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Abstract

A unified modelling framework for all unresolved terms in the filtered progress variable

transport equation in large-eddy simulations of turbulent premixed flames is proposed, us-

ing convolutional neural networks. A direct numerical simulation database of a turbulent

premixed stoichiometric methane/air jet flame is used in order to train convolutional neural

networks to predict both the filtered progress variable source term and the unresolved scalar

transport terms. A single variable readily available from the large-eddy simulation is required

in order to calculate all inputs to networks, namely the Favre-filtered progress variable c̃.

In the context of flame tabulated chemistry (premixed flamelet), the trained networks are

shown to produce quantitatively good predictions of all unresolved terms in an apriori study,

despite their different nature and irrespective of variations in filter size, without having to

resort to solving any additional transport equations. The framework proposed in this study

thus opens perspectives for the application of deep learning to the modeling of the non-linear

aerothermochemistry equations which involve unresolved source and transport terms.
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1. Introduction

In Large Eddy Simulation (LES), only the largest flow scales are resolved, while fluc-

tuations of momentum, species concentration, and temperature below the mesh size are

unknown. The effects of these unresolved scales appear as unclosed terms in the spatially-

filtered governing equations and require modelling in order to obtain a closed system of5

equations [1].

With the rapid increase of computational resources and data storage capabilities in recent

years, machine learning methods in general have had a tremendous impact in various fields

such as speech, image and text recognition, robotics, and health-care amongst many others

[2]. The modelling of unresolved terms in the highly non-linear transport equations of10

turbulent and reacting flows is a challenging and daunting task. The ability to “learn” from

the data directly, presents a promising alternative given the abundance of data available

both from simulations and experiments. Direct Numerical Simulation (DNS) databases

where all flow and time scales are resolved, are of the order of Petabytes [3] and machine-

learning methods are a natural tool for extracting useful information from these databases15

for modelling purposes.

In the context of turbulent combustion modelling, Artificial Neural Networks (ANNs)

have been used mainly to deal with the introduction of complex chemistry in the simula-

tions [4–8], or to manage complex multi-physics phenomena such as solid-fuel devolatiliza-

tion [9]. Recently, Convolutional Neural Networks (CNNs), originally developed for analysing20

visual representations [10, 11], have been introduced as a tool for the direct deconvolution

of the filtered progress variable [12], which combined with explicit filtering allowed the mod-

elling of the unresolved variance, a key parameter in flamelet modeling [13]. CNNs were also

used for modelling the unresolved flame surface wrinkling in [14] surpassing state of the art

explicit algebraic models. CNNs have also been used to extract the chemical rate constant25

from shock-tube measurements [15] and for predicting the combustion activation energy [16].

A turbulent premixed stoichiometric methane/air jet flame is considered in this study
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performing a priori evaluation of neural network based modeling from a fully resolved sim-

ulation, following a strategy combining CNNs with the pioneering works of Bray and co-

workers [13, 17]. According to their analysis, the departure between the non-linear chemical30

sources as computed from the node values resolved on a coarse mesh (i.e., neglecting unre-

solved fluctuations) and their space-filtered (or averaged) counterparts (i.e., accounting for

unresolved fluctuations), evolves with the local three-dimensional flame topology, convoluted

with the level of mesh resolution, which controls the amplitude of the unresolved fluctua-

tions of temperature and species.1 Along these lines, we propose to explore the relationships35

between the three-dimensional distributions of chemical sources as computed from node val-

ues (thus a crude approximation of the filtered burning rates), and the filtered value of the

non-linear source located at the center of this three-dimensional distribution, using a DNS

database. The same procedure is adopted for the sum of the divergence of the unresolved

part of the convective flux and of the molecular diffusive flux. The DNS database is then40

used to train convolutional networks in order to directly reconstruct the unresolved scalar

sources and transport terms in the framework of tabulated detailed chemistry (premixed

flamelet) LES. The major advantage of such a direct reconstruction of unresolved sources

and fluxes from mesh-resolved quantities in the LES, is that by doing so there is no need for

explicit filtering or solving additional transport equations, both of which save computational45

time and mitigate possible resolution issues [18].

