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Abstract

Specific surface areas of particles produced at small-scale diffusion flame burners and also in pilot and large-
scale fires involving complex fuels are reported and compared. Specific surfacesarisad8termined by BET
(Brunauer-Emmett-Teller) analysis and also according to previously developed appreacklBng on the

primary sphere based on TEM (Tansmission Electron Microscopy) images analysis. True density is also
determined and the respective influences of primary particle diamejgrafi@ organic carbon to total carbon

ratio (OC/TC) are discussed. The present study is the first to propose a careful comparison between TEM and
BET specific surface areas of 20 different samples of carbonaceous particles emitted under realistic fire
conditions and to bring validity range for such TEM based approach. For samples containing low and moderate
OC content (less than 20%), a good agreement betwagna®d Ser is reported (within +/- 20% for a
confidence interval of 95%), confirming the significant influence of primary particle diameter and the relevance
of a purely geometrical description of the surface specific area of soot particles. For larger OC/TC, such
approach fails to predict the particles specific surface area within a reasonable confidence interval.

Introduction

Particles emitted in case of fire have several major impacts on fire evolution within a confined and poorly
ventilated industrial facility. Considering propagation of fire, soot radiative properties are of main importance in
the global radiative heat transfer within compartment fire and are now considered in fire simulation software
(Cheung et al., 2004; Pierce & Moss, 2007). Such soot properties are strongly linked to their specific surface
area (Michelsen et al., 2007) that is defined as the particle surface at its interface with the gas phase by mass
unit. For industrial facilities handling or manufacturing hazardous materials (nuclear, biological, nanopatrticles),
containment of such toxic and radiotoxic materials is generally carried out according to ventilation system,
aiming to keep facility in an under pressure condition, and High Efficiency Particulate Air filters (HEPA)
avoiding any release within the atmosphere. In case of fire, the airflow resistance of such HEPA filters could
rapidly increase and several authors have proposed empirical and semi-phenomenological models aiming to
describe filters behavior in such conditions (Bourrous et al., 2016; Gregory et al., 1982; Ishibashi et al., 2014;
Mocho & Ouf, 2011). Furthermore, combustion generated particles as diesel and fire emissions are well known
for their toxicological impact through their composition and potential PAH (polycyclic aromatic hydrocarbons)
adsorbed at their surface (Gustafsson & Gschwend, 1997; Jonker & Koelmans, 2002). Resuspended fire-emitted
particles (Bolstad-Johnson et al., 2000) or direct exposure during fire training is also in debate since recent
findings have highlighted the link between dustiness and mass-specific surface area of nanostructured powders
(Dazon et al., 2017). Beyond all these questions, several authors have proposed experimental database describing
size distribution, elemental and chemical composition (Hertzberg & Blomqvist, 2003; Motzkus et al., 2012; Ouf
et al., 2015; Ouf et al., 2008; Rhodes et al., 2011; Wang et al., 2019) and more recently dealing with morphology
(Bourrous et al., 2018) and true density (Ouf et al., 2019). Nevertheless, literature appears to be limited when
considering specific surface area of carbon-based particles emitted during realistic fire conditions. Such surface
to mass property of combustion emitted particles is of main interest since several authors have recently pointed
out that specific surface area is one of the most relevant properties of nanoparticles (Schmid & Stoeger, 2016)
and soot particles (Steiner et al., 2016) for characterizing their toxicity. Nevertheless, few measurements of
specific surface area have been reported due to the difficulty of collecting sufficient quantities of materials for
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BET analysis. In most cases, experimental datdiraited to analysis of soot emitted by laboratocgle burners
or aircraft engines for atmospheric applicationsep@®icheva, Persiantseva, Tishkova, Shonija, & ZeNe

2008), candles flames for producing super-hydromhobating (Qahtan, Gondal, Alade, & Dastageer,72@i

diesel engines for toxicological applications ($teeet al., 2005). To our knowledge, present stadlge first to
propose a careful comparison between TEM and BEETifp surface areas of carbonaceous particles@anit

case of fires.

