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Abstract

A uni�ed modelling framework for all unresolved terms in the �ltered progress variable

transport equation in large-eddy simulations of turbulent premixed ames is proposed, us-

ing convolutional neural networks. A direct numerical simulation database of a turbulent

premixed stoichiometric methane/air jet ame is used in order to train convolutional neural

networks to predict both the �ltered progress variable source term and the unresolved scalar

transport terms. A single variable readily available from the large-eddy simulation is required

in order to calculate all inputs to networks, namely the Favre-�ltered progress variable ~c.

In the context of ame tabulated chemistry (premixed amelet), the trained networks are

shown to produce quantitatively good predictions of all unresolved terms in an apriori study,

despite their di�erent nature and irrespective of variations in �lter size, without having to

resort to solving any additional transport equations. The framework proposed in this study

thus opens perspectives for the application of deep learning to the modeling of the non-linear

aerothermochemistry equations which involve unresolved source and transport terms.
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1. Introduction

In Large Eddy Simulation (LES), only the largest ow scales are resolved, while uc-

tuations of momentum, species concentration, and temperature below the mesh size are

unknown. The e�ects of these unresolved scales appear as unclosed terms in the spatially-

�ltered governing equations and require modelling in order to obtain a closed system of5

equations [1].

With the rapid increase of computational resources and data storage capabilities in recent

years, machine learning methods in general have had a tremendous impact in various �elds

such as speech, image and text recognition, robotics, and health-care amongst many others

[2]. The modelling of unresolved terms in the highly non-linear transport equations of10

turbulent and reacting ows is a challenging and daunting task. The ability to \learn" from

the data directly, presents a promising alternative given the abundance of data available

both from simulations and experiments. Direct Numerical Simulation (DNS) databases

where all ow and time scales are resolved, are of the order of Petabytes [3] and machine-

learning methods are a natural tool for extracting useful information from these databases15

for modelling purposes.

In the context of turbulent combustion modelling, Arti�cial Neural Networks (ANNs)

have been used mainly to deal with the introduction of complex chemistry in the simula-

tions [4{8], or to manage complex multi-physics phenomena such as solid-fuel devolatiliza-

tion [9]. Recently, Convolutional Neural Networks (CNNs), originally developed for analysing20

visual representations [10, 11], have been introduced as a tool for the direct deconvolution

of the �ltered progress variable [12], which combined with explicit �ltering allowed the mod-

elling of the unresolved variance, a key parameter in amelet modeling [13]. CNNs were also

used for modelling the unresolved ame surface wrinkling in [14] surpassing state of the art

explicit algebraic models. CNNs have also been used to extract the chemical rate constant25

from shock-tube measurements [15] and for predicting the combustion activation energy [16].

A turbulent premixed stoichiometric methane/air jet ame is considered in this study
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performing a priori evaluation of neural network based modeling from a fully resolved sim-

ulation, following a strategy combining CNNs with the pioneering works of Bray and co-

workers [13, 17]. According to their analysis, the departure between the non-linear chemical30

sources as computed from the node values resolved on a coarse mesh (i.e., neglecting unre-

solved uctuations) and their space-�ltered (or averaged) counterparts (i.e., accounting for

unresolved uctuations), evolves with the local three-dimensional ame topology, convoluted

with the level of mesh resolution, which controls the amplitude of the unresolved uctua-

tions of temperature and species.1 Along these lines, we propose to explore the relationships35

between the three-dimensional distributions of chemical sources as computed from node val-

ues (thus a crude approximation of the �ltered burning rates), and the �ltered value of the

non-linear source located at the center of this three-dimensional distribution, using a DNS

database. The same procedure is adopted for the sum of the divergence of the unresolved

part of the convective ux and of the molecular di�usive ux. The DNS database is then40

used to train convolutional networks in order to directly reconstruct the unresolved scalar

sources and transport terms in the framework of tabulated detailed chemistry (premixed

amelet) LES. The major advantage of such a direct reconstruction of unresolved sources

and uxes from mesh-resolved quantities in the LES, is that by doing so there is no need for

explicit �ltering or solving additional transport equations, both of which save computational45

time and mitigate possible resolution issues [18].