2. Background and methodology

In chemistry tabulation based on premixed flame generated manifolds, all thermochemical

quantities φ are uniquely related to an appropriate progress variable c (equal to unity in

fully burnt products and vanishing in fresh gases), so that knowledge of the progress variable50

distribution c(x, t) is sufficient to characterise the reaction zones, i.e. φ(x, t) = φ(c(x, t)) [19–

1Bray and co-workers specifically focussed on the asymptotic limit where the mesh size is very large
compared to the characteristic flame thickness.
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22], including the burning rate

ω̇(x, t) = ω̇(c(x, t)) . (1)

The progress variable may be defined from a set of species mass fractions, temperature,

derived from optimisation [23–25] or following other strategies [26]. In any case, c should

be a monotonic function through the laminar flamelet. In the context of LES, a transport55

equation for ρ̄c̃ is solved,

∂ρc̃

∂t
+∇ · (ρũc̃) = ∇ · (ρDc(c̃)∇c̃) +∇ · τ + ω̇ , (2)

where ρ is the density, u is the velocity vector and Dc(c) is the tabulated molecular diffusion

coefficient of c, defined from the diffusion velocity of tabulated species (Eq. (15) in [27]).

The notation Dc(c̃) means that the diffusion coefficient is here computed from the resolved

filtered progress variable. ω̇(x, t) is the filtered burning rate of c. The sub-grid scale flux is60

τ = τDc − τc , (3)

where τDc and τc are respectively the transport of c by unresolved fluctuations of molecular

diffusive flux and momentum,

τD = ρDc(c)∇c− ρDc(c̃)∇c̃ , (4)

τc = ρuc− ρũc̃ . (5)

Numerous modeling strategies have been proposed in the literature for the unresolved terms

of Eq. (2) in the context of tabulated chemistry, and a detailed review is given in [28]. Among

those, many involve gradient transport models with an eddy viscosity hypothesis to close τc65

while τD is usually neglected.

Flamelet models for the burning rate ω̇, are typically based on solving and additional

balance equation for the variance of c, cv = c̃2 − c̃c̃. A function is then presumed for the
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progress variable probability density function (pdf), which is parameterised using the two

moments of c namely c̃(x, t) and cv(x, t) [29–31]. A chemical lookup table is constructed70

using results from 1D flame simulations, and variables of interest are obtained using these

two parameters from the table. For example, the filtered burning rate in Eq. (2) is closed

using

ω̇(x, t) =

1∫

0

ω̇(c?)P (c?; c̃(x, t), cv(x, t))dc
? , (6)

where P (c∗; c̃(x, t), cv(x, t)) is the presumed pdf. A characteristic length scale may also be

added to the modeling framework, by combining the pdf with the Flame Surface Density75

(FSD) concept [32, 33]. In an attempt to account for the time history of micro-mixing, it

has been proposed in [34] to include as a control parameter of the filtered thermo-chemistry

lookup table, the age of fluid particles since their injection. Simulations coupling flame-

generated manifolds with pdf transport using Eulerian stochastic fields have also been re-

ported [35, 36]. The filtering of the tabulated one-dimensional flames is another option,80

providing closed expressions for τc and τD, in addition to ω̇ [27, 37, 38]. More recently,

deconvolution-based approaches have also been discussed and applied to the three terms ω̇,

τc and τD [39–43].

Overall, these modeling approaches directly or indirectly relate c̃ and ∇c̃ to the unclosed

terms. A slightly different approach is explored in this work. First, the statistical properties85

of ω̇, τc and τD are examined using the results from the DNS database. Specific features

are observed in the data connecting ω̇ and ∇ · τ = ∇ · (τD − τc) to ω̇(c̃) and ∇ · (ρDc(c̃)∇c̃)
respectively, namely the burning rate and the divergence of the diffusive flux as computed

from the resolved LES fields, i.e., the node values over the LES mesh. (∇ · (ρDc(c̃)∇c̃) is

already calculated when solving for c̃ and is thus available without additional computational90

cost.) These features suggest that image-type deep learning can be readily applied to dy-

namically determine two mapping functions G and F from convolutional neural networks
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such that,