The aim of the present paper is to review the \&hfespecific surface area reported in the litemafior soot
particles (defined by Petzold et al. (2013) as @gglrates of monomers consisting solely of carbdh sinall
amounts of hydrogen and oxygen) and to proposetiaddi values for combustion emitted particles from
materials relevant to fire emission studies at s@vecales and under different ventilation and digen
concentration conditions (also including soot méet). Reported values are obtained according ferenece
measurement method, i.e. BET analysis (Gregg & ,SIr882). Influence of the organic content (OC) and
primary particle diameter (f) of combustion emitted particles samples are th&hlighted, showing a
significant decrease of specific surface area as thC content and primary particle diameter insesalhe
present study demonstrates that, using previoeglgrted material density (Ouf et al., 2019), TEMlgsis is a
viable way of determining specific surface areaahplex carbonaceous samples produced during fires.

Experimental method and samples properties

Measurement of specific surface area of combustimitted particles was carried out according to Bl
using ASAP 2020 analyzer from Micromerificdn order to keep samples in their initial prodoictconditions
(i.e. low volatility of organic content or other mensable species formed during combustion), sampéze
only outgassed under primary vacuum at 298K umébkgure in outgassing chamber reached stable galid
mbar (from 2 hours to nearly 12 hours dependingsample). Nitrogen adsorption measurements were
conducted at 77K and the specific surface arga, $lefined as the surface occupied by one monolafer
nitrogen molecules, is computed according to th@& Bpproach (Sing, 1985).

In addition to BET analysis, samples were charasdrin terms of primary particle diameters andaoig to
total carbon ratio (OC/TC), respectively by transsion electronic microscopy associated to imageysisa
protocol (Bourrous et al., 2018; Ouf et al., 201da)d Sunset Lab EC/OC analyzer associated to the
IMPROVE_A protocol (Chow et al.,, 2007). True sanspldensities were also determined according to an
experimental methodology previously described iri €al. (2019).

Within the present work, combustion emitted pagiclvere produced by different sources at diffeseales:
analytical test bench based on miniCAST soot geoexon et al., 2015), cone calorimeter (Mocho &fO
2011; Ouf et al., 2015; Ouf et al., 2008), largalsdires conducted within over-ventilated/open T&RNE
facility) or under-ventilated/confined (DIVA fadii) conditions (Ouf et al., 2014). Liquid fuels (hane,
hydraulic oil and nuclear waste treatment solveritsutylphosphate TBP and hydrogenated tetraprowyle
TPH), solid polymers composing gloves boxes usechuclear industry for handling and manufacturing
radioactive materials (polymethyl methacrylate PMM#d polyvinylchloride PVC) and electrical cables
(containing significant amount of metallic elememtisd complex fire retardants) commonly used in many
industrial facilities were considered as fuels.eFonditions were mainly flaming and sampling peintere
placed at a distance of at least 10 times the esthdwct diameters from the emission point for eimgur
homogeneous aerosol concentration and representa@mpling. Soot particles were mechanically or
pneumatically retrieved respectively from previguslogged pleated or plane High Efficiency Partideal Air
Filters implemented on ventilation network of tdmtnches. Reference carbon black samples (Printex 90
Flamruss 101) were also considered for comparisitim Merature and validation of the present meament
protocol.

Physico-chemical properties of these samples qrerted in Table 1. One must notice that samplesymed
within the present study were all characterizedemns of physico-chemical properties, accordingh same
analytical methods. This careful experimental asialyallows a relevant discussion of the directuiafice of
those properties on specific surface area. Nonesthee literature analysis is also integrated irbl€al for



carbon black and soot samples for which specifitase area, primary particle diameter and orgamitotal
carbon ratio were available.

Experimental results: evidence of the influence agfrimary particle diameter and organic carbon contert

Specific surface area of carbon black and combusiitted particles are reported in Figure 1 agratfon of
primary particle diameter. Values associated tbaarmlack are ranging from 10 to 1000 m?/g, hidhtiigg the
large variety of samples commercially availabler particles produced under small and medium scaée f
conditions (diffusion flames in figure 1), speciarface area determined by BETz{8 is within a narrower
range from 10 to 100 m?/g, values in agreement titdse reported in literature for soot emitted lagapus
burner or diesel/aircraft engines. Finally, paesckemitted during realistic fire scenario (realesdmes in figure
1) are characterized by significantly lower spec#urface areas (from 1 to 30 m2/g) associated donaplex
composition (high OC and non-carbonaceous contuftet al., 2019).