2. Background and methodology

In chemistry tabulation based on premixed ame generated manifolds, all thermochemical

quantities � are uniquely related to an appropriate progress variablec (equal to unity in

fully burnt products and vanishing in fresh gases), so that knowledge of the progress variable50

distribution c(x; t) is su�cient to characterise the reaction zones,i.e. � (x; t) = � (c(x; t)) [19{

1Bray and co-workers speci�cally focussed on the asymptotic limit where the mesh size is very large
compared to the characteristic ame thickness.
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22], including the burning rate

_! (x; t) = _! (c(x; t)) : (1)

The progress variable may be de�ned from a set of species mass fractions, temperature,

derived from optimisation [23{25] or following other strategies [26]. In any case,c should

be a monotonic function through the laminar amelet. In the context of LES, a transport55

equation for �� ~c is solved,

@� ~c
@t

+ r · (� ~u~c) = r · (�D c(~c)r ~c) + r · � + _! ; (2)

where� is the density,u is the velocity vector andDc(c) is the tabulated molecular di�usion

coe�cient of c, de�ned from the di�usion velocity of tabulated species (Eq. (15) in [27]).

The notation Dc(~c) means that the di�usion coe�cient is here computed from the resolved

�ltered progress variable. _! (x; t) is the �ltered burning rate of c. The sub-grid scale ux is60

� = � D c � � c ; (3)

where� D c and � c are respectively the transport ofc by unresolved uctuations of molecular

di�usive ux and momentum,

� D = �D c(c)r c � �D c(~c)r ~c ; (4)

� c = � uc � � ~u~c : (5)

Numerous modeling strategies have been proposed in the literature for the unresolved terms

of Eq. (2) in the context of tabulated chemistry, and a detailed review is given in [28]. Among

those, many involve gradient transport models with an eddy viscosity hypothesis to close� c65

while � D is usually neglected.

Flamelet models for the burning rate_! , are typically based on solving and additional

balance equation for the variance ofc, cv = ec2 � ~c~c. A function is then presumed for the
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progress variable probability density function (pdf), which is parameterised using the two

moments ofc namely ~c(x; t) and cv(x; t) [29{31]. A chemical lookup table is constructed70

using results from 1D ame simulations, and variables of interest are obtained using these

two parameters from the table. For example, the �ltered burning rate in Eq. (2) is closed

using

_! (x; t) =

1Z

0

_! (c?)P(c?; ~c(x; t); cv(x; t))dc? ; (6)

where P(c� ; ~c(x; t); cv(x; t)) is the presumed pdf. A characteristic length scale may also be

added to the modeling framework, by combining the pdf with the Flame Surface Density75

(FSD) concept [32, 33]. In an attempt to account for the time history of micro-mixing, it

has been proposed in [34] to include as a control parameter of the �ltered thermo-chemistry

lookup table, the age of uid particles since their injection. Simulations coupling ame-

generated manifolds with pdf transport using Eulerian stochastic �elds have also been re-

ported [35, 36]. The �ltering of the tabulated one-dimensional ames is another option,80

providing closed expressions for� c and � D , in addition to _! [27, 37, 38]. More recently,

deconvolution-based approaches have also been discussed and applied to the three terms_! ,

� c and � D [39{43].

Overall, these modeling approaches directly or indirectly relate ~c and r ~c to the unclosed

terms. A slightly di�erent approach is explored in this work. First, the statistical properties85

of _! , � c and � D are examined using the results from the DNS database. Speci�c features

are observed in the data connecting_! and r · � = r · (� D � � c) to _! (~c) and r · (�D c(~c)r ~c)

respectively, namely the burning rate and the divergence of the di�usive ux as computed

from the resolved LES �elds,i.e., the node values over the LES mesh. (r · (�D c(~c)r ~c) is

already calculated when solving for ~c and is thus available without additional computational90

cost.) These features suggest that image-type deep learning can be readily applied to dy-

namically determine two mapping functionsG and F from convolutional neural networks
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such that,