ω̇(x, t) = G [ω̇(c̃(x1, t)), · · · , ω̇(c̃(xN , t))] , (7)

∇ · τ(x, t) = F [∇ · (ρDc(c̃)∇c̃) (x1, t), · · · ,∇ · (ρDc(c̃)∇c̃) (xN , t)] , (8)

where c̃(xj, t) is known from the LES, with xj the N points selected around x to build the

input image of the networks. Note that the above relations are expressed in progress variable95

space i.e., a single variable, c̃, is required in order to calculate the terms on the right-hand

side of Eqs. (7) and (8) which constitute the inputs to the two networks F and G. Provided

G and F are known, Eq. (2) is fully closed without having to solve any additional transport

equations. Also note that c̃ is a coordinate in which turbulent premixed flame properties

are strongly depended on and feature a generic character when studied in c-space [13]. As a100

result, the dependence of relations (7) and (8) to the flow regime are expected to be weak as

long as the networks are trained for conditions in a Borghi regime-diagram [44] close to the

ones of the flames subsequently addressed by LES. This is also more likely to be the case,

when G and F are determined from a reference turbulent premixed flame featuring a large

degree of flame wrinkling, as is the case for the turbulent premixed jet-flame DNS database105

used in this study [41].

3. Direct simulation database

A previously developed methane-air stoichiometric premixed jet-flame DNS database [41,

45, 46] is used for training the neural networks. The configuration is shown in Fig. 1.

The DNS database is obtained downstream of a well-resolved LES of a piloted premixed110

stoichiometric fuel-air jet, which generates turbulent flame conditions for the DNS inlet plane

located 4.5 diameters downstream of injection. The LES and the DNS are run simultaneously

and this is achieved by embedding, inside the LES mesh, a zone where the resolution is

sufficiently high so as to resolve the thin reaction zones and the Kolmogorov length scale.

The configuration is inspired from the experiment by Chen et al. [47]. This turbulent Bunsen115
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burner has a nozzle diameter of D = 12 mm, the jet Reynolds number is 24,000 (bulk nozzle

velocity of 30 m · s−1 and turbulent kinetic energy of 3.82 m2 · s−2). The pilot is set to fully

burnt gases at Tb = 2200 K. The LES mesh consists of about 171 million nodes covering

a domain 16D×8D×8D, with a resolution of the order of 150 µm (Fig. 1). The resolution

in the DNS zone is fixed at 50 µm, which was calibrated to ensure a full resolution of the120

flow and flame scales for this jet flame having a Karlovitz number varying between 1 and

3 [41, 47]. Chemistry tabulation with a stoichiometric premixed flamelet with fresh gases at

To = 300 K (GRI-3.0 mechanism [48] and progress variable defined from CO, CO2, H2O and

NOx as in [49]) is used for both LES and DNS, without any SGS modeling in the DNS part

(SGS terms set to zero). The flame thermal thickness based on the progress variable field is125

of the order of δL ≈ 400 µm. The DNS zone consists of 28.58 million nodes (243×343×343),

over a physical domain of 12 mm×18 mm×18mm. This DNS zone is located at 4.5D

downstream of the nozzle, and at 5.5D the mesh is coarsened again to progressively resume

the simulation using LES (Fig. 1). A progress variable presumed pdf approach is applied

in the LES zones [29] and the SGS momentum fluxes are approximated with the Vreman130

model [50]. These simulations have been performed using the flow solver SiTCom [51], which

solves the Navier-Stokes equations in their fully compressible form together with the balance

equation for the filtered progress variable. The convective terms are discretised with a fourth-

order centered skew-symmetric-like scheme [52] and the diffusive terms with a fourth-order

centered scheme. Time is advanced explicitly with a third order Runge-Kutta method and135

NSCBC boundary conditions [53] are imposed at inlet and outlet, with the measured profiles

with synthetic turbulence [54] prescribed at inlet. More details on the development and the

use of this DNS database may be found in [41, 45, 46].

A Gaussian filtering operation, G(x) = (6/(π∆2))3/2 exp(−6x ·x/∆2), with filter size

∆ = 0.3 mm = 0.75 δL, ∆ = 0.6 mm =1.50 δL and ∆ = 0.9 mm = 2.25 δL, is applied140

to the DNS variables in order to generate a priori LES filtered quantities, thus varying the

resolution of the a priori fields from well-resolved to coarse LES (at least from the reaction

7



zone point of view, ∆ = 0.9 mm is 18 times larger than the DNS grid resolution).

