XBi 4 S 7 (X = Mn, Fe): New Cost‐Efficient Layered n ‐Type Thermoelectric Sulfides with Ultralow Thermal Conductivity - Archive ouverte HAL Access content directly
Journal Articles Advanced Functional Materials Year : 2019

XBi 4 S 7 (X = Mn, Fe): New Cost‐Efficient Layered n ‐Type Thermoelectric Sulfides with Ultralow Thermal Conductivity

Agathe Virfeu
  • Function : Author
Florian Appert
Jean Juraszek
Régis Gautier
  • Function : Author
  • PersonId : 938630
Vivian Nassif
Pierric Lemoine
Erik Elkaim
  • Function : Author

Abstract

A new class of cost‐efficient n‐type thermoelectric sulfides with a layered structure is reported, namely MnBi4S7 and FeBi4S7. Theoretical calculations combined with synchrotron X‐ray/neutron diffraction analyses reveal the origin of their electronic and thermal properties. The complex low‐symmetry monoclinic crystal structure generates an electronic band structure with a mixture of heavy and light bands near the conduction band edge, as well as vibrational properties favorable for high thermoelectric performance. The low thermal conductivity can be attributed to the complex layered crystal structure and to the existence of the lone pair of electrons in Bi3+. This feature combined with the relatively high power factor lead to a figure of merit as high as 0.21 (700 K) in undoped MnBi4S7, making this material a promising n‐type candidate for low‐ and intermediate‐temperature thermoelectric applications.
Fichier principal
Vignette du fichier
Article XBi4S7 final-V18 (1).pdf (3.72 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02301334 , version 1 (25-11-2020)

Identifiers

Cite

Jean‐baptiste Labégorre, Agathe Virfeu, Abdelhamid Bourhim, Héloïse Willeman, Tristan Barbier, et al.. XBi 4 S 7 (X = Mn, Fe): New Cost‐Efficient Layered n ‐Type Thermoelectric Sulfides with Ultralow Thermal Conductivity. Advanced Functional Materials, 2019, 29 (48), pp.1904112. ⟨10.1002/adfm.201904112⟩. ⟨hal-02301334⟩
137 View
232 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More