Vi = VY VY (16)

The second order derivative V?Y, is decomposed into its normal and curvature contribution [41]
VY, =nn:V(VY,) +|VY,|V -n. (17)

One can write V(|VY,]) = n- V(VY,), then nn:V(VY,) = n- V(|VY.]) = |VY,|(0|VY,|/0Y,),

where Eq. is also applied to V(|VY.|). Combined with Egs. and (17), this leads to

82
Vo= [V + v (

oIVYe| +V-n> 0¢ (18)

oy, Y.’

In Eq. , the progress variable gradient g. = |VY,| is introduced. This quantity plays a central
role in the flamelet transformation since it relates Y.-space to the physical space. Traditionally, g.

is used to define the scalar dissipation rate
Xe=2D.VY,-VY.=2D,.g>. (19)

While the gradient (or scalar dissipation rate) can be modeled for non-premixed flamelets [42], it

has to be treated as a dependent quantity for premixed flamelets [22].

3.2. Diffusion modeling in progress variable space

Keeping in mind that the species diffusion velocity V; contains gradient information, it is

transformed using the spatial transformation rule Eq. [22, [43]
pY:Vi = pY;Vi VY., (20)

where V; represents a diffusion velocity in progress variable space. Instead of gradients with respect
to physical space coordinates, Vi analogously contains gradients with respect to the conditioning

variable Y. and can therefore be computed from conventional transport libraries on a Y,.-grid
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(e.g. cantera [44] or EGlib [45], 46]). Consequently, the approach allows arbitrary diffusion models
to be incorporated in progress variable space without notational overhead. In this work, a mixture
averaged diffusion model [47] with a correction velocity for mass conservation [48] is applied.

Additionally, thermal diffusion [45] [46] is considered for H,-air flames.

3.3. Composition space equations

Composition space (or flamelet) equations are obtained by applying the transformation rules in
Sec. to Eqs. and . Furthermore, noticing that g. = |VY,| = n - VY,, an equation for the
progress variable gradient g. is obtained by differentiating (and transforming) the balance equation

for Y, according to

n-V[ Y.

5 +pu-VY,=-V.(pY.V.) + wc} : (21)

Details of the derivation are available in the supplementary material. The premixed flamelet

equations for species, temperature and progress variable gradient are obtained as

Y; ~ 0 oY,
Par = Yoy, <gcpY"Vi) 9oy (gcpYV) ay,
Y; ) S
+ pge Ke <YV YV(’)Y) — wca—y + w;, (22)

or g. 0 oT B O yx= oy, o O
Por = ¢, ov. (gcAaYC) 95y, <gcpYV> oy, e Z Y’“V’“aYC
)\ 6T . 8T wT
— PGc Ke (pcp + YV) 8Y WCO_YC + a y (23)
2 - 0 N dge | Qe
2 2
0=—g; 7 (gc chVC> + 9. Y. (Fcc chVC> CeBy + Gemr Y. + pKg. . (24)

These premixed flame equations are similar to the ones presented in our earlier work [22], with
additional terms to incorporate the flamelet parameters strain K, and curvature k.. The quantity

K differs from the overall stretch rate K and represents straining imposed on the flame by the

flow field

K,=—= :K—Sd/’ic.v ut—(Sf-i-Sd) =V u - Ug Ke (25)

where 1, = n, - u is the flow velocity along the flame-normal direction. Formally, the flame stretch

K can be split into flow straining K, and flame stretch due to the self-propagation of the (curved)
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flame sheet described by K. = —s4 k.. This splitting procedure has been carried out by other
authors before [39, [49]. The relation indicates that K solely depends on flow quantities. This
is particularly important, since the flame displacement speed s, is a flame response obtained by
solving the premixed flamelet equations and shall therefore not appear in the definition of the
strain rate, which is one of the flame control parameters.

Note that species and temperature equation are instationary in composition space, while the
gradient equation is not. When prescribing a certain set of flamelet parameters the flame topology
becomes implicitly fixed. Due to the fact that the gradient represents the spatial mapping from
composition space to physical space it also has to be fixed for a given combination of K and k.. A
similar finding was reported for FGM by van Oijen et al. [28] who showed that the equation for the

progress variable in the flame-adapted coordinate system is stationary.

3.4. Boundary conditions

The conditioning variable Y, varies on the interval [Y, min Yz max] and the exact values of minimum
and maximum depend on the progress variable definition. At the left boundary (Y. ) Dirichlet

boundary conditions are imposed
Y; = ch,min : sz = Yvi,07 T = TO; gc = 07 (26)

which are determined a-priori from the unreacted mixture of fresh gases.

For zero strain and curvature, an unstrained, planar freely-propagating flame and the constant
pressure homogeneous ignition can be described by the flamelet equations , and [22].
In this case, the conditions at the right boundary (Y. max) correspond to the chemical equilibrium
which can be determined from the fresh gas mixture. Hence, it can also be described by Dirichlet

boundary conditions
Y:: - Y;:,max = Y::,eq : Y; = Y;,eq7 T= Teq7 ge = 07 (27>

where the subscript “eq” refers to chemical equilibrium conditions.
However, for non-zero strain or curvature, the right boundary location Y. ,.x becomes an

eigenvalue of the problem since premixed flames can exhibit sub- or super-equilibrium conditions
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(also called hot spots [50-H52]). This implies that the Y.-space can contract or expand and that
the right boundary has to be implemented as a moving boundary. For the numerical solution, the
flamelet equations, Eqgs. (22)-(24)), are therefore transformed to a normalized progress variable space

(c-space). The procedure is described in the supplementary material.