4. Statistical analysis of unresolved terms

4.1. Turbulent flame properties145

Figure 2 shows
〈
ω̇+ | c̃

〉
, the statistical mean over the DNS domain of the normalised

filtered progress variable source, conditioned on values of c̃. The subscript ‘+’ denotes source

terms normalised by their maximum value in the tabulated freely-propagating laminar pre-

mixed flame. The result obtained using a 1D laminar flame, ω̇+(c̃), is shown as a solid line.

As expected, the maximum of
〈
ω̇+ | c̃

〉
decreases with increasing filter size and thus with150

increasing unresolved fluctuations [13]. Following the thickening of the filtered flame front,

the response of this conditional filtered source term also spreads in progress variable space

for increasing filter sizes, up to ∆ = 0.9 mm.

The statistical conditional means of 〈∇ · τc | c̃〉 and of 〈∇ · τD | c̃〉, the divergence of the

convective and diffusive fluxes (Eqs. (4) and (5)), are shown in Fig. 3. The maximum level of155

velocity fluctuations observed in the fresh gases in the experiment at the streamwise location

of the jet where the DNS zone is located (Fig. 1), is of the order of u′ = 1.80 m · s−1 [47].

Then, the ratio u′/SL for this stoichiometric premixed methane-air flame is of the order of

5, with SL = 0.37 m · s−1.

The number NB = [(Tb−To)/To]SL/(2αu
′), as defined by Veynante et al. [55], which dif-160

ferentiates between gradient transport, NB < 1, −τc ∝ ∇c̃, and counter-gradient transport,

NB > 1, −τc ∝ −∇c̃, in a Reynolds Averaged Navier Stokes context (RANS), is above unity

in the present case for an efficiency factor α ≤ 0.6. The factor α in NB accounts for the

variability in the capability of turbulent eddies to wrinkle the reaction zone [55].

Considering space-filtered (LES) quantities, for 1 ≤ ∆/δL ≤ 3, counter-gradient SGS165

transport was recently reported from DNS analysis for the same level of u′/SL [43]. Overall,

counter-gradient transport is found when ∇ · τc and ∇2c̃ are of same sign. This is also what

is observed in Fig. 3(a), with 〈∇ · τc | c̃〉 negative on the burnt gas side where ∇2c̃ < 0 and
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〈∇ · τc | c̃〉 positive on the fresh side where ∇2c̃ > 0.2 This behaviour is also observed in the

scatter plot of the SGS convection divergence which is shown in Fig. 4, with the occurrence170

however of some negative values of ∇ · τc around c̃ → 0, thus gradient transport in the

preheat zone ensures the local flame propagation. On these scatter plots, the bounds of

∇ · τc do not change much with the filter size ∆, but the spreading of the data for a given

value of c̃ decreases with ∆.

The contribution of the SGS diffusive flux, ∇ · τD, in Fig. 3(b) cannot be neglected175

compared to the convective one, ∇ · τc, in Fig. 3(a). This would not be the case in the

RANS context, where the SGS diffusive contribution would be inversely proportional to the

turbulent Reynolds number of the flow, and thus could be neglected when compared to other

transport terms [56]. The SGS diffusive fluxes in LES are actually inversely proportional

to the turbulent Reynolds numbers of the LES mesh cells, based on the filter size and on180

the SGS velocity fluctuations. Therefore, the SGS turbulent Reynolds number appears too

small for neglecting the divergence of τD. The response of the amplitude of 〈∇ · τD | c̃〉 versus

the filter size, is better understood by looking at the two terms
〈
∇ · (ρDc(c)∇c) | c̃

〉
and

〈∇ · (ρDc(c̃)∇c̃) | c̃〉 in Figs. 3(c) and 3(d). As expected, following the decay of the gradients

with the increase of the filter size, these filtered transport terms decrease, leading to a decay185

of the amplitude of both the filtered and node-resolved diffusive budgets when ∆ increases.

