L. S. Weinstein, S. Yu, D. R. Warner, and J. Liu, Endocrine manifestations of stimulatory G protein alphasubunit mutations and the role of genomic imprinting, Endocr. Rev, vol.22, pp.675-705, 2001.

H. Juppner, The genetic basis of progressive osseous heteroplasia, N. Engl. J. Med, vol.346, pp.128-130, 2002.

M. Lebrun, N. Richard, and G. Abeguile, Progressive osseous heteroplasia: a model for the imprinting effects of GNAS inactivating mutations in humans, J. Clin. Endocrinol. Metab, vol.95, pp.3028-3038, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00480041

E. M. Shore, J. Ahn, J. De-beur, and S. , Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia, N. Engl. J. Med, vol.346, pp.99-106, 2002.

B. E. Hayward, M. Kamiya, and L. Strain, The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.10038-10043, 1998.

A. Linglart, R. C. Gensure, R. C. Olney, H. Juppner, and M. Bastepe, A novel STX16 deletion in autosomal dominant pseudohypoparathyroidism type Ib redefines the boundaries of a cis-acting imprinting control element of GNAS, Am. J. Hum. Genet, vol.76, pp.804-814, 2005.

F. M. Elli, L. De-sanctis, and E. Peverelli, Autosomal dominant pseudohypoparathyroidism type Ib: a novel inherited deletion ablating STX16 causes loss of imprinting at the A/B DMR, J. Clin. Endocrinol. Metab, vol.99, pp.724-728, 2014.

M. Bastepe, L. F. Frohlich, and G. N. Hendy, Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS, J. Clin. Invest, vol.112, pp.1255-1263, 2003.

G. Grigelioniene, P. I. Nevalainen, and M. Reyes, A large inversion involving GNAS exon A/B and all exons encoding Gsalpha is associated with autosomal dominant Pseudohypoparathyroidism Type Ib (PHP1B), Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, vol.32, pp.776-783, 2017.

E. Fernandez-rebollo, B. Garcia-cuartero, and I. Garin, Intragenic GNAS deletion involving exon A/B in pseudohypoparathyroidism type 1A resulting in an apparent loss of exon A/B methylation: potential for misdiagnosis of pseudohypoparathyroidism type 1B, J. Clin. Endocrinol. Metab, vol.95, pp.765-771, 2010.

M. Bastepe, L. F. Frohlich, and A. Linglart, Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib, Nat. Genet, vol.37, pp.25-27, 2005.

S. Chillambhi, S. Turan, D. Y. Hwang, H. C. Chen, H. Juppner et al., Deletion of the noncoding GNAS antisense transcript causes pseudohypoparathyroidism type Ib and biparental defects of GNAS methylation in cis, J. Clin. Endocrinol. Metab, vol.95, pp.3993-4002, 2010.

N. Richard, G. Abeguile, and N. Coudray, A new deletion ablating NESP55 causes loss of maternal imprint of A/B GNAS and autosomal dominant pseudohypoparathyroidism type Ib, J. Clin. Endocrinol. Metab, vol.97, pp.863-867, 2012.

E. Fernandez-rebollo, P. De-nanclares, G. Lecumberri, and B. , Exclusion of the GNAS locus in PHP-Ib patients with broad GNAS methylation changes: evidence for an autosomal recessive form of PHP-Ib?, Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, vol.26, pp.1854-1863, 2011.

M. Bastepe, A. H. Lane, and H. Juppner, Paternal uniparental isodisomy of chromosome 20q-and the resulting changes in GNAS1 methylation-as a plausible cause of pseudohypoparathyroidism, Am. J. Hum. Genet, vol.68, pp.1283-1289, 2001.

M. Bastepe, O. Altug-teber, C. Agarwal, S. E. Oberfield, M. Bonin et al., Bone, vol.48, pp.659-662, 2011.

A. Dixit, K. E. Chandler, and M. Lever, Pseudohypoparathyroidism type 1b due to paternal uniparental disomy of chromosome 20q, J. Clin. Endocrinol. Metab, vol.98, pp.103-111, 2013.

E. Fernandez-rebollo, B. Lecumberri, and I. Garin, New mechanisms involved in paternal 20q disomy associated with pseudohypoparathyroidism, European Journal of Endocrinology/ European Federation of Endocrine Societies, vol.163, pp.953-962, 2010.

H. Y. Jin, B. H. Lee, and J. H. Choi, Clinical characterization and identification of two novel mutations of the GNAS gene in patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism, Clin. Endocrinol, vol.75, pp.207-213, 2011.

H. S. Park, C. G. Kim, N. Hong, S. J. Lee, D. H. Seo et al., Osteosarcoma in a patient with pseudohypoparathyroidism type 1b due to paternal uniparental disomy of chromosome 20q, Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, vol.32, pp.770-775, 2017.

R. Takatani, M. Minagawa, and A. Molinaro, Similar frequency of paternal uniparental disomy involving chromosome 20q (patUPD20q) in Japanese and Caucasian patients affected by sporadic pseudohypoparathyroidism type Ib (sporPHP1B), Bone, vol.79, pp.15-20, 2015.

B. Lecumberri, E. Fernandez-rebollo, and L. Sentchordi, Coexistence of two different pseudohypoparathyroidism subtypes (Ia and Ib) in the same kindred with independent Gs{alpha} coding mutations and GNAS imprinting defects, J. Med. Genet, vol.47, pp.276-280, 2010.

