V. Sanchis, From microbial sprays to insect-resistant transgenic plants: History of the biospesticide Bacillus thuringiensis: A review, Agron. Sustain. Dev, vol.31, pp.217-231, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00930476

E. Schnepf, N. Crickmore, J. Van-rie, D. Lereclus, J. Baum et al., Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol, Mol. Biol. Rev, vol.62, pp.775-806, 1998.

E. Sansinenea and E. Bacillus-thuringiensis-biotechnology;-sansinenea, , 2012.

C. James, Global Status of Commercialized Biotech/GM Crops, vol.51, 2015.

A. Hilbeck and M. Otto, Specificity and combinatorial effects of Bacillus thuringiensis Cry toxins in the context of GMO environmental risk assessment, Front. Environ. Sci, vol.3, 2015.

V. Vachon, R. Laprade, and J. L. Schwartz, Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review, J. Invertebr. Pathol, vol.111, pp.1-12, 2012.

J. R. Latham, M. Love, and A. Hilbeck, The distinct properties of natural and GM Cry insecticidal proteins, Biotechnol. Genet. Eng. Rev, vol.33, pp.62-96, 2017.

M. E. Whalon and B. A. Wingerd, Bt: Mode of action and use, Arch. Insect Biochem. Physiol, vol.54, pp.200-211, 2003.

D. Smouse and J. Nishiura, A Bacillus thuringiensis delta-endotoxin induces programmed cell death in mosquito larvae, Cell Death Differ, vol.4, pp.560-569, 1997.

X. Zhang, M. Candas, N. B. Griko, L. Rose-young, L. A. Bulla et al., Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells, Cell Death Differ, vol.12, pp.1407-1416, 2005.

X. Zhang, M. Candas, N. B. Griko, R. Taussig, L. A. Bulla et al., A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis, Proc. Natl. Acad. Sci, vol.103, pp.9897-9902, 2006.

J. Yao, L. L. Buschman, N. Lu, C. Khajuria, and K. Y. Zhu, Changes in gene expression in the larval gut of Ostrinia nubilalis in response to Bacillus thuringiensis Cry1Ab protoxin ingestion, Toxins, vol.6, pp.1274-1294, 2014.

, Toxins, vol.10, pp.489-504, 2018.

M. Soberon, S. S. Gill, and A. Bravo, Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells?, Cell. Mol. Life Sci. CMLS, vol.66, pp.1337-1349, 2009.

J. L. Jurat-fuentes and M. J. Adang, Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae, J. Invertebr. Pathol, vol.92, pp.166-171, 2006.

C. R. Pigott and D. J. Ellar, Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol, Mol. Biol. Rev, vol.71, pp.255-281, 2007.

S. Kumar and R. Kumari, Occurrence of molecularly diverse Bt Crytoxin-resistant mutations in insect pests of Bt+ corn and cotton crops and remedial approaches, Curr. Sci, vol.108, pp.1-8, 2015.

M. J. Adang, N. Crickmore, and J. L. Jurat-fuentes, Diversity of Bacillus thuringiensis crystal toxins and mechanism of action, Adv. Insect Physiol, vol.47, pp.39-87, 2014.

J. Graf, Shifting paradigm on Bacillus thuringiensis toxin and a natural model for Enterococcus faecalis septicemia, vol.2, 2011.

N. A. Broderick, K. F. Raffa, and J. Handelsman, Midgut bacteria required for Bacillus thuringiensis insecticidal activity, Proc. Natl. Acad. Sci, vol.103, pp.15196-15199, 2006.

N. A. Broderick, C. J. Robinson, M. D. Mcmahon, J. Holt, J. Handelsman et al., Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of lepidoptera, BMC Biol, vol.7, issue.11, 2009.

K. L. Mason, T. A. Stepien, J. E. Blum, J. F. Holt, N. H. Labbe et al., From commensal to pathogen: Translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta, vol.2, 2011.

B. Raymond, P. R. Johnston, D. J. Wright, R. J. Ellis, N. Crickmore et al., A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae, Environ. Microbiol, vol.11, pp.2556-2563, 2009.

B. Raymond, P. R. Johnston, C. Nielsen-leroux, D. Lereclus, and N. Crickmore, Bacillus thuringiensis: An impotent pathogen?, Trends Microbiol, vol.18, pp.189-194, 2010.

P. R. Johnston and N. Crickmore, Gut bacteria are not required for the insecticidal activity of Bacillus thuringiensis toward the tobacco hornworm, Manduca sexta, Appl. Environ. Microbiol, vol.75, pp.5094-5099, 2009.

S. Caccia, I. Di-lelio, A. La-storia, A. Marinelli, P. Varricchio et al., Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism, Proc. Natl. Acad. Sci, vol.113, pp.9486-9491, 2016.

A. Hilbeck, M. Meier, and M. Trtikova, Underlying reasons of the controversy over adverse effects of Bt toxins on lady beetle and lacewing larvae, Environ. Sci. Eur, vol.24, issue.9, 2012.

A. C. Cohen and L. K. Smith, A new concept in artificial diets for Chrysoperla rufilabris: The efficacy of solid diets, Biol. Control, vol.13, pp.49-54, 1998.

Y. Li, L. Hu, J. Romeis, Y. Wang, L. Han et al., Use of an artificial diet system to study the toxicity of gut-active insecticidal compounds on larvae of the green lacewing Chrysoperla sinica, Biol. Control, vol.69, pp.45-51, 2014.