_! (x; t) = G[ _! (~c(x1; t)) ; � � � ; _! (~c(xN ; t))] ; (7)

r · � (x; t) = F [r · (�D c(~c)r ~c) (x1; t); � � � ; r · (�D c(~c)r ~c) (xN ; t)] ; (8)

where ~c(x j ; t) is known from the LES, with x j the N points selected aroundx to build the

input image of the networks. Note that the above relations are expressed in progress variable95

spacei.e., a single variable, ~c, is required in order to calculate the terms on the right-hand

side of Eqs. (7) and (8) which constitute the inputs to the two networksF and G. Provided

G and F are known, Eq. (2) is fully closed without having to solve any additional transport

equations. Also note that ~c is a coordinate in which turbulent premixed ame properties

are strongly depended on and feature a generic character when studied in c-space [13]. As a100

result, the dependence of relations (7) and (8) to the ow regime are expected to be weak as

long as the networks are trained for conditions in a Borghi regime-diagram [44] close to the

ones of the ames subsequently addressed by LES. This is also more likely to be the case,

when G and F are determined from a reference turbulent premixed ame featuring a large

degree of ame wrinkling, as is the case for the turbulent premixed jet-ame DNS database105

used in this study [41].

3. Direct simulation database

A previously developed methane-air stoichiometric premixed jet-ame DNS database [41,

45, 46] is used for training the neural networks. The con�guration is shown in Fig. 1.

The DNS database is obtained downstream of a well-resolved LES of a piloted premixed110

stoichiometric fuel-air jet, which generates turbulent ame conditions for the DNS inlet plane

located 4.5 diameters downstream of injection. The LES and the DNS are run simultaneously

and this is achieved by embedding, inside the LES mesh, a zone where the resolution is

su�ciently high so as to resolve the thin reaction zones and the Kolmogorov length scale.

The con�guration is inspired from the experiment by Chenet al. [47]. This turbulent Bunsen115
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burner has a nozzle diameter of D = 12 mm, the jet Reynolds number is 24,000 (bulk nozzle

velocity of 30 m· s� 1 and turbulent kinetic energy of 3.82 m2 · s� 2). The pilot is set to fully

burnt gases atTb = 2200 K. The LES mesh consists of about 171 million nodes covering

a domain 16D� 8D� 8D, with a resolution of the order of 150� m (Fig. 1). The resolution

in the DNS zone is �xed at 50� m, which was calibrated to ensure a full resolution of the120

ow and ame scales for this jet ame having a Karlovitz number varying between 1 and

3 [41, 47]. Chemistry tabulation with a stoichiometric premixed amelet with fresh gases at

To = 300 K (GRI-3.0 mechanism [48] and progress variable de�ned from CO, CO2, H2O and

NOx as in [49]) is used for both LES and DNS, without any SGS modeling in the DNS part

(SGS terms set to zero). The ame thermal thickness based on the progress variable �eld is125

of the order of� L � 400� m. The DNS zone consists of 28.58 million nodes (243� 343� 343),

over a physical domain of 12 mm� 18 mm� 18mm. This DNS zone is located at 4:5D

downstream of the nozzle, and at 5:5D the mesh is coarsened again to progressively resume

the simulation using LES (Fig. 1). A progress variable presumed pdf approach is applied

in the LES zones [29] and the SGS momentum uxes are approximated with the Vreman130

model [50]. These simulations have been performed using the ow solver SiTCom [51], which

solves the Navier-Stokes equations in their fully compressible form together with the balance

equation for the �ltered progress variable. The convective terms are discretised with a fourth-

order centered skew-symmetric-like scheme [52] and the di�usive terms with a fourth-order

centered scheme. Time is advanced explicitly with a third order Runge-Kutta method and135

NSCBC boundary conditions [53] are imposed at inlet and outlet, with the measured pro�les

with synthetic turbulence [54] prescribed at inlet. More details on the development and the

use of this DNS database may be found in [41, 45, 46].