3.5. Closure of the flamelet equations

With the flamelet gradient equation, Eq. 24} the linkage of the flamelet model to the flow is no
longer inherently captured by prescribing the gradient or scalar dissipation rate as for previous
premixed flamelet formulations in progress variable space |21} 23] 53|. Instead, the effects of the flow
on the flamelet structure are represented directly by strain and curvature, which appear explicitly
in the equations and which have been proven to be fundamental flame parameters [54]. A closure
for these flame parameters is obtained by approximating K, and k. by representative constant
values. The approach yields an accurate and self-contained premixed flamelet model, including
flamelets subject to strain and curvature. This is demonstrated in Sec. [5| by comparing flamelet
solutions to well-established numerical models (formulated in the physical space) and experiments

for stagnation flames, tubular flames and spherical expanding flames.

4. Numerical methods

The stationary solution of the flamelet equations is obtained with a hybrid damped Newton
method [55] with an in-house C++ flame solver [56]. A straight line is prescribed as the initial
solution which connects the fresh gas mixture (left boundary condition) with the corresponding
equilibrium conditions (right boundary initialization). In a pseudo-transient time-stepping procedure,
the initial solution is first relaxed for few time steps before a stationary solution by Newton iteration
is attempted. If the stationary solver fails, the solution is advanced for a fixed number of additional
time steps and the stationary solver is rerun. This procedure is repeated until convergence of the
stationary solver. Starting from a coarse grid with 8-30 points, the grid is adaptively refined after
each convergent solution until a user-specified target. For the evaluation of diffusion coefficients and
chemical source terms, the EGlib [45] [46] and an in-house chemistry library are used, respectively.
The chemical reaction mechanism by Varga et al. [57] (12 species, 29 reactions) is applied for H,-air
flames, the GRI 3.0 mechanism by Smith et al. [58] (53 species, 325 reactions) for CH,-air flames,

and the mechanism by Olm et al. [59] (47 species, 250 reactions) for C,H;OH-air flames.
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5. Self-contained scalar space flame simulations

A homogeneous reactor (ignition problem) and 1D canonical laminar flames are studied applying
the previously introduced formalism. By comparison to corresponding physical space solutions
the progress variable space model is validated and the numerical solutions are complemented by
suitable experimental results. Table [I] contains an overview of the configurations studied. For the
flame configurations, H,y-air and CH,-air flames are considered due to the availability of extensive
reference data from the literature. Fuel-lean flames are investigated in which the fuel Lewis number
(Len, ~ 0.3, Lecy, ~ 1) determines how strain and curvature affect flame structures, it is therefore
denoted as the effective Lewis number Le [54]. In order to study flame responses for Le > 1,
additionally C,H;OH-air flames are considered (Lec,u,on ~ 1.6).

The progress variable definitions for the flamelet calculations are chosen as Y. = Yu,0 —Yu, — Yo,
(Hy-air flames) and Y, = Yoo, +Yi,0+10 Yy, — Yo, (CH,- and C,H;OH-flames). Also other progress
variable definitions would yield accurate flamelet results, often a combination of product (positive
weight in definition) and educt species (negative weight) is suitable. For the hydrocarbon flames
the weight for the mass fraction of H, was increased due to its low molecular mass. Note that it is
important to include H, in the definition of the progress variable to correctly capture differential

diffusion effects in the preheat zone of a premixed flame with a premixed flamelet model [22].

Table 1: Characteristics of several canonical combustion configurations (0D and 1D) with respect to unsteady effects
and the flamelet parameters strain K and curvature k..

case acronym strain curvature unsteadiness reference
homogeneous reactor HR - - + this work
freely-propagating flame FP — - — [22]

stagnation flame STAG + — — this work
tubular stagnation flame TUB + + — this work
spherical expanding flame SEF + + -+ this work

5.1. Constant pressure homogeneous ignition

The transient evolution of temperature and species mass fractions in the constant pressure

homogeneous reactor (HR) are described neglecting convective and diffusive transport terms in
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Eqgs. and , which yields the following equation set:

G_T_@ and ovi _
Par ~ ¢, Pot ~

W - (28)
With the transient evolution of Y; also the reaction progress variable changes. The summation over
the species equation according to the definition of the progress variable yields

Y.
Pt

— 0. (29)

Defining the progress variable such that it includes species which vary during all phases of the
ignition process (thus, preferably major species) allows the mapping of the thermochemical variables

(here T') to the reaction progress variable in time

T Y, aT
ot Ot Y.’