As previously reported by several authors (Baulet2810; Gwaze et al., 2006; Pawlyta et al., 208+
logically appears to be inversely dependent gp Devertheless, one must notice discrepancies rfallast
particle sizes (i.e. lower than 20 nm) and veryhtsgecific surface area. Since such discrepanceesnainly
associated to carbon black samples analyzed by aEMBET within separated studies, one could suspiggtit
physico-chemical differences between samples, é&menommercial carbon black. Furthermore, high #jec
surface area (higher than 300 m2/g) of carbon b¥arkples could only be reached by various compfiex-a
treatments process (thermal or chemical) changiath primary particles surface rugosity and chemical
composition (colour black FW200 as an example}this case, such power-law fit, illustrated as alguor the
eye in Figure 1, is no more suitable and appeatsettimited to non-porous carbon black samples sowt
particles denoting low OC content. Good correlatisnthen reported between BET ang,Dor soot and
combustion emitted particles considered in thegarestudy and denoting specific surface area upm/g.
For samples produced under realistic fire cond#jo®er appears to decrease significantly when increasing
primary particle diameter, but also when increa$h@ content (see Figure 1). Obviously, it appeaas $pecific
surface area does not depend only on primary partimmeter, but also on potential overlapping fudse
monomers within aggregates (Bau et al., 2010).idkasttrue density, which is highly influenced lingtorganic
contents and significantly decreases with increp€hC/TC (Ouf et al., 2019), is also suspected &y jal role
(see eq. 1).
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Figure 1: Evolution of soot specific surface areadunction of primary particle diameter



Prediction of specific surface area of complex so@articles from TEM images analysis

In order to account for the fractal morphology ahoparticles aggregates/agglomerates (including gt or
without overlapping), several authors have propasegirical relations aiming to predict their spacsgurface
area (Bau et al., 2010; Brasil, Farias, & Carvall899; Gwaze et al., 2006; Pawlyta et al., 2018)reévfecently,
it has been proposed a quasi-automatic TEM imagelyzng tool opening the way to a hanoparticleBgNand
soot particles determination of specific surfaceaarin good agreement with BET analysis (Bourrdual.e
2018). For this purpose, the following relatiortraguced by Bau et al. (2010), has been considered:
N(Dpp)Dpp

_6 1 Dpp
Srempa=— 1- Cov 1-—— N3
pp . DppN(Ppp) pp

(eq. 1)

In Eq. 1, ppis the true density of NPs or soot aggregatess an empirical constant equal to 1.3 and relé&ted
the overlapping coefficient Cov previously definadBrasil et al. (1999), ) represents the number of primary
particles composing the aggregate and jy(Ehe number of primary particles within the sizass @p,. Major
limitation of equation (1) is due to the numberpsfmary particle composing aggregates analyzed BM T
images. In the present study, since we do not haeess to TEM images of each samples, especialihdse
coming from literature, we have simplified equat{@p by assuming that soot aggregates generalseptamore
than 50 primary particles, which is in good agreeimeith values reported in several studies (KoyliF&eth,
1992; Ouf et al.,, 2008). Another major assumptigsogiated to equation (1) consists in consideriache
primary particle in contact with only 2 other primaparticles. This hypothesis is generally assurede
relevant for nanoparticles aggregates formed mdiylydiffusion (Brasil et al., 2001; Harada et #&Q06).
Furthermore, assuming primary particles moderapallydispersed, in terms of diameter (geometric diath
deviation lower than 1.8 as generally reportedtérdture, Bourrous et al., 2018), the count mediameter [3,
could be considered as a relevant descriptor tutzk surface and mass of the population. Thergrding to
previous assumptions, one could simplify equatibrag follows:

Stem= ° 1- Cov (eq. 2)

samplerFJ

Equation (2) is used for computing specific surfarea, using bulk densities and overlapping cadefiic
previously reported (Bourrous et al., 2018; Ouélet 2019) or analyzed in the present study. FigQupgesents
the correlation betweenr& and Ser for samples produced under realistic combustiahfaa conditions. The
raw results are reported in tables 1 and 2. Unictigda associated totSs have been computed by error
propagation from equation (2) (see annex | for mietails on the method). It corresponds to a medative
uncertainty of 19%.