A Gaussian �ltering operation, G(x) = (6 =(� � 2))3=2 exp(� 6x · x=� 2), with �lter size

� = 0 :3 mm = 0:75 � L , � = 0 :6 mm =1.50 � L and � = 0 :9 mm = 2.25 � L , is applied140

to the DNS variables in order to generate a priori LES �ltered quantities, thus varying the

resolution of the a priori �elds from well-resolved to coarse LES (at least from the reaction
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zone point of view, � = 0 :9 mm is 18 times larger than the DNS grid resolution).

4. Statistical analysis of unresolved terms

4.1. Turbulent ame properties145

Figure 2 shows



_! + j ~c
�
, the statistical mean over the DNS domain of the normalised

�ltered progress variable source, conditioned on values of ~c. The subscript +̀ ' denotes source

terms normalised by their maximum value in the tabulated freely-propagating laminar pre-

mixed ame. The result obtained using a 1D laminar ame, _! + (~c), is shown as a solid line.

As expected, the maximum of



_! + j ~c
�

decreases with increasing �lter size and thus with150

increasing unresolved uctuations [13]. Following the thickening of the �ltered ame front,

the response of this conditional �ltered source term also spreads in progress variable space

for increasing �lter sizes, up to � = 0.9 mm.

The statistical conditional means ofhr · � c j ~ci and of hr · � D j ~ci , the divergence of the

convective and di�usive uxes (Eqs. (4) and (5)), are shown in Fig. 3. The maximum level of155

velocity uctuations observed in the fresh gases in the experiment at the streamwise location

of the jet where the DNS zone is located (Fig. 1), is of the order ofu0 = 1:80 m· s� 1 [47].

Then, the ratio u0=SL for this stoichiometric premixed methane-air ame is of the order of

5, with SL = 0:37 m· s� 1.

The numberNB = [( Tb � To)=To]SL =(2�u 0), as de�ned by Veynanteet al. [55], which dif-160

ferentiates between gradient transport,NB < 1, � � c / r ~c, and counter-gradient transport,

NB > 1, � � c / �r ~c, in a Reynolds Averaged Navier Stokes context (RANS), is above unity

in the present case for an e�ciency factor� � 0:6. The factor � in NB accounts for the

variability in the capability of turbulent eddies to wrinkle the reaction zone [55].

Considering space-�ltered (LES) quantities, for 1� � =�L � 3, counter-gradient SGS165

transport was recently reported from DNS analysis for the same level ofu0=SL [43]. Overall,

counter-gradient transport is found whenr · � c and r 2~c are of same sign. This is also what

is observed in Fig. 3(a), withhr · � c j ~ci negative on the burnt gas side wherer 2~c < 0 and
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hr · � c j ~ci positive on the fresh side wherer 2~c > 0.2 This behaviour is also observed in the

scatter plot of the SGS convection divergence which is shown in Fig. 4, with the occurrence170

however of some negative values ofr · � c around ~c ! 0, thus gradient transport in the

preheat zone ensures the local ame propagation. On these scatter plots, the bounds of

r · � c do not change much with the �lter size �, but the spreading of the data for a given

value of ~c decreases with �.

The contribution of the SGS di�usive ux, r · � D , in Fig. 3(b) cannot be neglected175

compared to the convective one,r · � c, in Fig. 3(a). This would not be the case in the

RANS context, where the SGS di�usive contribution would be inversely proportional to the

turbulent Reynolds number of the ow, and thus could be neglected when compared to other

transport terms [56]. The SGS di�usive uxes in LES are actually inversely proportional

to the turbulent Reynolds numbers of the LES mesh cells, based on the �lter size and on180

the SGS velocity uctuations. Therefore, the SGS turbulent Reynolds number appears too

small for neglecting the divergence of� D . The response of the amplitude ofhr · � D j ~ci versus

the �lter size, is better understood by looking at the two terms
D

r · (�D c(c)r c) j ~c
E

and

hr · (�D c(~c)r ~c) j ~ci in Figs. 3(c) and 3(d). As expected, following the decay of the gradients

with the increase of the �lter size, these �ltered transport terms decrease, leading to a decay185

of the amplitude of both the �ltered and node-resolved di�usive budgets when � increases.