Z. Alsum, A. Safieh, L. Nygren, A. O. , A. et al., Methylation-specific multiplex-ligation-dependent probe amplification as a rapid molecular diagnostic tool for pseudohypoparathyroidism type 1b, Genetic Testing and Molecular Biomarkers, vol.14, pp.135-139, 2010.

F. M. Elli, P. Bordogna, M. Arosio, A. Spada, and G. Mantovani, Mosaicism for GNAS methylation defects associated with pseudohypoparathyroidism type 1B arose in early post-zygotic phases, Clin. Epigenetics, vol.10, 2018.

C. R. Newton, A. Graham, and L. E. Heptinstall, Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS), Nucleic Acids Res, vol.17, pp.2503-2516, 1989.

H. Juppner, E. Schipani, and M. Bastepe, The gene responsible for pseudohypoparathyroidism type Ib is paternally imprinted and maps in four unrelated kindreds to chromosome 20q13.3, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.11798-11803, 1998.

S. Mulchandani, E. J. Bhoj, and M. Luo, Maternal uniparental disomy of chromosome 20: a novel imprinting disorder of growth failure, Genetics in Medicine: Official Journal of the American College of Medical Genetics, vol.18, pp.309-324, 2016.

S. Kawashima, A. Nakamura, and T. Inoue, Maternal uniparental disomy for chromosome 20: physical and endocrinological characteristics of five patients, J. Clin. Endocrinol. Metab, vol.103, pp.2083-2088, 2018.

T. Eggermann, S. Mergenthaler, and K. Eggermann, Identification of interstitial maternal uniparental disomy (UPD) (14) and complete maternal UPD(20) in a cohort of growth retarded patients, J. Med. Genet, vol.38, pp.86-89, 2001.

A. Linglart, M. Bastepe, and H. Juppner, Similar clinical and laboratory findings in patients with symptomatic autosomal dominant and sporadic pseudohypoparathyroidism type Ib despite different epigenetic changes at the GNAS locus, Clin. Endocrinol, vol.67, pp.822-831, 2007.

P. Hanna, V. Grybek, P. De-nanclares, and G. , Genetic and epigenetic defects at the GNAS locus lead to distinct patterns of skeletal growth but similar early-onset obesity, Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 2018.

A. Gruters-kieslich, M. Reyes, and A. Sharma, Early-onset obesity: unrecognized first evidence for GNAS mutations and methylation changes, J. Clin. Endocrinol. Metab, vol.102, pp.2670-2677, 2017.

D. Kotzot, Complex and segmental uniparental disomy updated, J. Med. Genet, vol.45, pp.545-556, 2008.

S. Maupetit-mehouas, V. Mariot, and C. Reynes, Quantification of the methylation at the GNAS locus identifies subtypes of sporadic pseudohypoparathyroidism type Ib, J. Med. Genet, vol.48, pp.55-63, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00579025

F. M. Elli, A. Linglart, and I. Garin, The prevalence of GNAS deficiency-related diseases in a large cohort of patients characterized by the EuroPHP network, J. Clin. Endocrinol. Metab, vol.101, pp.3657-3668, 2016.

F. Court, A. Martin-trujillo, and V. Romanelli, Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes, Hum. Mutat, vol.34, pp.595-602, 2013.

T. Eggermann, M. Elbracht, and C. Schroder, Congenital imprinting disorders: a novel mechanism linking seemingly unrelated disorders, J. Pediatr, vol.163, pp.1202-1207, 2013.

J. Bliek, G. Verde, and J. Callaway, Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome, European Journal of Human Genetics: EJHG, vol.17, pp.611-619, 2009.

B. Bakker, L. J. Sonneveld, M. C. Woltering, H. Bikker, and S. G. Kant, A girl with Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type 1B due to multiple imprinting defects, J. Clin. Endocrinol. Metab, vol.100, pp.3963-3966, 2015.

G. Kelsey, Imprinting on chromosome 20: tissue-specific imprinting and imprinting mutations in the GNAS locus, Am. J. Med. Genet. C: Semin. Med. Genet, vol.154, pp.377-386, 2010.

E. Engel and C. D. Delozier-blanchet, Uniparental disomy, isodisomy, and imprinting: probable effects in man and strategies for their detection, Am. J. Med. Genet, vol.40, pp.432-439, 1991.

T. Tucker, K. Schlade-bartusiak, P. Eydoux, T. N. Nelson, and L. Brown, Uniparental disomy: can SNP array data be used for diagnosis? Genetics in Medicine: Official Journal of the American College of, Medical Genetics, vol.14, pp.753-756, 2012.

I. Chudoba, Y. Franke, and G. Senger, Maternal UPD 20 in a hyperactive child with severe growth retardation, European Journal of Human Genetics: EJHG, vol.7, pp.533-540, 1999.

V. Velissariou, T. Antoniadi, and J. Gyftodimou, Maternal uniparental isodisomy 20 in a foetus with trisomy 20 mosaicism: clinical, cytogenetic and molecular analysis, European Journal of Human Genetics: EJHG, vol.10, pp.694-698, 2002.

K. Matsubara and T. Ogata, Advanced maternal age at childbirth and the development of uniparental disomy. A commentary on the proportion of uniparental disomy is increased in Prader-Willi syndrome due to an advanced maternal childbearing age in Korea, J. Hum. Genet, vol.58, pp.118-119, 2013.

, Author manuscript; available in PMC, Bone, 2019.

. Colson, , p.16