(30)

which defines a temporal transformation rule different from Eq. , since it does not consider the

flamelet time 7. With this, the constant pressure homogeneous ignition is described in progress

variable space by combining Eqgs. —

Y, cw. Y. @ (31)

This equation set has previously been used to describe autoignition [60] and contains formally no
transient term. The Egs. are one-dimensional and imply that a trajectory in composition space
can be directly constructed by integrating along Y, (assuming a monotonically varying progress
variable). This model shall be denoted as the progress variable space reactor (PVR).

Figure [2| displays the constant pressure ignition of a stoichiometric CH,-air mixture at 1500 K.
The left graph of this figure shows the evolution of the temperature and the mass fractions for CO,
and the radical OH versus time ¢ (i.e. simulated solving Eq. ) The middle graph shows a
projection of the temperature profile into progress variable space, where Y, = Yco,. It is observed
that the PVR model (Eq. ) accurately reproduces this progress variable space trajectory.

Furthermore, the time integration (in flamelet time 7) of the premixed flamelet model (PFLT) is
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Figure 2: Left: Constant pressure ignition of a homogeneous stoichiometric CH,-air mixture at 1500 K versus time
(case HR-1). Middle: The temperature profile for the case HR-1 mapped into progress variable space (Y. = Yco, ).
The temperature profile is computed with three different models: homogeneous reactor (HR), reactor in progress
variable space (PVR) and the transient premixed flamelet model (PFLT, g. = 0). Right: Progress variable space
trajectories of two different constant pressure ignition cases recomputed with the models HR and PVR. The initial
state of case HR-2 consists of a 50% fresh stoichiometric CH,-air mixture at 1500 K and 50% hot products with the
same enthalpy level.

shown, which is first initialized with a linear profile between fresh gases and chemical equilibrium.
Due to homogeneity of the mixture, the progress variable gradient g. = |VY,| equals to zero and

the premixed flamelet equations and reduce to

orT or  wr
i P R 2
Por T Yy, T g, (32)
9Y; )
P o7 = —wca—y,c + w; . (33)

It is readily shown, that the stationary solution of this equation set is equal to Egs. and as
seen from the mid graph in Fig. [2| the solution for the PFLT model relaxes to the solutions for the
models HR and PVR for increasing 7.

These results illustrate that the behavior of the transient ignition are captured well by the
stationary solution of the premixed flamelet model in progress variable space. While there are
two terms in the temporal transformation rule, Eq. , which formally describe transient effects,
0T /0t and 0Y,/0t, the former can hardly be interpreted from a physical point of view. This is due
to the fact that transient variations of thermodynamical quantities (i.e. species and temperature)
with 7 would require that the progress variable remains fixed. However, this is rarely the case

for most thermochemical variables, since the conditioning variable Y, is defined as a combination

14



of species and therefore dynamically linked to the full thermodynamical state through chemical
reactions and thermodynamics. Also for fast reactions of radical species, the stationary solution of
the premixed flamelet model is appropriate, as shown by the right graph in Fig. 2] Considering a
highly reactive mixture (case HR-2), which is obtained by mixing 50% of fresh gases and 50% of
hot products by mass, the PVR model (equivalently the stationary PFLT model) still accurately
captures the evolution of temperature and the radical OH in progress variable space. This also

applies to other radical species (not shown).

5.2. Canonical laminar premized flames

For premixed combustion, the unstretched laminar burning velocity s® represents an important
characteristic quantity which inherently contains fundamental information regarding the reactivity,
diffusivity and exothermicity of a combustible mixture [61] (the superscript 0 marks the stretchless
reference condition). While the reference quantity s? solely depends on the thermochemical state
of the fresh gas mixture, the burning velocity s, of a premixed flame can be influenced by multiple
factors such as strain, curvature or heat-loss. It is defined at the edge of unburned gases and is
thereby distinguished from the flame displacement speed s;, which varies throughout the flame
zone due to thermal expansion. The latter can be computed from a composition space flamelet

solution using the transformed Eq. @:

1 0 - We
Sd = ; {—a—YC (gc PYch> + ;] . (34)

The laminar burning velocity s, is then determined with the above expression at the unburned edge
of the flame, which is defined by an isotherm 7" = T, 4+ 5K [49] (with T}, being the temperature of
the unburnt gases). Furthermore, the absolute flame speed sy can be defined, which marks the

apparent speed of the flame for a fixed observer
Sf=1Ug— Su, (35)

where u, is the flame-normal velocity component of the flow at the unburned edge of the flame. Note
that the negative sign for s, originates from its direction opposite to the normalized gradient n, =

VY,./|VY.|. For the ideal freely-propagating reference flame, s is constant throughout the flame
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zone. However, as soon as the flame becomes stretched (due to strain and/or curvature), flame
speeds are more difficult to evaluate, both experimentally and numerically [62].

Three stretched flame configurations with successively more complex conditions (see Tab. |1|) are
discussed in this section: the stagnation flame (STAG), the tubular stagnation flame (TUB) and

the spherical expanding flame (SEF).