I. Ali, S. Zhang, and J. J. Cui, Bio-safety evaluation of Cry1Ac, Cry2Ab, Cry1Ca, Cry1F and Vip3Aa on Harmonia axyridis larvae, J. Appl. Entomol, vol.141, pp.53-60, 2016.

I. Ali, S. Zhang, J. Luo, C. Wang, L. Lv et al., Artificial diet development and its effect on the reproductive performances of Propylea japonica and Harmonia axyridis, J. Asia-Pac. Entomol, vol.19, pp.289-293, 2016.

M. Trtikova, O. G. Wikmark, N. Zemp, A. Widmer, and A. Hilbeck, Transgene expression and Bt protein content in transgenic Bt maize (MON810) under optimal and stressful environmental conditions, PLoS ONE, vol.10, 2015.

T. L. Archer, G. Schuster, C. Patrick, G. Cronholm, E. D. Bynum et al., Whorl and stalk damage by european and southwestern corn borers to four events of Bacillus thuringiensis transgenic maize, Crop Prot, vol.19, pp.181-190, 2000.

B. E. Tabashnik, F. Huang, M. N. Ghimire, B. R. Leonard, B. D. Siegfried et al., Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance, Nat. Biotechnol, vol.29, 1128.

K. Van-frankenhuyzen, Y. Liu, and A. Tonon, Interactions between Bacillus thuringiensis subsp. Kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm, J. Invertebr. Pathol, vol.103, pp.124-131, 2010.

J. G. Coors and W. H. Gabelman, Resistance to the european corn borer, Ostrinia nubilalis (Hubner), in maize, Zea mays L., as affected by soil silica, plant silica, structural carbohydrates, and lignin, Proceedings of the Second International Symposium on Genetic Aspects of Plant Mineral Nutrition, pp.445-456, 1985.

L. N. Meihls, V. Handrick, G. Glauser, H. Barbier, H. Kaur et al., Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity, Plant Cell, vol.25, pp.2341-2355, 2013.

J. M. Chacón, M. K. Asplen, and G. E. Heimpel, Combined effects of host-plant resistance and intraguild predation on the soybean aphid parasitoid Binodoxys communis in the field, Biol. Control, vol.60, pp.16-25, 2012.

R. F. Denno and M. S. Mcclure, Introduction: Variability: A key to understanding plant-herbivore interactions, Variable Plants and Herbivores in Natural and Managed Systems

R. F. Denno, M. S. Mcclure, and . Eds, , pp.1-12, 1983.

N. Panda and G. S. Khush, Host Plant Resistance to Insects; CAB International in Association with the International Rice Research Institute, 1995.

E. A. Bernays, Insect-Plant Interactions, vol.1, 1989.

H. F. Van-emden, The role of host plant resistance in insect pest mis-management, Bull. Entomol. Res, vol.81, pp.123-126, 2009.

E. K. Silbergeld, J. Graham, and L. B. Price, Industrial food animal production, antimicrobial resistance, and human health, Annu. Rev. Public Health, vol.29, pp.151-169, 2008.

A. K. Sarmah, M. T. Taylor, and A. B. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, vol.65, pp.725-759, 2006.

, Glyphosate Formulations and Their Use for the Inhibition of 5-Enolpyruvylshikimate-3-Phosphate Synthase. U.S. Patent 7771736 b2, p.28, 2002.

S. H. Lancaster, E. B. Hollister, S. A. Senseman, and T. J. Gentry, Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate, Pest Manag. Sci, vol.66, pp.59-64, 2010.

M. Kruger, A. A. Shehata, W. Schrodl, and A. Rodloff, Glyphosate suppresses the antagonistic effect of Enterococcus spp. On Clostridium botulinum, Anaerobe, vol.20, pp.74-78, 2013.

V. L. Lozano, N. Defarge, L. M. Rocque, R. Mesnage, D. Hennequin et al., Sex-dependent impact of Roundup on the rat gut microbiome, Toxicol. Rep, vol.5, pp.96-107, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02294902

A. Schulz, A. Krüper, and N. Amrhein, Differential sensitivity of bacterial 5-enolpyruvylshikimate-3-phosphate synthases to the herbicide glyphosate, FEMS Microbiol. Lett, vol.28, pp.297-301, 1985.

P. Dai, Z. Yan, S. Ma, Y. Yang, Q. Wang et al., The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro, J. Agric. Food Chem, vol.66, pp.7786-7793, 2018.

M. Porcar, I. Garcia-robles, L. Dominguez-escriba, and A. Latorre, Effects of Bacillus thuringiensis Cry1Ab and Cry3Aa endotoxins on predatory coleoptera tested through artificial diet-incorporation bioassays, Bull. Entomol. Res, vol.100, pp.297-302, 2010.

C. Ivaldi-sender, Simple techniques for a permanent breeding of oriental fruit moth Grapholitha molesta (Lepidoptera: Tortricidae) on artificial diet, Ann. Zool. Ecol. Anim, vol.6, pp.337-343, 1974.

M. Poulsen, M. Schroder, A. Wilcks, S. Kroghsbo, R. H. Lindecrona et al., Safety testing of GM-rice expressing PHA-E lectin using a new animal test design, Food Chem. Toxicol, vol.45, pp.364-377, 2007.

F. J. Muñoa and R. Pares, Selective medium for isolation and enumeration of Bifidobacterium spp, Appl. Environ. Microbiol, vol.54, pp.1715-1718, 1988.