A relatively good agreement betweetesp and $er is found for most of the samples produced by ditin
flames of hydrocarbons, oil or polymer fuels. Meamples denote TEM determined values in agreemigmt w
BET analysis within the +/- 20 % confidence intdmpeeviously reported by Bourrous et al. (2018) ddimited
number of samples. Nevertheless, for certain sasmpieduced during real scale fires, the specifitase area
deduced by TEM analysis is overestimated comparé&detr method.
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An attempt of generalization of the Sem_approach for unknown true density samples

As reported in figure 2, it must be noted thatgniicant amount of organic contents (more than R086rbed

on particles, can decrease the surface availablaifimgen adsorption and thus could provide loBgsr. To
confirm the impact of the OC content on the spedfirface area, BET measurements have been pedame
Heptane, PMMA and TBP/TPH combustion particles fadly outgassed at 105°C and 400°C. Mass loss has
then been measured (and compared to the initighleamass) and BET analysis performed on thosetpested
samples. Figure 3 presents the factor of spedifitase increase (ratio between the measured spetifface
area values after heating with that determinedrfitially non-treated particles) as a function bétmass loss
caused by heating treatment.



Figure 3: Increase of the specific surface areasmed by BET with outgassing level (diffusion flaane
combustion conditions)

One could notice that specific surface area sigaifily increases as a function of mass loss (®eguhdratic
law presented in figure 3 as a guide to the eyh)s Tonfirms that the OC content has on the onel lean
influence on the particle density (Bourrous et218) and on the other hand an influence on thdada
surface of those samples. For TBP/TPH, one mustenthat, as previously reported by our team (Quilg
2015), particles produced during combustion of saohlmplex mixing of solvents, contain not only origan
carbon, but also a significant amount of aqueoussghcontaining phosphoric acigR{, in the form of a
droplet formed at soot surface. In this case, agped surface of particles emitted during fire iviod
TBP/TPH will be reduced by water andRQy sorption, explaining the significantly lower sgecsurface area
measured bygsr as compared withigu.

In consequence of Figure 3, it seems that computatf specific surface area from TEM analysis, agppsed
by Bourrous et al. (2018) for nanostructured arat samples, is a reliable approach. Furthermopesents the
advantage to be applicable when the amount of wlasamples is hardly reachable. Nevertheless,deraio be
fully predictable, such approach requires the tsaeple density as data input. Such property is rgépe
measured using Helium pycnometrgnd volume displacement methods such as ISO 78&238 we have
recently proposed an analysis of values reportedinwliterature and experimentally for realisticnditions of
production of combustion generated particles. Irsthoases, with these methods, at least 500 mgwdgois
needed to perform a relevant true density analgsid,then one could suspect that, when specifiactiarea
measurement is not possible due to a limited amaefirgample, similarly true density will be also dhigr
measured. Nevertheless, and as demonstrated irtCGuf (2019), the effective density approach psegoby
Yon et al., (2015) could be applied for measurlmg true density of combustion generated aeroseh & low
mass or humber concentrations.

We propose hereafter a simple approach for estigalie true sample density of combustion genenaégticles
according to their composition. One must noticd,thathe present study, sample density is asstitd true
density of the overall material composing aggregaté its coating. As recently demonstrated, truesit of
combustion emitted particles presents significanifferent values ranging from nearly 1285 kg/tn 2069
kg/m?® and strongly depends on OC/TC ratio (Ouf et alJ@0For taking into account such discrepancies, we

https://www.astm.org/Standards/B923.htm
https://www.iso.org/standard/5102.html




have fitted the experimental evolution, reportedOuf et al., (2019), of true sample density as rection of
OC/TC according to a simple exponential decay law:

=1234+882ex(0.083 OC/TC), (eq. 3)

sample
with  sampie@nd OC/TC respectively expressed in kyand in % (from 0 to 100 % of OC/TC).

Figure 4 presents the comparison betwegm,Somputed according to equations 2 and 3, aie Reasonable
agreement could be noticed for samples denoting(#®&6) and moderate OC/TC content (<20%). On therot
hand, as expected, specific surface area of sangaesting OC/TC content higher than 50% and metalli
elements are in poor agreement with BET analysissbich complex samples, knowledge of true sanghsity
appears to be crucial for a realistic estimatiospwcific surface area. As an overall conclusiothizf attempt of
implementation of OC/TC within a TEM based specéficface area analysis method, present approachrae
provide real improvement. Prediction of true dgnfibm eq. 3 does not enhance the agreement bet&egn
and Ser, highlighting the complexity of composition of piates emitted in case of fire and, in the same ,way
the limitation of such simple approach of analy®¥thout any prior knowledge of soot compositiordarature,
use of equations 1, 2 and 3 for computing spesifidace area must be considered with caution anst b
limited to OC/TC ratio lower than 20%.
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Figure 4: Parity graph betweers, considering equations 2 and 3, apgr&nalysis (gt from 0 to 160 m?/g,
corresponding to values reported in the presedystr combustion emitted particles)