In the case of 〈∇ · (ρDc(c̃)∇c̃) | c̃〉 an almost self-similar behaviour is observed against ∆

(Fig. 3(d)). This is not the case for
〈
∇ · (ρDc(c)∇c) | c̃

〉
, for which the response is also

shifted against c̃ when ∆ varies as one may observe from the results in Fig. 3(c). As a result,

the difference between these two terms, ∇ · τD, is not monotonic against ∆ (Fig. 3(b)). It190

is important also to note that the thickening of the flame front in physical space resulting

from filtering, directly impacts these budgets here visualised in c̃-space. Finally, the sum

of SGS fluxes 〈∇ · τ | c̃〉 = 〈∇ · (τD − τc) | c̃〉, which combines responses of both unresolved

2Almost zero fluxes on the burnt gas side appear before c̃ = 1, because of the choice of the progress
variable as in Godel et al. [49], which is designed as slowly varying approaching burnt gases to preserve a
single-valued response of NOx versus progress variable.
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convection and molecular diffusion, is shown in Fig. 5.

4.2. Physical arguments for CNN training195

As will be explained later in the text, two CNN will be used to approximate respectively

the values of ∇ · τ(x, t) and ω̇(x, t) from an input composed of a set of data (images). In

practice, this is done by interpolating over a large number of relationships between ‘images’

and ‘labels’, which were the values of ∇ · τ(x, t) and ω̇(x, t) “learned” during a training

phase. Here the inputs (images) are composed of ω̇(c̃(xj, t)) and ∇ · (ρDc(c̃)∇c̃) (xj, t) for200

j = 1, · · · , N , where N is the number of points surrounding a point x, where the values of

ω̇(x, t) and ∇ · τ(x, t) are sought.

The input set of data should feature specific topological properties, which can be ex-

tracted by convoluting the data points with a series of filters and specific operations. Fig-

ure 6 shows
〈
ω̇+ | c̃

〉
versus ω̇+(c̃) for different filter sizes and Fig. 7 illustrates the image-label205

relationship which could be implemented. Notice that the CNN will not operate on the sta-

tistical conditional means in the end, but directly on the raw data, however initiating the

analysis at the statistical level helps to select the variables. As one may observe from Fig. 6,

the filtered source term is not a single-valued function of the node resolved source, neverthe-

less accounting also for the local curvature of the data set as one of the features, should be210

sufficient to build a one-to-one response. Obviously, this constitutes only a very preliminary

condition to secure the determination of the function G of Eq. (7) and more features will

need to be extracted on the full set of turbulent data, as discussed thereafter. Because of

non-deterministic local sub-grid scale wrinkling of the flame surface, the relation between

ω̇+(c̃) and ω̇+ is actually scattered as shown in Fig. 8, with some deviation from the response215

seen in Fig. 6, and this scattering should be reproduced by a reliable physical model. This is

where numerical modelling can take great benefit from deep learning, which automatically

discovers the most relevant signal features through elementary operations, to then allow for

interpolating over the very large dataset learned.

Similarly, Fig. 9 shows 〈∇ · τ | c̃〉 versus 〈∇ · (ρDc(c̃)∇c̃) | c̃〉 and Fig. 10 the full set of220
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data ∇ · τ versus ∇ · (ρDc(c̃)∇c̃), revealing a dataset which can easily be analysed by CNNs

for identifying the function F in Eq. (8). It will be seen thereafter that this is a valid

option for the case considered. Because momentum also contributes to ∇ · τ , an alternative

would consist of introducing information on velocity in the F neural network (Eq. (8)). An

option that was not found necessary in the present study where both SGS convective and225

diffusive fluxes are combined to build a single CNN for the divergence of fluxes. For this

set of data, various options in terms of neural network layers number and filtering kernels

have been tried. Best results were obtained with two layers and the set of kernels and data

organisation now reported.

