J. M. Meyer, V. A. Geoffroy, N. Baida, L. Gardan, D. Izard et al., Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads, vol.68, p.12039729, 2002.

E. Bossis, P. Lemanceau, X. Latour, and L. Gardan, The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision, Agron Sustain Dev, vol.20, pp.51-63, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00885995

N. J. Palleroni, Introduction to the family Pseudomonadaceae, A Balows, HG Trü per, pp.3071-3085, 1992.

N. J. Palleroni, Human and animal-pathogenic pseudomonads, The prokaryotes, pp.3086-3103, 1992.

M. W. Silby, A. M. Cerdeno-tarraga, G. S. Vernikos, S. R. Giddens, R. W. Jackson et al., Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens, Genome Biol, vol.10, p.19432983, 2009.

P. Mirleau, L. Philippot, T. Corberand, and P. Lemanceau, Involvement of nitrate reductase and pyoverdine in competitiveness of Pseudomonas fluorescens strain C7R12 in soil, Appl Environ Microbiol, vol.67, p.11375173, 2001.

M. Shirley, L. Avoscan, E. Bernaud, G. Vansuyt, and P. Lemanceau, Comparison of iron acquisition from Fepyoverdine by strategy I and strategy II plants, Botany, vol.89, pp.731-735, 2011.

P. Trapet, L. Avoscan, A. Klinguer, S. Pateyron, S. Citerne et al., The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions, Plant Physiol, vol.171, p.26956666, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01636086

G. Vansuyt, A. Robin, J. F. Briat, C. Curie, and P. Lemanceau, Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana, Mol Plant-Microbe Interact, vol.20, p.17427814, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00142196

X. Latour and P. Lemanceau, Carbon and energy metabolism of oxidase-positive saprophytic fluorescent Pseudomonas spp, Agron Sustain Dev (formerly Agronomie), vol.17, pp.427-443, 1997.

R. Belas, Biofilms, flagella, and mechanosensing of surfaces by bacteria, Trends Microbiol, vol.22, p.24894628, 2014.

H. C. Berg, The rotary motor of bacteria flagella, Annu Rev Biochem, vol.72, p.12500982, 2003.

E. Barahona, A. Navazo, D. Garrido-sanz, C. Muriel, F. Martínez-granero et al., Pseudomonas fluorescens F113 can produce a second flagellar apparatus, which is important for plant root colonization, Front Microbiol, vol.7, p.27713729, 2016.

L. Ping, J. Birkenbeil, and S. Monajembashi, Swimming behavior of the monotrichous bacterium Pseudomonas fluorescens SBW25, FEMS Microbiol Ecol, vol.86, p.23346905, 2013.

D. Weger, L. A. Van-der-vlugt, C. I. Wijfjes, A. H. Bakker, P. A. Schippers et al., Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for root colonization of potato roots, J Bacteriol, vol.169, p.3294806, 1987.

M. Raatz, M. Hintsche, M. Bahrs, M. Theves, and C. Beta, Swimming patterns of a polarly flagellated bacterium in environments of increasing complexity, Eur Phys J Special Topics, vol.224, pp.1185-1198, 2015.

G. L. Hazelbauer, J. J. Falke, and J. S. Parkinson, Bacterial chemoreceptors: high-performance signaling in networked arrays, Trends Biochem Sci, vol.33, p.18165013, 2008.

A. Collmer, J. L. Badel, A. O. Charkowski, W. Deng, D. E. Fouts et al., Pseudomonas syringae Hrp type III secretion system and effector proteins, Proc Natl Acad Sci USA, vol.97, p.10922033, 2000.

J. L. Ramos, Pseudomonas: virulence and gene regulation, vol.2, 2004.

G. R. Cornelis, The type III secretion injectisome, a complex nano-machine for intracellular "toxin" delivery, Biol Chem, vol.391, p.20482311, 2010.

J. E. Loper, K. A. Hassan, D. V. Mavrodi, I. I. Davis, K. Ew et al., Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions, PLoS Genetics, vol.8, p.22792073, 2012.

P. Troisfontaines and G. R. Cornelis, Type III secretion: more systems than you think, Physiology, vol.20, pp.326-339, 2005.

J. Engel and P. Balachandran, Role of Pseudomonas aeruginosa type III effectors in disease, Curr Opin Microbiol, vol.12, p.19168385, 2009.

M. Quinaud, J. Chabert, E. Faudry, E. Neumann, D. Lemaire et al., The PscE-PscF-PscG complex controls type III secretion needle biogenesis in Pseudomonas aeruginosa, J Biol Chem, vol.280, p.16115870, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00378749

P. Dean, Functional domains and motifs of bacterial type III effector proteins and their roles in infection, FEMS Microbiol Rev, vol.35, p.21517912, 2011.

M. Barret, F. Egan, J. Moynihan, J. P. Morrissey, O. Lesouhaitier et al., Characterization of the SPI-1 and Rsp type three secretion systems in Pseudomonas fluorescens F113, Environ Microbiol Rep, vol.5, p.23754718, 2013.

A. M. Cusano, P. Burlinson, A. Deveau, P. Vion, S. Uroz et al., Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis, Environ Microbiol Rep, vol.3, p.23761252, 2011.