In the case ofhr · (�D c(~c)r ~c) j ~ci an almost self-similar behaviour is observed against �

(Fig. 3(d)). This is not the case for
D

r · (�D c(c)r c) j ~c
E

, for which the response is also

shifted against ~c when � varies as one may observe from the results in Fig. 3(c). As a result,

the di�erence between these two terms,r · � D , is not monotonic against � (Fig. 3(b)). It190

is important also to note that the thickening of the ame front in physical space resulting

from �ltering, directly impacts these budgets here visualised in ~c-space. Finally, the sum

of SGS uxeshr · � j ~ci = hr · (� D � � c) j ~ci , which combines responses of both unresolved

2Almost zero uxes on the burnt gas side appear beforeec = 1, because of the choice of the progress
variable as in Godel et al. [49], which is designed as slowly varying approaching burnt gases to preserve a
single-valued response of NOx versus progress variable.
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convection and molecular di�usion, is shown in Fig. 5.

4.2. Physical arguments for CNN training195

As will be explained later in the text, two CNN will be used to approximate respectively

the values ofr · � (x; t) and _! (x; t) from an input composed of a set of data (images). In

practice, this is done by interpolating over a large number of relationships between `images'

and `labels', which were the values ofr · � (x; t) and _! (x; t) \learned" during a training

phase. Here the inputs (images) are composed of _! (~c(x j ; t)) and r · (�D c(~c)r ~c) (x j ; t) for200

j = 1; � � � ; N , whereN is the number of points surrounding a pointx, where the values of

_! (x; t) and r · � (x; t) are sought.

The input set of data should feature speci�c topological properties, which can be ex-

tracted by convoluting the data points with a series of �lters and speci�c operations. Fig-

ure 6 shows



_! + j ~c
�

versus _! + (~c) for di�erent �lter sizes and Fig. 7 illustrates the image-label205

relationship which could be implemented. Notice that the CNN will not operate on the sta-

tistical conditional means in the end, but directly on the raw data, however initiating the

analysis at the statistical level helps to select the variables. As one may observe from Fig. 6,

the �ltered source term is not a single-valued function of the node resolved source, neverthe-

less accounting also for the local curvature of the data set as one of the features, should be210

su�cient to build a one-to-one response. Obviously, this constitutes only a very preliminary

condition to secure the determination of the functionG of Eq. (7) and more features will

need to be extracted on the full set of turbulent data, as discussed thereafter. Because of

non-deterministic local sub-grid scale wrinkling of the ame surface, the relation between

_! + (~c) and _! + is actually scattered as shown in Fig. 8, with some deviation from the response215

seen in Fig. 6, and this scattering should be reproduced by a reliable physical model. This is

where numerical modelling can take great bene�t from deep learning, which automatically

discovers the most relevant signal features through elementary operations, to then allow for

interpolating over the very large dataset learned.

Similarly, Fig. 9 showshr · � j ~ci versushr · (�D c(~c)r ~c) j ~ci and Fig. 10 the full set of220
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data r · � versusr · (�D c(~c)r ~c), revealing a dataset which can easily be analysed by CNNs

for identifying the function F in Eq. (8). It will be seen thereafter that this is a valid

option for the case considered. Because momentum also contributes tor · � , an alternative

would consist of introducing information on velocity in theF neural network (Eq. (8)). An

option that was not found necessary in the present study where both SGS convective and225

di�usive uxes are combined to build a single CNN for the divergence of uxes. For this

set of data, various options in terms of neural network layers number and �ltering kernels

have been tried. Best results were obtained with two layers and the set of kernels and data

organisation now reported.