5. CNN training process230

The LES mesh size required to resolve with n = 5 points the filtered progress variable

signal, may be estimated from h = (∆/n)
√
π/6 + δ2L/∆

2 [42]. A three-dimensional test-box

of size (2h)3 is constructed around every of the M = 28.58 million DNS nodes. This test box

is centered at x and contains N = 27 points which hold the three-dimensional distributions of

ω̇(c̃(xj, t)) and ∇ · (ρDc(c̃)∇c̃) (xj, t), for j = 1, · · · , N . These data are stored and constitute235

the ‘images’ that will be processed by the CNN as shown in Fig. 11. The ‘labels’ of each

i-th image are ω̇[i] = ω̇(x, t) and ∇ · τ [i] = ∇ · (τD(x, t)− τc(x, t)) for i = 1, · · · , NL. Two

networks of similar structures (same number of layers, convolution kernels, etc.) are trained,

one for the chemical source and one for the SGS fluxes.

To reduce the computational cost, only part of the database is used for training. For240

each value of ∆, the following procedure is applied:

• First, 1000 images with their associated i-th label are built. 20 values of c? uniformly

distributed between 0 and 1 (∆c? = 0.05) are defined. For each value of c?, 50 images

are randomly selected so that c̃(x, t) ∈ [c? −∆c?/2; c? + ∆c?/2] (x denotes the center

of the test box, Fig. 11).245
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• Overfitting is avoided by adding uncorrelated random perturbations to the images,

ω̇(c̃(xj, t)) and ∇ · (ρDc(c̃)∇c̃) (xj, t), as 10% of their maximum in the test box, to

build a second image for each label. 2000 images are then available for 1000 labels.

Finally, the database used for training with two filter sizes contains 4000 images and NL =

2000 labels. Hence, for every quantity studied, a set of 27×4000 =108000 data (ω̇(c̃(xj, t))250

and ∇ · (ρDc(c̃)∇c̃) (xj, t)) is involved, associated to the 2000 reference labels (ω̇[i] and

∇ · τ [i] for i = 1, · · · , NL).

A series of convolution/sampling operations are done iteratively during the training

phase, in which the neural weights are adjusted until a satisfying minimal error is obtained

between the value of ∇ · τ(x, t) and ω̇(x, t) used for training (labels) and the values returned255

by the neural networks prediction. Convolution/sampling operations are thus performed on

the database to extract its features using a number of different kernels [10, 11]:

1. Each image is convoluted with 32 different filter kernels obtained with random values

from a truncated normal distribution. Meaningful values of the obtained features are

then extracted with a max pooling non-linear function to avoid excessive computational260

costs.

2. The process is repeated with 64 filters, decomposing the image into several meaningful

features, which is useful for seeking out the inner properties of the fluxes and sources.

3. Two fully connected layers are built to process the 64 obtained features, and to classify

the image according to the learned labels. The probabilities linking this image to each265

of the learned labels are then known in the form of coefficients ranging between zero

and unity.

The training of the network was conducted using the TensorFlow (www.tensorflow.org) li-

brary and breakdown of the network structure is given in Fig. 12. During this training phase,

a 50% drop-out rate is applied, i.e., 2000 images are randomly selected at every iteration270

and about 100 iterations (or ‘epoch’) are needed to reach convergence. The error function

used for training is based on cross entropy [57], while the training is controlled by the Adam
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optimizer [58] for stochastic gradient descent, with a user-defined learning rate of 10−4. Both

normalised and non-normalised input (ω̇(c̃) and ∇ · (ρDc(c̃)∇c̃)) and output values (ω̇ and

∇ · τ) of networks have been used, without much difference, results are presented for the275

non-normalised training.

6. CNN mapping of fluxes and sources from LES resolved fields

In using the networks, the N = 27 values of the chemical sources and of the divergence

of the fluxes computed from the resolved progress variable field in the test box surrounding

the LES cell (Fig. 11), constitute the input. In this feasibility study, for each filter size,280

1000 filtered DNS fields are used for a priori tests (the noised images introduced during the

training phase do not enter these tests). The unknown terms are then approximated from

interpolation over the NL = 2000 labels values (ω̇[i] and ∇ · τ [i]) of the training phase,

ω̇(x, t) = G [ω̇(c̃(x1, t)), · · · , ω̇(c̃(xN , t))]

=

NL∑

i=1

Pi(x, t)× ω̇[i] , (9)

∇ · τ(x, t) = F [∇ · (ρDc(c̃)∇c̃(x1, t)) , · · · ,∇ · (ρDc(c̃)∇c̃(xN , t))]

=

NL∑

i=1

Ti(x, t)×∇ · τ [i] , (10)

where Pi(x, t) and Ti(x, t), both ∈ [0, 1], are the probability that the image belongs to the

label ‘i’, as returned by the neural networks G and F . In practice, the modelled filtered285

sources and divergence of SGS fluxes are thus non-linearly interpolated, according to the

local LES resolved flame topology, over 2000 reference DNS values.