5.2.1. Planar stagnation flames

Planar stagnation flames have been used to study flame structures, propagation and extinction,
both theoretically and experimentally, and a broad overview can be found in the review paper
by Egolfopoulos et al. [36]. Among other possibilities, these types of flames can be established
by directing a stream of combustible fresh gases towards a wall (single jet-wall configuration,
c.f. Fig. [3)), or by two counterflowing jets of the same chemical composition (symmetric twin flame
configuration). The most prominent characteristic of this flame configuration is that (in the absence
of wall heat losses) the only external flow effect on the flame is flame-tangential strain, which can

be studied and quantified systematically [36].

fresh
gases

r

flame

wall

Figure 3: Schematic of a planar stagnation flame.

Physical space model. For planar flames established in a stagnation flow it has been shown that
thermochemical quantities are a function of the axial coordinate = only [63]. Thus, a one-dimensional
equation set can be derived from a similarity transformation which describes the flame structure
along the flame centerline. Using the model by Kee et al. [63] a stagnation flame is solved imposing
inflow boundary conditions from the nozzle and an adiabatic wall on the other side, with zero
gradient boundary conditions for thermochemical quantities. For the flow, the wall is modeled

as a slip wall, where the axial velocity becomes zero, but the radial velocity gradient is allowed
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to assume finite values. The numerical model therefore corresponds to a symmetrical twin flame

configuration [64].
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Figure 4: Flow field of the stagnation flame with the reference flame speed s, ;o and the reference strain rate Kj ycf,
evaluated from the steepest velocity gradient upstream of the flame. Recreated according to Ref. [36].

Flow profile and strain rate. To facilitate a reasonable comparison of the numerical results with
experiments, the flow field and strain profile of stagnation flames are examined. Figure [4 shows the
flow field solution of the stagnation flame which can be divided into three characteristic zones: (1)
the hydrodynamic zone, (2) the premixed flame’s preheat zone, where the flow velocity increases due
to thermal expansion, and (3) the premixed flame’s reaction zone [36]. For this characteristic flow
profile two quantities can be identified which are readily accessible with experimental methods: the
minimum axial velocity upstream of the flame s, ¢ (note that sY £ Surer) and the steepest gradient
of the velocity profile upstream of the flame K ,cr. The quantity s, ,er can be recorded as a function
of K et experimentally and this method is commonly used to determine s¥ by extrapolation to

zero stretch [36, (65, [66].

Modeling strain in progress variable space. For the premixed flamelet model the strain rate is
defined according to Eq. , which is shown for an exemplary flame configuration in Fig. |5in
physical space (coordinate z, left) and in normalized progress variable space (coordinate ¢, middle).
Note that the strain rate K ¢ is proportional to the gradient of the velocity u (c.f. Fig. |4)), whereas
K, the flamelet parameter, is proportional to the gradient of the mass flux pu. Nonetheless, both
quantities agree well at the unburned edge of the flame (¢ = 0) since the effect of thermal expansion

(thus, the density gradient) is small at this point. Further inspecting the profile of K, it is found
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Figure 5: Strain rate K, for a lean Hy-air stagnation flame with K ;o = 214 s~! versus the physical space coordinate
(left) and the normalized progress variable ¢ (middle). For the premixed flamelet model Kj o5 is prescribed which is
expressed as a function of Kj .o to facilitate a comparison of the premixed flamelet model to experiments (right).

that K increases from the unburned to the burned edge of the flame. In c-space, K is almost
linear for 0.1 < ¢ < 0.9, but it exhibits steep gradients towards the boundaries. In the following it
will be shown that the premixed flamelet model yields accurate results for stagnation flames if the
profile of K is approximated by a representative value. Therefore, the reference strain rate Kj o5 is
introduced which is defined as the strain rate K evaluated at ¢ = 0.5. This choice is motivated by
the fact that strain should be prescribed at the inner layer of a premixed flame to recover its flame
structure accurately [39]. It should be noted that the inner structure of a premixed flame becomes
stretched when conditioning on the progress variable [22] which implies that also other choices for

fixing the strain rate could be reasonable.

Comparison between experiments and numerical results. Numerical results obtained with the
physical space and the progress variable space model are now compared to experiments in terms
of syrer and K er. While s, ¢ is readily evaluated from all numerical solutions, Kj,er is a flow
control parameter of the premixed flamelet model and thus it needs to be prescribed. Similarly,
K, o5 is inaccessible from experiments. Therefore, K ,os and K5 are related to each other by a
second order polynomial fit through the physical space computations to assign representative strain
rates Kot to every premixed flamelet solution, which is shown in Fig. |5| (right).

Figure [6] (left) shows sy et versus K ef for lean Hy-air flames (¢ = 0.35) at atmospheric
conditions. It contains numerical and experimental data by Vagelopoulos et al. [66] who determined
laminar burning velocities with the counterflow twin flame technique. Furthermore, Fig. [f] contains

the physical space solution (Egs. )for the stagnation flames (STAG), the corresponding results
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Figure 6: Reference flame speed s, ;of versus strain rate for atmospheric Hy-air (¢ = 0.35, left) and CH,-air
stagnation flames (¢ = 0.7, right). Experimental and numerical results by Vagelopoulos et al. [66] and Egolfopoulos
et al. [64] are shown in comparison to numerical results obtained from a physical space solution method (STAG)
and the premixed flamelet model in progress variable space (PFLT). The unstretched laminar burning velocity
evaluated for a freely-propagating flame in physical space is shown as a reference (FP). The progress variable is
defined as Y. = Yu,0 — Yu, — Yo, (Hy-air flames) and Y, = Yco, + Yu,0 +10Yn, — Yo, (CH -flames) in the flamelet
calculations.

for the premixed flamelet model (PFLT, Egs. —) and the unstretched laminar burning
velocity obtained for a freely-propagating flame as a reference (FP). As observed from Fig. |§|, all
the numerical results overpredict the experimental results (including previous simulations reported
in Vagelopoulos et al. [66]), however the overall trend is well capured. Notably, the flamelet solutions
agree well with the physical space reference solutions of the stagnation flames.