Conclusions

Measurements of specific surface area, accordi®ED analysis, were experimentally conducted fart snd
combustion emitted particles samples for more @@rdifferent combustion sources. Correspondipgr &re
ranging from 3 m2/g to 98 m?/g. The impact of pnignparticle diameter is confirmed and, by outgagsirganic
containing samples, OC/TC ratio has been showrate la strong influence. Specific surface area fagmitly
decreases with increasingCand OC/TC. Based on TEM images analysis, a sim@temetrical description of
specific surface area, including overlapping betwpemary particles and true density of considesanhples, is
shown to give values in reasonable agreement Wwithet obtained from BET analysis. Such agreemerfiromn
that particles emitted under various combustionddmns could be assumed to be non-porous with
homogeneous composition and considering the pestitle density. Improvement of this previouslyposed
model is introduced, aiming to compute the truesitgnof samples, when such information is not &asil



reachable, as a function of OC/TC ratio. Comparisih BET values does not show a significant enkamnt
of the agreement of this modified model. This copldbably be explained by the huge variety of soot
considered in this study and denoting differeng wlensity and OC content.
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Table 1: properties and specific surface area of carborkldammercial samples and soot from literature asigly

Source Fuel OC/TC (%) Diameter (nm) Cov (-) _po_(ka/m?) Sser (M%Q) Reference
Flamruss LB 101 0.8/0.8 135.8 +/- 8.4 1717 +/- 49 | 24.4 +/-0.08 !Present study¥Saber et al., 2012) /
Printex 90 1.3/2CG/1412® 25.0 +/- 0.3 1791 +/- 15 340 +/- 1.57 3(Ferge et al., 2006)'supplier
Degussa S170 8.57* 14.6 +/- 3.8 197.0
Corax N110 1.31* 13.8 +/-4.0 122.4
Corax N234 5.70* 21.7+/-7.4 1800 111.2 (Ferraro et al., 2016)*supplier
Corax N326 4.68* 24.7 +/- 9.6 58.7
Carbon black Corax N539 3.19* 43.3 +/- 15.7 36.0
commercial Printex 25 0.9 49 0 1878 +/- 15 51
samples Printex 60 14 34 1800 106 (Miroslawa Pawlyta, Rouzaud, & Duber, 2015
Printex 90 1.3/2.CG/1*1 2 19 1791 +/- 15 336
Colour Black FW 200 20° 18 545
Printex U 5 36.9 +/- 9.4 1800 97.24 (Liu et al., 2010)
Printex G 0.7/15 30-60/51 43/30 5
- St t al., 2005
Printex 90 13/20/ 112 12-17/14 1791 +/- 15 2721300 (Stoeger et a )
Thermal 0.6 246 1800 10 (Popovicheva et al., 2008)
= -
o CAST1 16.% 26.5 ( =1.36) 1372 +/-05 (Soleiman Bourrous et al., 2018YMonge et al.,
MINICAST . 0.11 +-0.16 | 1631 +/- 132 210
burner SootH (High OC content) 19 8-16 ' ' 268 (st ¢ al,, 2005)
B oeger etal.,
SootL (Low OC content) v 814 e 8(Thomas et al., 2014P(Wentzel et al., 2003)
. ufCP 17 7-12 oo 807
Spark discharg 0% 2150
Palas 0 6.6 308 (Popovicheva et al., 2008)
Kerosene in oil 0.14 +/-0.14 1834 +/- 187 8(Thomas et al., 2014)
lamp TC1 2.174 57 49 9(Wentzel et al., 2003)
. . . L 25.4 +/- 15.2 (91.3%)| 0.14 +/- 0.14 | 1525 +/- 361 (Ferraro et al., 2016)
Diesel engine Diesel soot-in-oil sample 16.15* 48.0 +/-8.1 (8.7%) 94 10(Park, Kittelson, & McMurry, 2004)
Candle Candle soot 3.5** 20-50 0.14 +/-0.14 | 1834 +/- 187 366 (Qahtan et al., 2017)

*Atomic percentage of elements others than N, CHAHTGA weight loss at 450°C in agreement with gey atomic percentage of 3.0%hen not available, £was assumed as mean value of measused C