The training is performed for the smaller and largest filter sizes i.e., ∆ = 0.3 mm and

∆ = 0.9 mm. Then, the prediction capabilities of the obtained CNN are tested a priori for

these filter sizes and for intermediate values of ∆ ∈ [0.3, 0.9], for which this network has not290

been trained (so-called ‘untrained case’). Notice that the ratio of three between the filter

sizes used for training can be considered large, as these filters vary between 0.75 δL and

13



2.25 δL. This ratio of more than one flame thickness is here intentional to test the method

in the limit case where the neural networks are used for filter sizes far from those of their

training.295

Using GPU ‘NVDIA Pascal’, the training of the fluxes requires 4 hours. Compared to the

fluxes, the filtered source terms have a larger range of variation between the two filter sizes

used for training and they require 24 hours of training on the same GPU. Once trained, the

network may be used directly in a flow-solver for a CPU cost of about the one required with

a turbulent combustion closure based on chemistry tabulation and presumed probability300

density function [29].

The averages of the predicted divergence of the unresolved fluxes conditioned on the

progress variable, 〈∇ · τ | c̃〉, are first compared against the filtered DNS in Fig. 13. The

CNN reproduces the expected behaviour and amplitude of∇ · τ , the fluctuations are also well

captured, as seen in Fig 14. (Note that because the binning intervals to compute conditional305

means are different than in Fig. 5, the extrema also differ.) The test for the untrained filter

level is performed with a filter size ∆ = 0.45 mm = 1.125δL. This constitutes a stringent

test case, because neural networks are known to be prone to rapid divergence when applied

away from their training area. However, staying within the bounds of the training filter

sizes, Fig. 13(b) shows that the response of the divergence of the unresolved fluxes is well310

captured. The plots showing conditional fluctuations in Fig. 14(b) confirm this moderate

deviation from the reference filtered DNS. These results need to be put in perspective with

predictions of unresolved fluxes using most advanced SGS models, where sometimes even

the sign is not properly returned (see for instance Fig. 8 of [43] reporting strong departure

from DNS in SGS transport modeling in turbulent premixed flames).315

Similar results are obtained for the filtered source terms, which are shown in Figs. 15

and 16. For the trained filter sizes (∆ = 0.3 and 0.9 mm), the filtered chemical source as

predicted by the CNN matches the DNS reference, specifically for the largest filter, with a

good reproduction of the parabolic shape. The conditional fluctuations of filtered burning

14



rates are also well captured (Fig. 16). For the untrained case however, some departure320

from the DNS value is observed, but still reasonable, at least comparable to what could be

expected using classic models to estimate the filtered source terms. This would particularly

be the case against formulations where the Arrhenius form is kept at the resolved scales

after simply applying a scaling factor, thus far from the parabolic shape developing with the

increase in filter size. In a previous work [41], modeling of the filtered source based on 3D325

approximate deconvolution and 1D flame deconvolution was tested against the same DNS

database. As shown in Fig.17(b) of [41], the error on the burning rate estimation conditioned

on the progress variable could reached up to 25% for ∆ = 3δL. In the present case with the

neural network, the maximum error is of the order of 1% on the trained database and of

16% for the untrained ones, confirming the potential of the approach.330

7. Conclusion

A novel modelling framework using machine-learning is proposed for providing closures

for all unresolved terms in the filtered transport equation of the progress variable in large-

eddy simulations of turbulent premixed flames in the context of flamelet tabulated chemistry.

A turbulent premixed methane/air stoichiometric premixed jet flame is considered and a335

priori evaluation of modeling based on neural networks is performed.