Similarly as for the H,y-air flames, Fig. @ (right) shows s, et versus K o for lean atmospheric
CH,-air flames (¢ = 0.7). The numerical results agree well with the experimental data at strain
rates K e > 200 s, while there are deviations for smaller strain rates. Again, the flamelet model
recovers the physical space reference solutions well. Keeping in mind that s, scales with s, yef,
these results illustrate that the premixed flamelet model accurately captures the influence of strain
on the laminar burning velocity. This is further supported by comparing the profiles of the the
temperature, the progress variable gradient, and species mass fractions between the STAG and the
PFLT model, which is shown in Fig. [7] for the previously discussed H,-air flames. It is found that
the profiles obtained with the physical space reference model are very accurately recovered with
the flamelet model for different strain rates. As shown in Fig. [7] this is also the case for highly
diffusive species such as H, and radicals such as H. Similar characteristics are observed for other

major and minor species (not shown for brievty).
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Figure 7: Profiles for the temperature, the progress variable gradient, the progress variable source term, the heat
release rate (HRR), and the species mass fractions of Hy, and H for the lean Hy-air flames studied by Vagelopoulos
et al. [66] (c.f. Fig. [6] left). Results obtained with the physical space model (STAG) are compared to flamelet
solutions (PFLT) for three different strain rates (K = 200|400 |600s~!). The progress variable is defined as
Y. =Ym,0—Yn, — Yo,

Strain-induced effects for premized flames with Le < 1. After the comparison to experimental
reference data, characteristics of strained premixed flame structures are investigated in more detail
with the numerical models. Positive (extensive) strain generally increases gradients in the flame [62],
which is properly reflected in the flamelet model, since positive strain acts as a production term for
the gradient g., c.f. Eq. . Strain thereby inherently promotes diffusive transport of reactants to
the reaction zone (proportional to species gradients) but also the heat conduction away from the
flame (proportional to temperature gradients). For flames with effective Lewis numbers smaller than
unity, e.g. lean Hy-air flames (Len, ~ 0.3), positive strain therefore strengthens the flame [54] [62].

Figure [§| compares three lean H,-air flames computed with physical space solution methods
(unstrained: FP, strained: STAG, K, o5 = 0/500/2000s™") against corresponding results obtained
with the premixed flamelet model. From the right graph it is observed for an unstretched flame that
the local equivalence ratio ¢ decreases from the fresh gas mixture (left boundary) before it returns
to the original equivalence ratio in the post-oxidation zone (right boundary). The much leaner
mixture for intermediate progress variables is explained by the fact that H, diffuses much faster
than other species towards the reaction zone where it is subsequently consumed. For strained flames,

it is found that the flame becomes enriched towards the right boundary which is in accordance
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Figure 8: Left: local equivalence ratio versus progress variable for three lean H,-air flames at atmospheric conditions
imposing different strain rates (¢ = 0.5, K505 = 0/500 /2000s71). The results are obtained with physical space
solvers (FP/STAG) and the premixed flamelet model (PFLT). Right: local temperature versus local equivalence
ratio. The solid red line marks the equilibrium temperature 7, computed for H,-air mixtures as a function of the
equivalence ratio ¢. The progress variable is defined as Y. = Yu,0 — Yu, — Yo, in the flamelet calculations.

with the explanation for the strain effect given above.

The right graph of Fig. [§ shows the local temperature T as a function of the local equivalence
ratio ¢. Furthermore, the equilibrium temperature 7¢, is depicted, which is computed for Hy-air
mixtures as a function of ¢. It is observed that unstrained and strained flames reach a local
chemical equilibrium in the post oxidation zone, since the flame temperature eventually reaches a
point on the profile of T,y (¢). It is found that positively strained flames with Le < 1 reach a higher
flame temperature than the adiabatic flame temperature of their respective fresh gas mixture due
to local fuel enrichment. This strain-induced effect is sometimes termed hot spot or super-adiabatic
and can also be observed in turbulent combustion [50-52] (curvature can have similar effects). The
comparison above further confirms that the expansion of the Y.-space (local enrichment effect)
is correctly captured by the flamelet model and the right boundary eigenvalue of the Y -space is
well-predicted.

