R. Sender, S. Fuchs, and R. Milo, Revised estimates for the number of human and bacteria cells in the body, PLoS Biol, vol.14, p.1002533, 2016.

I. Cho and M. J. Blaser, The human microbiome: at the interface of health and disease, Nat. Rev. Genet, vol.13, pp.260-270, 2012.

J. Sun and E. B. Chang, Exploring gut microbes in human health and disease: pushing the envelope, Genes & Diseases, vol.1, pp.132-139, 2014.

M. A. Conlon and A. R. Bird, The impact of diet and lifestyle on gut microbiota and human health, Nutrients, vol.7, pp.17-44, 2015.

R. Blekhman, J. K. Goodrich, K. Huang, Q. Sun, R. Bukowski et al., Host genetic variation impacts microbiome composition across human body sites, Genome Biol, vol.16, p.191, 2015.

L. Konkel, Inflammatory bowel disease in asia: a second chance at uncovering environmental factors, Environ. Health Perspect, vol.124, pp.49-54, 2016.

P. Lopez-legarrea, N. R. Fuller, M. A. Zulet, J. A. Martinez, and I. D. Caterson, The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state, Asia Pac. J. Clin. Nutr, vol.23, pp.360-368, 2014.

P. Van-den-abbeele, P. Gerard, S. Rabot, A. Bruneau, S. E. Aidy et al., Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats, Environ. Microbiol, vol.13, pp.2667-2680, 2011.

B. Chassaing, O. Koren, J. Goodrich, A. Poole, S. Srinivasan et al., Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome, Nature, vol.519, pp.92-96, 2015.

J. Breton, S. Massart, P. Vandamme, E. Brandt, B. Pot et al., Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome, BMC Pharmacol. Toxicol, vol.14, p.62, 2013.

M. Guo, K. Huang, S. Chen, X. Qi, X. He et al., Combination of metagenomics and culture-based methods to study the interaction between ochratoxin a and gut microbiota, Toxicol. Sci, vol.141, pp.314-323, 2014.

M. J. Saint-cyr, A. Perrin-guyomard, P. Houee, J. G. Rolland, and M. Laurentie, Evaluation of an oral subchronic exposure of deoxynivalenol on the composition of human gut microbiota in a model of human microbiota-associated rats, PLoS One, vol.8, p.80578, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00914398

I. Koppová, M. Bure?, and J. ?im?nek, Intestinal bacterial population of healthy rats during the administration of chitosan and chitooligosaccharides, Folia Microbiol. (Praha), pp.295-299, 2012.

C. Condette, V. Bach, C. Mayeur, J. Gay-queheillard, and H. Khorsi-cauet, Chlorpyrifos exposure during perinatal period affects intestinal microbiota associated with delay of maturation of digestive tract in rats, J. Pediatr. Gastroenterol. Nutr, vol.61, pp.30-40, 2015.

C. M. Benbrook, Trends in glyphosate herbicide use in the United States and globally, Environ. Sci. Eur, vol.28, p.3, 2016.

M. R. Boocock and J. R. Coggins, Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate, FEBS Lett, vol.154, pp.127-133, 1983.

X. Y. Zhi, J. C. Yao, H. W. Li, Y. Huang, and W. J. Li, Genome-wide identification, domain architectures and phylogenetic analysis provide new insights into the early evolution of shikimate pathway in prokaryotes, Mol. Phylogenet. Evol, vol.75, pp.154-164, 2014.

W. Du, N. G. Wallis, M. J. Mazzulla, A. F. Chalker, L. Zhang et al., Characterization of Streptococcus pneumoniae 5-enolpyruvylshikimate 3-phosphate synthase and its activation by univalent cations, Eur. J. Biochem, vol.267, pp.222-227, 2000.

W. Abraham, Glyphosate formulations and their use for the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase, 2010.

T. Katagi, Surfactant effects on environmental behavior of pesticides, Rev. Environ. Contam. Toxicol, vol.194, pp.71-177, 2008.

R. Mesnage, N. Defarge, J. Spiroux-de-vendomois, and G. E. Seralini, Potential toxic effects of glyphosate and its commercial formulations below regulatory limits, Food Chem. Toxicol, vol.84, pp.133-153, 2015.

E. Clair, L. Linn, C. Travert, C. Amiel, G. E. Seralini et al., Effects of Roundup (R) and glyphosate on three food microorganisms: geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. Bulgaricus, vol.64, pp.486-491, 2012.

V. Nicolas, N. Oestreicher, and C. Velot, Multiple effects of a commercial Roundup(R) formulation on the soil filamentous fungus Aspergillus nidulans at low doses: evidence of an unexpected impact on energetic metabolism, Environ. Sci. Pollut. Res. Int, vol.23, pp.14393-14404, 2016.

B. Kurenbach, D. Marjoshi, C. F. Amabile-cuevas, G. C. Ferguson, W. Godsoe et al., Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium, MBio, vol.6, pp.9-15, 2015.