Table 2: properties and bulk density of combustion emittadiples samples of present study

Source

Production conditions

OC/TC (%)

Diameter (nm)

COV ")_

_po (ka/ m°)

Sser_(m?/Q)

Reference

Fuel [O2] Scale
21% Small 4.4 +/- 2.3 35.1+/-1.3 75.5 +/- 0.75
" [ Medium [ 1.0+-0.01] 341+-13] (... o.g 69.5 +- 0.8
Heptane 19% Small 8.0 +/- 3.0 33.3+/-0.9 ' ' 1780 +/- 261 84.3 +/- 0.9
P 17% Small 4.3 +/-1.6 33.6 +/-0.5 96.5 +/- 1.03
Small 13.8 +/- 2.5 31.2+/-1.3 97.9 +/- 2.29
0, -
15% Medium 17.6 +/- 6.6 29.9 +/- 0.9 0.12 +-0.18 86.9 +/- 1.1I8
Diffusion o105 |_Smal 3.5 +- 1.4 39.9 +/- 0.8 79.3 +/- 1.05
Elames Medium 2.0+/-1.0 359 +/-1.1 69.2 +/- 1.38 Present study
.14 +/- 0. +/-
(cone calorimeter) PMMA 18% Small 4.0+/-2.5 32.2 +/-0.8 0.14+/-0.14 | 1648 +/-78 84.4 +/- 1.24 _
° [ "Medium | 2.9+-12 37.2+/-1.2 63.7 +/- 1.4 G(Sole"TagngU)rfous et
| 21% | Small 2.1+-15 421 +-1.2 53.3 +/- 1.10 B
_ - 11(Mullins & Williams,
Hydraulic ol = = T 3.1+ 3.2 386+, 11| 017047 | 1665+ 16— =g i 1987)
21% Small 3.2+/-2%6 450+/-1.4 27.9 +/-0.33
TP TPH I T Small | 42+/-3a | 384+-10 | 014+ 018 | 1534+ 78 — o o8
PMMA/PVC - Medium 14.8 +/- 2.3 7250 0.13 +/-0.18 | 1315 +/-82 57.2 +/- 580
Electrical cables (CFS) 55.3 +/- 2.4 68.1 +/-2.4 | 0.14+/-0.14 | 2000 +/-60 | 2.94 +/-0.5
Electrical cable with PVC (CORH 8.4 +/- 1.07 52.4+/-20 | 0.14+/-0.14 | 1768 +/-39| 51.1+/-1.9
Real scale fires Hydraulic oil (FES) 10.3 +/- 0.4 47.3 0.17 +/-0.17 | 1665 +/- 164| 77.1 +/-1.8
Gloves box (SATURNE) 6.2 +/- 0.6 41.8 0.20 +/-0.18 | 1749 +/-82| 43.8+/-0.%
Gloves box (DIVA) 48.1 +/- 3.41 29.2 0.14 +/- 0.14 | 2069 +/- 35 5.48

TSoot containing significant 420, content’ 'Soot containing significant metal contémthen not available, £was assumed as mean value of measusged C
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Annex |: computation of uncertainty associated to gecific surface area determined by TEM images

analysis

The uncertainty

associated to the specific surface arga,$letermined by TEM analysis and

the Bau et al.’s model (2010) is computed accorthntpe variances’ propagation law:

6

Sem= 1- Cy
pp PP
2 2 2 2
2_ d°Stem d“Stem 2 d°Stem
u =——. u + .uD +———.uC
Srem a2, pp D2y pp a2, oV
d*Srem _ 6 2
iz - T 1- Cy
pp pp-~PP
d*Srem 6 2
= - —. 1- .C ,
dD D ov
pp pp'-PP
d*Srem - __6& 2
dc3, opDpp

The uncertainty associated to the overlapping @oefit

variances’ propagation law applied to the defimitaf C,:

COV_ 1" COV, p 2
2, 2 2,
2_dCoy 2 d°Coy 2 d°Coy 2
u Cov - 2 + u Cov 2 u ’
d?f 1 dGv,p P d3 2
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with T # and ¢ #%"##%.

(eq. Al-1)

(eq. Al-2)

(eq. Al-3)

(eq. Al-4)

(eq. Al-5)

is computed according to the

(eq. Al-6)

(eq. Al-7)

(eq. Al-8)