Convolutional neural networks are trained using data from a direct numerical simulation

database, in order to predict the filtered progress-variable source term, and the unresolved

fluxes in the filtered transport equation of c̃. The advantage of the approach proposed in this

study, is that a single variable which is readily available, c̃, is required in order to calculate all340

inputs to networks, without having to resort to solving any additional transport equations for

modelling all terms in the transport equation. The convolutional neural networks are shown

to provide quantitatively accurate predictions of both the source and flux terms, which

are two substantially different terms and otherwise difficult to model in a single unified

framework. The predictions capabilities of the networks are also demonstrated to be only345
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weakly insensitive to variations in filter width, which is an important attribute for any sub-

grid scale model. Because they are based on the progress variable, a generic parameter

of premixed flames, the networks should perform well for any turbulent premixed flame

located in the Borghi regime-diagram close to the conditions used for training. However, as

a non-linear interpolation tool of high-dimensionality, it cannot perform well for cases with350

operating conditions far from those of training.
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Figure 1: LES-DNS snapshot of the jet-flame simulation [41]. Mesh and iso-progress variable c = 0.8. h:
resolution. Red iso-surface: zoom of iso-c = 0.8 in the DNS zone (different angle view).
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Figure 2: Thick-line: ω̇+(c̃) vs c̃ as obtained from a 1D laminar flame (tabulated chemistry).
〈
ω̇+ | c̃

〉
from

DNS vs c̃ for filter sizes ×: 0.3 mm, �: 0.6 mm, ◦: 0.9 mm (δL = 0.4 mm).
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Figure 3: Conditional statistical means vs filtered progress variable. (a): Divergence of SGS convective
scalar flux. (b): divergence of SGS diffusive flux. (c): filtered diffusive flux. (d): diffusive flux computed
from the resolved quantities. Filter size ×: 0.3 mm, �: 0.6 mm, ◦: 0.9 mm.
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Figure 4: Scatter plot of ∇ · τc (1 every 100 DNS points shown).
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Figure 5: 〈∇ · τ | c̃〉 = 〈∇ · (τD − τc) | c̃〉 vs c̃. Filter size ×: 0.3 mm, �: 0.6 mm, ◦: 0.9 mm.
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Figure 6:
〈
ω̇+(c) | c̃

〉
vs ω̇+(c̃). Filter size ×: 0.3 mm, �: 0.6 mm, ◦: 0.9 mm.
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vs ω̇+(c̃). Sketch of the construction of images and labels for training a CNN. Filter

size: 0.3 mm.
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Figure 8: ω̇+ vs ω̇+(c̃).
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Figure 9: 〈∇ · τ | c̃〉 vs 〈∇ · (ρDc(c̃)∇c̃) | c̃〉.
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Figure 10: ∇ · τ vs ∇ · (ρDc(c̃)∇c̃).
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Figure 11: CNN training from DNS, sketch of the database construction.
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conv3d_1
input

output (None,  3, 3, 3, 32)

(None, 3, 3, 3, 1)
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input

output (None,  3, 3, 3, 32)

(None,  3, 3, 3, 32) 

max_pool_2x2_1
input
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(None,  3, 3, 3, 32) 

conv3d_2
input
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(None, 2, 2, 2, 32)
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max_pool_2x2_2
input
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(None,  2, 2, 2, 64) 

Flatten
input

output (None,  64) 

(None,  1, 1, 1, 64) 

Dense
input

output (None,  1) 

(None,  64) 

Figure 12: Structure of the convolutional neural network used (set of TensorFlow routines).
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Figure 13: 〈∇ · τ | c̃〉 vs c̃. Symbols: DNS reference. Line: CNN prediction.
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Figure 14: Solid line: 〈∇ · τ | c̃〉 vs c̃ from CNN. Gray: Range covered by the signal according to the RMS
in DNS, vertical bar: CNN prediction.
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Figure 15:
〈
ω̇+ | c̃

〉
vs c̃. Symbols: DNS reference. Line: CNN prediction.
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Figure 16: Solid line:
〈
ω̇+ | c̃

〉
vs c̃ from CNN. Gray: Range covered by the signal according to the RMS in

DNS, vertical bar: CNN prediction.
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