A. A. Shehata, W. Schrodl, A. A. Aldin, H. F. Hafez, and M. Kruger, The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro, Curr. Microbiol, vol.66, pp.350-358, 2013.

W. Ackermann, M. Coenen, W. Schrodl, A. A. Shehata, and M. Kruger, The influence of glyphosate on the microbiota and production of botulinum neurotoxin during ruminal fermentation, Curr. Microbiol, vol.70, pp.374-382, 2015.

G. Williams, R. Kroes, and I. Munro, Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient glyphosate, for humans, Regul. Toxicol. Pharmacol, vol.31, pp.117-165, 2000.

P. Lepage, M. C. Leclerc, M. Joossens, S. Mondot, H. M. Blottiere et al., A metagenomic insight into our gut's microbiome, Gut, vol.62, pp.146-158, 2013.

G. E. Séralini, E. Clair, R. Mesnage, S. Gress, N. Defarge et al., Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerantgenetically modified maize, Environ. Sci. Eur, vol.26, p.14, 2014.

J. Heras, C. Domínguez, E. Mata, V. Pascual, C. Lozano et al., GelJ ?a tool for analyzing DNA fingerprint gel images, BMC Bioinf, vol.16, p.270, 2015.

S. Wiklund, E. Johansson, L. Sjöström, E. J. Mellerowicz, U. Edlund et al., Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models, Anal. Chem, vol.80, pp.115-122, 2008.

L. Eriksson, T. Byrne, E. Johansson, J. Trygg, and C. Vikström, Multi-and Megavariate Data Analysis Basic Principles and Applications, third revised edition, MKS Umetrics AB, 2013.

D. P. Morgavi, E. Rathahao-paris, M. Popova, J. Boccard, K. F. Nielsen et al., Rumen microbial communities influence metabolic phenotypes in lambs, Front. Microbiol, vol.6, p.1060, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269366

D. Tonoli, C. Furstenberger, J. Boccard, D. Hochstrasser, F. Jeanneret et al., Steroidomic footprinting based on ultra-high performance liquid chromatography coupled with qualitative and quantitative high-resolution mass spectrometry for the evaluation of endocrine disrupting chemicals in H295R cells, Chem. Res. Toxicol, vol.28, pp.955-966, 2015.

M. Poulsen, M. Schroder, A. Wilcks, S. Kroghsbo, R. H. Lindecrona et al., Safety testing of GM-rice expressing PHA-E lectin using a new animal test design, Food Chem. Toxicol, vol.45, pp.364-377, 2007.

F. J. Muñoa and R. Pares, Selective medium for isolation and enumeration of Bifidobacterium spp, Appl. Environ. Microbiol, vol.54, pp.1715-1718, 1988.

D. Helm, H. Labischinski, G. Schallehn, and D. Naumann, Classification and identification of bacteria by Fourier-transform infrared spectroscopy, J. Gen. Microbiol, vol.137, pp.69-79, 1991.

A. Alvarez-ordonez, D. J. Mouwen, M. Lopez, and M. Prieto, Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria, J. Microbiol. Methods, vol.84, pp.369-378, 2011.

T. W. Alexander, R. Sharma, M. Y. Deng, A. J. Whetsell, J. C. Jennings et al., Use of quantitative real-time and conventional PCR to assess the stability of the cp4 epsps transgene from Roundup Ready canola in the intestinal, ruminal, and fecal contents of sheep, J. Biotechnol, vol.112, pp.255-266, 2004.

G. B. Gloor, J. R. Wu, V. Pawlowsky-glahn, and J. J. Egozcue, It's all relative: analyzing microbiome data as compositions, Ann. Epidemiol, vol.26, pp.322-329, 2016.

R. Mesnage, M. Arno, M. Costanzo, M. Malatesta, G. E. Séralini et al., Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure, Environ. Health, vol.14, p.70, 2015.

N. Qin, F. Yang, A. Li, E. Prifti, and Y. Chen, Alterations of the human gut microbiome in liver cirrhosis, Nature, vol.513, pp.59-64, 2014.

R. Mesnage, G. Renney, G. E. Séralini, M. Ward, and M. Antoniou, Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of Roundup herbicide, Sci. Rep, vol.6, p.39328, 2016.

A. W. Yan, D. E. Fouts, J. Brandl, P. Starkel, M. Torralba et al., Enteric dysbiosis associated with a mouse model of alcoholic liver disease, Hepatology, vol.53, pp.96-105, 2010.

M. Serino, E. Luche, S. Gres, A. Baylac, and M. Bergé, Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota, Gut, vol.61, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726182

V. L. Lozano, Toxicology Reports, vol.5, pp.96-107, 2018.

C. Joly, J. Gay-queheillard, A. Leke, K. Chardon, S. Delanaud et al., Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) and in the rat, Environ. Sci. Pollut. Res. Int, vol.20, pp.2726-2734, 2013.