Ezxtinction limits for premized flames with Le < 1. Besides positive strain rates, the flamelet
model in progress variable space allows prescribing negative strain rates. This is demonstrated by
examining extinction limits for both, positive and negative strain rates, next. The effect of strain on
the flame structure is characterized considering quantities at the inner layer, which can be defined
by the position of the maximum heat release rate [36, 39]. Note that the reference quantity s, yef is

not suitable for this analysis since it not only depends on strain, but also on thermal expansion
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which complicates a proper assessment of strain-induced effects [36].
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Figure 9: Inner layer quantities: burning velocity s, i, temperature 7;; and maximum heat release rate Wy max
as functions of strain for lean Hy-air flames (¢ = 0.5, T,, = 298K). The progress variable is defined as Y, =
Yu,0 — Yu, — Yo, in the flamelet calculations.

Figure [9] shows the numerical results obtained for lean H,-air flames (p = 0.5) towards
higher positive strain rates and also for negative strain rates. Besides results for the physical
space stagnation flame model (STAG, blue circles) and the premixed flamelet model with K
approximated by a representative value (PFLT, solid line), the latter has also been computed
with the full strain rate profile extracted from corresponding STAG solutions (PFLT, dashed line).
Furthermore, numerical results for unstrained flames (FP, red circle) are given for orientation.

The strain-induced strengthening of flames with Le < 1 is reconfirmed considering the burning
velocity at the inner layer s,; and the maximum heat release rate wrmax in Fig. @ (left and
right plot, respectively) which both increase with positive strain. The inner layer temperature T}
decreases for K5 > 0 (Fig. @, mid plot) which implies that the maximum heat release becomes
shifted to lower temperatures. As long as solutions for the physical space model exist, the inner
layer quantities are well reproduced by the premixed flamelet model (Egs. —). The flamelet
model with the prescribed strain profile virtually yields the same result compared to the model
with a representative constant strain rate.

It is found that the stagnation flame extinguishes at K,o5; = 7644s~! while the premixed
flamelet model predicts solutions also for significantly higher strain rates (not explicitly shown).
This is due to the fact that flames with Le < 1 do not become extinguished due to positive strain

effects (which strengthen the flame), but due to incomplete reactions, when they are pushed against
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a wall or stagnation surface. In his book, Law [54] therefore calls stagnation flames restrained.
Approaching the stagnation surface, the thickness of the flame becomes smaller leading to reduced
residence times of reactants. Increasing the strain rate, restrainment initially appears as an effect
in the post-oxidation zone, where the thermochemical state does not reach equilibrium conditions
anymore (lowered temperatures). Eventually increasing strain above a critical limit, residence times
of reactants are so small that the flame becomes extinguished. On the contrary, the premixed
flamelet model does not account for restrainment, since both boundaries are infinitely removed
from the reaction zone of the premixed flame. Thus, flamelet solutions can be found for much
higher strain rates and computations were aborted at K5 = 15000 s~!. For modeling turbulent
flames, which can exhibit very large strain rates [37], these characteristics of the premixed flamelet
model could become advantageous, because highly strained canonical lames can be considered
aside from artefacts induced by a given physical space configuration.

At zero strain (vertical dotted line in Fig. @, the premixed flamelet model recovers the
characteristics of the freely-propagating flame model (FP). For K5 < 0, it is found that the lean
H,-air flames show a clear extinction limit since negative strain weakens the flame for Le < 1.
The negative strain extinction limit is determined as K, = —130s~! for which the profiles of Suil
and wr max versus K o5 become almost singular. To the authors’ knowledge, this negative strain

extinction limit is inassessible with conventional low-dimensional flame solvers.

Extinction limits for premized flames with Le > 1. Opposed to the previously discussed H,-air
flames, lean C,H;OH-air flames exhibit an effective Lewis number larger than unity (Lec,u on ~ 1.6)
and positive strain weakens these flames [54], 62]. This strain-induced effect is displayed in Fig.
which shows the stagnation flame results obtained with the physical space solver (STAG) compared
to flamelet solutions (PFLT, with constant K), and freely-propagating flame solutions for reference.
Also for the C,H;OH-air flames T} (Fig. [10] mid) decreases with positive strain, indicating a shift
of the maximum heat release to lower temperatures. However, it is observed that the inner layer
burning velocity s, (left) and the maximum heat release rate wrmax (right) both decrease for
K, 05 > 0. Consequently, a positive strain extinction limit can be identified for lean C,H;OH-air
flames, which is predicted as 930s~! with the physical space STAG model and 902s~! with the
PFLT model (deviation: 3%). Keeping in mind that constant strain rates are prescribed for the

flamelet model, the small overall differences between the two models are acceptable.
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Figure 10: Inner layer quantities burning velocity s, i, temperature Tj; and maximum heat release rate wr max
as functions of strain for lean CoH OH-air flames (p = 0.7, T,, = 363K). The progress variable is defined as
Y. =Yco, + Yu,0 + 10 Yy, — Yo, in the flamelet calculations.

Similar to Hy-air flames, C,H;OH-air flames can tolerate a certain level of negative strain.
It is found from Fig. 10, that the maximum flame temperature and the maximum heat release
both increase with negative strain rates, which is contrary to H,-air flames. The negative strain
extinction limit is determined as K o5 = —90s™!, which appears abrupt, since none of the quantities
depicted in Fig. [10] visually indicates a limit. However, below this level no flamelet solution could
be obtained and it remains an open question wether this is a physical effect or a numerical artifact.