5. CNN training process230

The LES mesh size required to resolve withn = 5 points the �ltered progress variable

signal, may be estimated fromh = (� =n)
p

�= 6 + � 2
L =� 2 [42]. A three-dimensional test-box

of size (2h)3 is constructed around every of the M = 28.58 million DNS nodes. This test box

is centered atx and containsN = 27 points which hold the three-dimensional distributions of

_! (~c(x j ; t)) and r · (�D c(~c)r ~c) (x j ; t), for j = 1; � � � ; N . These data are stored and constitute235

the `images' that will be processed by the CNN as shown in Fig. 11. The `labels' of each

i -th image are _! [i ] = _! (x; t) and r · � [i ] = r · (� D (x; t) � � c(x; t)) for i = 1; � � � ; NL . Two

networks of similar structures (same number of layers, convolution kernels, etc.) are trained,

one for the chemical source and one for the SGS uxes.

To reduce the computational cost, only part of the database is used for training. For240

each value of �, the following procedure is applied:

ˆ First, 1000 images with their associatedi -th label are built. 20 values ofc? uniformly

distributed between 0 and 1 (� c? = 0:05) are de�ned. For each value ofc?, 50 images

are randomly selected so that ~c(x; t) 2 [c? � � c?=2;c? + � c?=2] (x denotes the center

of the test box, Fig. 11).245
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ˆ Over�tting is avoided by adding uncorrelated random perturbations to the images,

_! (~c(x j ; t)) and r · (�D c(~c)r ~c) (x j ; t), as 10% of their maximum in the test box, to

build a second image for each label. 2000 images are then available for 1000 labels.

Finally, the database used for training with two �lter sizes contains 4000 images andNL =

2000 labels. Hence, for every quantity studied, a set of 27� 4000 =108000 data ( _! (~c(x j ; t))250

and r · (�D c(~c)r ~c) (x j ; t)) is involved, associated to the 2000 reference labels (_! [i ] and

r · � [i ] for i = 1; � � � ; NL ).

A series of convolution/sampling operations are done iteratively during the training

phase, in which the neural weights are adjusted until a satisfying minimal error is obtained

between the value ofr · � (x; t) and _! (x; t) used for training (labels) and the values returned255

by the neural networks prediction. Convolution/sampling operations are thus performed on

the database to extract its features using a number of di�erent kernels [10, 11]:

1. Each image is convoluted with 32 di�erent �lter kernels obtained with random values

from a truncated normal distribution. Meaningful values of the obtained features are

then extracted with a max pooling non-linear function to avoid excessive computational260

costs.

2. The process is repeated with 64 �lters, decomposing the image into several meaningful

features, which is useful for seeking out the inner properties of the uxes and sources.

3. Two fully connected layers are built to process the 64 obtained features, and to classify

the image according to the learned labels. The probabilities linking this image to each265

of the learned labels are then known in the form of coe�cients ranging between zero

and unity.

The training of the network was conducted using the TensorFlow (www.tensorow.org) li-

brary and breakdown of the network structure is given in Fig. 12. During this training phase,

a 50% drop-out rate is applied,i.e., 2000 images are randomly selected at every iteration270

and about 100 iterations (or `epoch') are needed to reach convergence. The error function

used for training is based on cross entropy [57], while the training is controlled by the Adam
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optimizer [58] for stochastic gradient descent, with a user-de�ned learning rate of 10� 4. Both

normalised and non-normalised input ( _! (~c) and r · (�D c(~c)r ~c)) and output values (_! and

r · � ) of networks have been used, without much di�erence, results are presented for the275

non-normalised training.

6. CNN mapping of uxes and sources from LES resolved �elds

In using the networks, theN = 27 values of the chemical sources and of the divergence

of the uxes computed from the resolved progress variable �eld in the test box surrounding

the LES cell (Fig. 11), constitute the input. In this feasibility study, for each �lter size,280

1000 �ltered DNS �elds are used for a priori tests (the noised images introduced during the

training phase do not enter these tests). The unknown terms are then approximated from

interpolation over the NL = 2000 labels values (_! [i ] and r · � [i ]) of the training phase,

_! (x; t) = G[ _! (~c(x1; t)) ; � � � ; _! (~c(xN ; t))]

=
NLX

i =1

Pi (x; t) � _! [i ] ; (9)

r · � (x; t) = F [r · (�D c(~c)r ~c(x1; t)) ; � � � ; r · (�D c(~c)r ~c(xN ; t))]

=
NLX

i =1

Ti (x; t) � r · � [i ] ; (10)

where Pi (x; t) and Ti (x; t), both 2 [0; 1], are the probability that the image belongs to the

label ì ', as returned by the neural networksG and F . In practice, the modelled �ltered285

sources and divergence of SGS uxes are thus non-linearly interpolated, according to the

local LES resolved ame topology, over 2000 reference DNS values.

