A New Theoretical Framework for Characterizing the Transport of Liquid in Turbulent Two-Phase Flows

Abstract : When a liquid stream is injected into a gaseous atmosphere, it destabilizes and continuously passes through different states characterized by different morphologies. Throughout this process, the flow dynamics may be different depending on the region of the flow and the scales of the involved liquid structures. Exploring this multi-scale, multi-dimensional phenomenon requires some new theoretical tools, some of which need yet to be elaborated. In the present study, an innovative general framework is established by transposing the machinery of two-point statistical analysis to a relevant metric of liquid-gas flows (the liquid volume fraction). This allows distinguishing the transport of liquid which occurs in geometrical space (i.e. from one position in the flow to the other) and the one occurring in scale space (e.g. from large to small scales). These equations are exact and do not rely on any particular assumptions. The notion of scale is explicit and unambiguously defined. They further apply to the entire flow field, from the injection to the spray dispersion zone and irrespectively of the flow configuration or regime. This new set of equations is here invoked to characterize the air-assisted atomization of a planar liquid layer simulated by means of Direct Numerical Simulation using the ARCHER code.
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal-normandie-univ.archives-ouvertes.fr/hal-02271685
Contributeur : Christophe Dumouchel <>
Soumis le : vendredi 13 septembre 2019 - 13:32:35
Dernière modification le : lundi 16 septembre 2019 - 10:14:22

Fichier

ILASS_2019_paper.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-02271685, version 1

Citation

Fabien Thiesset, Thibaut Ménard, Christophe Dumouchel. A New Theoretical Framework for Characterizing the Transport of Liquid in Turbulent Two-Phase Flows. ILASS-Europe, Sep 2019, Paris, France. ⟨hal-02271685⟩

Partager

Métriques

Consultations de la notice

44

Téléchargements de fichiers

26