The results presented in this section confirm that the premixed flamelet model captures strain
effects on premixed flame structures accurately. It is further demonstrated that prescribing strain
by representative values in progress variable space is a sufficiently good model, which is a valuable

insight for flamelet tabulation strategies.

5.2.2. Tubular stagnation flames

Figure [11] shows the schematic of a tubular burner. A combustible fresh gas mixture is issued
inwardly from a porous tube and forms a cylindrically symmetric stagnation flow. Eventually,
gases exit the burner in the axial direction. With this burner setup a stationary tubular flame is
established which is stretched and curved at the same time. Increasing the inlet velocity, the flame

is pushed towards the stagnation line and flame strain and curvature are both increased.

Physical space model. In physical space, the tubular burner can be described by the equation set
published by Wang et al. [67], which is similar to the model for stagnation flames. From a similarity

transformation of the governing equations in physical space a one-dimensional equation set with
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Figure 11: Schematic of a tubular burner in which a premixed tubular stagnation flame is established.
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Figure 12: Flame structure of a lean Hy-air tubular flame (¢ = 0.175, K yef = 145s~1). Left: Comparison of the
1D flame simulation data for the tubular burner (TUB) with corresponding experimental data by Hu et al. [68].
Middle: Comparison of the physical space simulation data (TUB) to the results obtained with the premixed flamelet
model (PFLT). Right: Comparison of the extracted profiles for strain K and curvature k. from the physical space
numerical solution to the prescribed profiles for the premixed flamelet model. The progress variable is defined as
Y. =Yu,0 — Yu, — Yo, in the flamelet calculations.

respect to the radial coordinate r is obtained. This model will be used to validate the flamelet

model in terms of curvature-affected premixed flames.

Comparison between experiments and numerical results. For the tubular burner, experimental data
of temperature and major species concentrations are available from the work by Hu et al. [68].
Figure [I2] shows the profiles of temperature, O,, H,O and H, for an ultra lean H,-air tubular flame
(o =0.175, K,y = 145s71). As observed from the left graph, the position and the structure of
the flame are well captured by the physical space numerical solution. While the temperature is
slightly overpredicted, the numerical results recover the species profiles well. In the mid-graph the

physical space numerical solution is compared to the progress variable space numerical solution
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obtained with the flamelet model. It is found that the flamelet solution is essentially equivalent to
the physical space solution. A small difference is found at the right boundary (post oxidation zone)
which extends further for the flamelet model. Similar to the stagnation flame, this characteristic is
attributed to the restrainment of the physical space flame configuration at the stagnation point. To
capture both strain and curvature effects with the premixed flamelet model, representative values
for K, and k. were determined from the physical space solution at ¢ = 0.5 and prescribed for the

flamelet model.

5.2.3. Spherical expanding flames

The spherical expanding flame is established by igniting an initially quiescent gas mixture with
a spark from which subsequently an outwardly propagating flame develops. For controlling the
flame, experiments are carried out in closed vessels which further allow studying flame propagation
under high pressures. The flame evolution is usually recorded by Schlieren or shadow photography
using high speed cameras. With this technique, the burning velocity can be determined from the
observation of the flame speed together with the unburned and burned gas density ratio [49] or
directly from the difference of the propagation speed of the flame s; and the fresh gas velocity u,
[49, [61), [69], [70] according to Eq. . Figure |13| shows a schematic of a spherical expanding flame.

The flame propagates outwardly as indicated by the red arrows and it is further pushed in the same
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Figure 13: Schematic of a spherical expanding flame.

direction due to thermal expansion of the reaction products. This thermal expansion causes an
entrainment of cold unburned gas by the flame which can be measured as the velocity of unburnt

gases u, ahead of the flame front [61], 69]. Due to symmetry, the flame can also be described by a
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set of time-dependent and spatially one-dimensional differential equations [71] (with respect to the

radial coordinate 7).

Flame stretch and curvature. The flame’s surface increases continuously with time since it is curved
and it moves outwardly with the flame speed sy. Consequently the flame front becomes stretched.

The overall stretch rate of the spherical expanding flame front is determined as [35]

2dr 2
K—;E—;Sf—lich, (36)

where the curvature of the flame front k. = 2/r evolves with time. When computing spherical
expanding flames with the premixed flamelet model, strain and curvature need to be prescribed.
While the definition of the curvature is readily available from the flame geometry, the premixed
flamelet model further requires the strain rate imposed by the flow which is defined according to

Eq.
K, = K — s,ke &9 —(5f + Su)Ke B _, e . (37)

g

Note that u, is negative in this equation due to the convention u, = n. - u. For the spherical
expanding flame u is directed opposite to n., thus, the strain rate K is positive which is consistent
with the literature. Furthermore, in the above relation the flame displacement speed s; and the
flame’s burning velocity s, are set equal which is valid only at the unburnt edge of the flame as
outlined in Sec. . For spherical expanding flames usually s is reported as a function of K which
allows to recompute the flame’s curvature according to x. = K/sy. However, the premixed flamelet
model can only be applied if also the gas velocity u, is reported from the experiments. Otherwise,
imposed strain by the flow K, = —u,k, and strain due to the propagation of the flame itself (s,ke,
which is a flame response) cannot be separated. Suitable reference data has been reported by

multiple researchers for hydrogen and hydrocarbon flames [61], [69, [70] [72].