The training is performed for the smaller and largest �lter sizesi.e., � = 0.3 mm and

� = 0.9 mm. Then, the prediction capabilities of the obtained CNN are tested a priori for

these �lter sizes and for intermediate values of �2 [0:3; 0:9], for which this network has not290

been trained (so-called `untrained case'). Notice that the ratio of three between the �lter

sizes used for training can be considered large, as these �lters vary between 0.75� L and
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2.25 � L . This ratio of more than one ame thickness is here intentional to test the method

in the limit case where the neural networks are used for �lter sizes far from those of their

training.295

Using GPU `NVDIA Pascal', the training of the uxes requires 4 hours. Compared to the

uxes, the �ltered source terms have a larger range of variation between the two �lter sizes

used for training and they require 24 hours of training on the same GPU. Once trained, the

network may be used directly in a ow-solver for a CPU cost of about the one required with

a turbulent combustion closure based on chemistry tabulation and presumed probability300

density function [29].

The averages of the predicted divergence of the unresolved uxes conditioned on the

progress variable,hr · � j ~ci , are �rst compared against the �ltered DNS in Fig. 13. The

CNN reproduces the expected behaviour and amplitude ofr · � , the uctuations are also well

captured, as seen in Fig 14. (Note that because the binning intervals to compute conditional305

means are di�erent than in Fig. 5, the extrema also di�er.) The test for the untrained �lter

level is performed with a �lter size � = 0 :45 mm = 1:125� L . This constitutes a stringent

test case, because neural networks are known to be prone to rapid divergence when applied

away from their training area. However, staying within the bounds of the training �lter

sizes, Fig. 13(b) shows that the response of the divergence of the unresolved uxes is well310

captured. The plots showing conditional uctuations in Fig. 14(b) con�rm this moderate

deviation from the reference �ltered DNS. These results need to be put in perspective with

predictions of unresolved uxes using most advanced SGS models, where sometimes even

the sign is not properly returned (see for instance Fig. 8 of [43] reporting strong departure

from DNS in SGS transport modeling in turbulent premixed ames).315

Similar results are obtained for the �ltered source terms, which are shown in Figs. 15

and 16. For the trained �lter sizes (� = 0.3 and 0.9 mm), the �ltered chemical source as

predicted by the CNN matches the DNS reference, speci�cally for the largest �lter, with a

good reproduction of the parabolic shape. The conditional uctuations of �ltered burning
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rates are also well captured (Fig. 16). For the untrained case however, some departure320

from the DNS value is observed, but still reasonable, at least comparable to what could be

expected using classic models to estimate the �ltered source terms. This would particularly

be the case against formulations where the Arrhenius form is kept at the resolved scales

after simply applying a scaling factor, thus far from the parabolic shape developing with the

increase in �lter size. In a previous work [41], modeling of the �ltered source based on 3D325

approximate deconvolution and 1D ame deconvolution was tested against the same DNS

database. As shown in Fig.17(b) of [41], the error on the burning rate estimation conditioned

on the progress variable could reached up to 25% for � = 3� L . In the present case with the

neural network, the maximum error is of the order of 1% on the trained database and of

16% for the untrained ones, con�rming the potential of the approach.330

7. Conclusion

A novel modelling framework using machine-learning is proposed for providing closures

for all unresolved terms in the �ltered transport equation of the progress variable in large-

eddy simulations of turbulent premixed ames in the context of amelet tabulated chemistry.

A turbulent premixed methane/air stoichiometric premixed jet ame is considered and a335

priori evaluation of modeling based on neural networks is performed.