J. Qin, R. Li, J. Raes, M. Arumugam, and K. S. Burgdorf, A human gut microbial gene catalogue established by metagenomic sequencing, Nature, vol.464, pp.59-65, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00908974

D. I. Bolnick, L. K. Snowberg, P. E. Hirsch, C. L. Lauber, E. Org et al., Individual diet has sex-dependent effects on vertebrate gut microbiota, Nat. Commun, vol.5, p.4500, 2014.

H. Neuman, J. W. Debelius, R. Knight, and O. Koren, Microbial endocrinology: the interplay between the microbiota and the endocrine system, FEMS Microbiol. Rev, vol.39, pp.509-521, 2015.

B. J. Fuhrman, H. S. Feigelson, R. Flores, M. H. Gail, X. Xu et al., Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women, J. Clin. Endocrinol. Metab, vol.99, pp.4632-4640, 2014.

J. R. Lakritz, T. Poutahidis, S. Mirabal, B. J. Varian, and T. Levkovich, Gut bacteria require neutrophils to promote mammary tumorigenesis, Oncotarget, vol.6, pp.9387-9396, 2015.

S. E. Erdman and T. Poutahidis, Gut bacteria and cancer, Biochim. Biophys. Acta, vol.1856, pp.86-90, 2015.

C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and R. Knight, Diversity, stability and resilience of the human gut microbiota, Nature, vol.489, pp.220-230, 2012.

Q. Ba, M. Li, P. Chen, C. Huang, X. Duan et al., Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice, Environ. Health Perspect, vol.125, p.437, 2017.

A. Kushiro, C. Chervaux, S. Cools-portier, A. Perony, and S. Legrain-raspaud, Antimicrobial susceptibility testing of lactic acid bacteria and bifidobacteria by broth microdilution method and Etest, Int. J. Food Microbiol, vol.132, pp.54-58, 2009.

N. Amrhein, D. Johänning, J. Schab, and A. Schulz, Biochemical basis for glyphosatetolerance in a bacterium and a plant tissue culture, FEBS Lett, vol.157, pp.191-196, 1983.

J. M. Staub, L. Brand, M. Tran, Y. Kong, and S. G. Rogers, Bacterial glyphosate resistance conferred by overexpression of an E. coli membrane efflux transporter, J. Ind. Microbiol. Biotechnol, vol.39, pp.641-647, 2012.

A. M. Tsatsakis, M. A. Nawaz, V. A. Tutelyan, K. S. Golokhvast, O. I. Kalantzi et al., Impact on environment, ecosystem, diversity and health from culturing and using GMOs as feed and food, Food Chem. Toxicol, vol.107, pp.108-121, 2017.

A. M. Tsatsakis, M. A. Nawaz, D. Kouretas, G. Balias, K. Savolainen et al., Environmental impacts of genetically modified plants: a review, Environ. Res, vol.156, pp.818-833, 2017.

L. N. Nielsen, H. M. Roager, M. E. Casas, H. L. Frandsen, U. Gosewinkel et al., Glyphosate has limited short-term effects on commensal bacterial community composition in the gut environment due to sufficient aromatic amino acid levels, Environ. Pollut, vol.233, p.364, 2017.

R. Mesnage, B. Bernay, and G. E. Seralini, Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity, Toxicology, vol.313, 2013.

N. Defarge, E. Takács, V. Lozano, R. Mesnage, J. Spiroux-de-vendômois et al., Co-formulants in glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels, Int. J. Environ. Res. Public Health, vol.13, p.264, 2016.

S. L. Carmichael, W. Yang, E. M. Roberts, S. E. Kegley, and C. Wolff, Hypospadias and residential proximity to pesticide applications, Pediatrics, vol.132, issue.5, pp.1216-1226, 2013.

J. A. Hoppin, D. M. Umbach, S. Long, S. J. London, and P. K. Henneberger, Pesticides are associated with allergic and non-allergic wheeze among male farmers, Environ. Health Perspect, vol.125, issue.4, p.535, 2016.

E. Viennois, D. Merlin, A. T. Gewirtz, and B. Chassaing, Dietary emulsifier-induced lowgrade inflammation promotes colon carcinogenesis, Cancer Res, vol.77, issue.1, pp.27-40, 2016.

A. M. Tsatsakis, D. Kouretas, M. N. Tzatzarakis, P. Stivaktakis, K. Tsarouhas et al., Simulating real-life exposures to uncover possible risks to human health: a proposed consensus for a novel methodological approach, Hum. Exp. Toxicol, vol.36, pp.554-564, 2017.

A. M. Tsatsakis, A. O. Docea, and C. Tsitsimpikou, New challenges in risk assessment of chemicals when simulating real exposure scenarios; simultaneous multi-chemicals' low dose exposure, Food Chem. Toxicol, vol.96, pp.174-176, 2016.