Comparison between experiments and numerical results. Figure[l4]shows experimental reference data
by Varea et al. [T0] for lean H,-air flames together with results obtained with the premixed flamelet
model. Similarly as for planar and tubular stagnation flames, strain and curvature are prescribed
as representative constants which were determined with average values from the experiments from

Egs. and . Overall the agreement between experiments and numerical results for the
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Figure 14: Left: Measurements of the apparent flame speed sy and the velocity of the fresh gases u, for a
spherical expanding flame by Varea et al. [T0] (H,-air, ¢ = 0.5). Numerical results are obtained with the premixed
flamelet model (PFLT, solid line) and the dotted lines mark a linear regression of the experimental data. Right:
comparison of burning velocities evaluated from the experimental data and the premixed flamelet model. The
laminar burning velocity for a freely-propagating flame is shown for reference (FP). The progress variable is defined
as Y, = YHQO — YH2 — Y02 in the flamelet calculations.

stretched laminar burning velocity (Fig. , right graph) is good with only slight deviations towards
higher stretch rates. However, these deviations are less prominent when comparing the overall
flame speed sy (Fig. , left graph).

Similar results are obtained for lean CH,-air flames for which experimental data by Varea et al.

[61] and corresponding flamelet solutions are shown in Fig. [L5] The overall trend and magnitude
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Figure 15: Left: Measurements of the apparent flame speed sy and the velocity of the fresh gases u, for a spherical
expanding flame by Varea et al. [61] (CH-air, ¢ = 0.7). Numerical results are obtained with the premixed
flamelet model (PFLT, solid line) and the dotted lines mark a linear regression of the experimental data. Right:
comparison of burning velocities evaluated from the experimental data and the premixed flamelet model. The
laminar burning velocity for a freely-propagating flame is shown for reference (FP). The progress variable is defined
as Y. = Yco, + Yu,0 + 10 Yy, — Yo, in the flamelet calculations.
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for the stretched laminar burning velocity (right graph) is well captured by the flamelet model with

! However, the comparison

slightly overpredicted values for stretch rates between 150 to 400s™
of the flame speed s (Fig. , left graph) shows that the deviation between numerical result and
linear regression of the experimental data remains small.

Only few information is necessary to reproduce magnitude and trend of the experimentally
determined burning velocities. This underlines the high flexibility of the premixed flamelet model
and confirms that the model captures the interplay of strain, curvature, and unsteadiness. Given
a pair of parameters, K, and k., one computation with the flamelet model yields the premixed
flame response, e.g. in terms of its flame structure and burning velocity. With few exceptions [39],

most physical space models compute the whole transient evolution of the spherical expanding flame

(until a self-similar state) before this information becomes available.

6. Summary and conclusions

A self-contained premixed flamelet model was presented which describes premixed flames in
progress variable space. The model is based on flamelet equations for temperature, species mass
fractions, and the gradient of the progress variable. The latter establishes a direct link of the
flamelet structure to the fundamental flame parameters strain and curvature. As already shown in
an earlier work [22], treating the progress variable gradient as a dependent variable resolves a severe
limitation of flamelet modeling in scalar space. Similar previous flamelet formulations |21, 23], 53]
required a closure for both the shape and the magnitude of the gradient, for which a generic profile
does not exist in case of premixed combustion. With the novel approach, an effective closure of
the flamelet equations was obtained by prescribing the flamelet parameters strain and curvature
through representative constant values.

The predictive capabilities of the new method were demonstrated for a constant pressure ignition
problem and three canonical flame configurations: the stagnation flame, the tubular flame and the
spherical expanding flame. Different models are necessary to describe the aforementioned canonical
combustion configurations in the physical space, but all of them can be described using a single
premixed flamelet model in progress variable space. A combination of physical space reference
solutions and experimental measurements from the literature was used for the validation. Very

accurate results were found for constant pressure ignition, flame structures, burning velocities, and
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flame extinction. Furthermore, the premixed flamelet model allowed to capture strain-induced hot
spots and even negative strain effects. With few exceptions |39, 40)], the latter remains inaccessible
for conventional low-dimensional flame solvers.

Multiple future applications of the premixed flamelet model are conceivable. Its generic
parametrization allows analyses of flame structures which do not have a direct canonical flame
counterpart in the physical space. This facilitates parametric studies well beyond the limits of,
for instance, tubular flames or stagnation flames in terms of curvature and strain. With this, the
model is well suited for tabulated chemistry approaches in a CFD context since these conditions
have been shown to be relevant for turbulent combustion. Further, it can be used for numerically
assisted interpretation of experimental data. The determination of the laminar burning velocity
from experiments of stretched premixed flames usually relies on extrapolation procedures to zero
stretch [36]. Extrapolation methods could be complemented using the work reported in this paper,

since it allows for a continuous representation of the burning velocity over the full stretch range.
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