Convolutional neural networks are trained using data from a direct numerical simulation

database, in order to predict the �ltered progress-variable source term, and the unresolved

uxes in the �ltered transport equation of ~c. The advantage of the approach proposed in this

study, is that a single variable which is readily available, ~c, is required in order to calculate all340

inputs to networks, without having to resort to solving any additional transport equations for

modelling all terms in the transport equation. The convolutional neural networks are shown

to provide quantitatively accurate predictions of both the source and ux terms, which

are two substantially di�erent terms and otherwise di�cult to model in a single uni�ed

framework. The predictions capabilities of the networks are also demonstrated to be only345
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weakly insensitive to variations in �lter width, which is an important attribute for any sub-

grid scale model. Because they are based on the progress variable, a generic parameter

of premixed ames, the networks should perform well for any turbulent premixed ame

located in the Borghi regime-diagram close to the conditions used for training. However, as

a non-linear interpolation tool of high-dimensionality, it cannot perform well for cases with350

operating conditions far from those of training.
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Figure 1: LES-DNS snapshot of the jet-ame simulation [41]. Mesh and iso-progress variablec = 0 :8. h:
resolution. Red iso-surface: zoom of iso-c = 0 :8 in the DNS zone (di�erent angle view).
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Figure 3: Conditional statistical means vs �ltered progress variable. (a): Divergence of SGS convective
scalar ux. (b): divergence of SGS di�usive ux. (c): �ltered di�usive ux. (d): di�usive ux computed
from the resolved quantities. Filter size � : 0.3 mm, � : 0.6 mm, � : 0.9 mm.
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(a) � = 0 :6 mm (b) � = 0 :9 mm

Figure 4: Scatter plot of r · � c (1 every 100 DNS points shown).

Figure 5: hr · � j ~ci = hr · (� D � � c) j ~ci vs ~c. Filter size � : 0.3 mm, � : 0.6 mm, � : 0.9 mm.
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Figure 6:
D

_! + (c) j ~c
E

vs _! + (~c). Filter size � : 0.3 mm, � : 0.6 mm, � : 0.9 mm.

Figure 7:
D

_! + (c) j ~c
E

vs _! + (~c). Sketch of the construction of images and labels for training a CNN. Filter
size: 0.3 mm.
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(a) � = 0.3 mm (b) � = 0.6 mm

(c) � = 0.9 mm

Figure 8: _! + vs _! + (~c).
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(a) � = 0.3 mm (b) � = 0.6 mm

(c) � = 0.9 mm

Figure 9: hr · � j ~ci vs hr · (�D c(~c)r ~c) j ~ci .
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(a) � = 0.3 mm (b) � = 0.6 mm

(c) � = 0.9 mm

Figure 10: r · � vs r · (�D c(~c)r ~c).

Figure 11: CNN training from DNS, sketch of the database construction.
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Figure 12: Structure of the convolutional neural network used (set of TensorFlow routines).
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(a) � = 0.30 mm (trained) (b) � = 0.45 mm (untrained)

(c) � = 0.90 mm (trained)

Figure 13: hr · � j ~ci vs ~c. Symbols: DNS reference. Line: CNN prediction.

31



(a) � = 0.30 mm (trained) (b) � = 0.45 mm (untrained)

(c) � = 0.90 mm (trained)

Figure 14: Solid line: hr · � j ~ci vs ~c from CNN. Gray: Range covered by the signal according to the RMS
in DNS, vertical bar: CNN prediction.
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(a) Trained database. � = 0.30 mm (b) Untrained database. � = 0.40 mm

(c) Untrained database. � = 0.45 mm (d) Trained database. � = 0.90 mm

Figure 15:
D

_! + j ~c
E

vs ~c. Symbols: DNS reference. Line: CNN prediction.
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(a) Trained database. � = 0.30 mm (b) Untrained database. � = 0.40 mm

(c) Untrained database. � = 0.45 mm (d) Trained database. � = 0.90 mm

Figure 16: Solid line:
D

_! + j ~c
E

vs ~c from CNN. Gray: Range covered by the signal according to the RMS in
DNS, vertical bar: CNN prediction.
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