P. Liu, W. Zhang, L. Q. Zhang, X. Liu, and H. L. Wei, Supramolecular structure and functional analysis of the type III secretion system in Pseudomonas fluorescens 2P24, Front Plant Sci, vol.6, p.26779224, 2016.

M. Marchi, M. Boutin, K. Gazengel, C. Rispe, J. P. Gauthier et al., Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots, Environ Microbiol Rep, vol.5, p.23754720, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01208629

D. V. Mavrodi, A. Joe, O. V. Mavrodi, K. A. Hassan, D. M. Weller et al., Structural and functional analysis of the type III secretion system from Pseudomonas fluorescens Q8r1-96, J Bacteriol, vol.193, p.20971913, 2011.

G. M. Preston, N. Bertrand, and P. B. Rainey, Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25, Mol Microbiol, vol.41, p.11555282, 2001.

F. Rezzonico, C. Binder, G. Defago, and Y. Moenne-loccoz, The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic Chromista Pythium ultimum and promotes cucumber protection, Mol Plant-Microbe Interact, vol.18, p.16167769, 2005.
URL : https://hal.archives-ouvertes.fr/halsde-00354196

M. J. Paul, L. F. Primavesi, D. Jhurreea, and Y. Zhang, Trehalose metabolism and signaling, Annu Rev Plant Biol, vol.59, p.18257709, 2008.

J. Ponnu, V. Wahl, and M. Schmid, Trehalose-6-phosphate: connecting plant metabolism and development, Front Plant Sci, vol.2, p.22639606, 2011.

M. Poueymiro, A. C. Cazalé, J. M. François, J. L. Parrou, N. Peeters et al., A Ralstonia solanacearum type III effector directs the production of the plant signal metabolite trehalose-6-phosphate, mBio, vol.5, p.25538193, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01133638

K. K. Treseder and J. T. Lennon, Fungal traits that drive ecosystem dynamics on land, Microbiol Mol Biol Rev, vol.79, p.25971588, 2015.

A. Van-laere and . Trehalose, reserve and/or stress metabolite?, FEMS Microbiol Rev, vol.63, pp.201-210, 1989.

V. Wiemken, Trehalose synthesis in ectomycorrhizas-a driving force of carbon gain for fungi?, New Phytol, vol.17, pp.228-230, 2007.

P. Frey, P. Frey-klett, J. Garbaye, O. Berge, and T. Heulin, Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas Fir-Laccaria bicolor mycorrhizosphere, Appl Environ Microbiol, vol.63, p.16535600, 1997.

X. Latour, T. Corberand, . Laguerre, F. Allard, and P. Lemanceau, The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type, Appl Environ Microbiol, vol.62, p.16535355, 1996.

S. C. Kachlany, P. J. Planet, M. K. Bhattacharjee, E. Kollia, R. Desalle et al., Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea, J Bacteriol, vol.182, p.11029439, 2000.

S. C. Kachlany, P. J. Planet, R. Desalle, D. H. Fine, and D. H. Figurski, Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum, Trends Microbiol, vol.9, p.11553455, 2001.

J. L. Berry and V. Pelicic, Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic swiss army knives, FEMS Microbiol Rev, vol.39, p.25793961, 2015.

S. C. Kachlany, P. J. Planet, R. Desalle, D. H. Fine, D. H. Figurski et al., flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans, Mol Microbiol, vol.40, p.11359562, 2001.

M. Tomich, P. J. Planet, and D. H. Figurski, The tad locus: postcards from the widespread colonization island, Nat Rev Microbiol, vol.5, p.17435791, 2007.

J. Nykyri, L. Mattinen, O. Niemi, S. Adhikari, V. Kõiv et al., Role and regulation of the Flp/ Tad pilus in the virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193, PLoS One, vol.8, p.24040039, 2013.

C. K. Wairuri, J. E. Van-der-waals, V. Schalkwyk, A. , and T. J. , Ralstonia solanacearum needs Flp pili for virulence on potato, Mol Plant-Microbe Interact, vol.25, p.22168446, 2012.

C. S. Bernard, C. Bordi, E. Termine, A. Filloux, and S. De-bentzmann, Organization and PprB-dependent control of the Pseudomonas aeruginosa tad locus, involved in Flp pilus biology, J Bacteriol, vol.191, p.19151143, 2009.

J. M. Boyd, A. Dacanay, L. C. Knickle, A. Touhami, L. L. Brown et al., Contribution of type IV pili to the virulence of Aeromonas salmonicida subsp. salmonicida in Atlantic salmon (Salmo salar L.), Infect Immun, vol.76, p.18212071, 2008.

F. Van-gijsegem, J. Vasse, J. C. Camus, M. Marenda, and C. Boucher, Ralstonia solanacearum produces hrpdependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells, Mol Microbiol, vol.36, p.10792714, 2000.

M. K. Bhattacharjee, S. C. Kachlany, D. H. Fine, and D. H. Figurski, Nonspecific adherence and fibril biogenesis by Actinobacillus actinomycetemcomitans: TadA protein is an ATPase, J Bacteriol, vol.183, p.11566992, 2001.

L. L. Burrows, Pseudomonas aeruginosa twitching motility: type IV pili in action, Annu Rev Microbiol, vol.66, p.22746331, 2012.