Photometric Segmentation: Simultaneous Photometric Stereo and Masking

Bjoern Haefner 1 Yvain Quéau 2 Daniel Cremers 1
2 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : This work is concerned with both the 3D-reconstruction of an object using photometric stereo, and its 2D-segmentation from the background. In contrast with previous works on photometric stereo which assume that a mask of the area of interest has been computed beforehand, we formulate 3D-reconstruction and 2D-segmentation as a joint problem. The proposed variational solution combines a differential formulation of photometric stereo with the classic Chan-Vese model for active contours. Given a set of photometric stereo images, this solution simultaneously infers a binary mask of the object of interest and a depth map representing its 3D-shape. Experiments on real-world datasets confirm the soundness of simultaneously solving both these classic computer vision problems, as the joint approach considerably simplifies the overall 3D-scanning process for the end-user.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal-normandie-univ.archives-ouvertes.fr/hal-02266352
Contributeur : Yvain Queau <>
Soumis le : mercredi 14 août 2019 - 08:19:17
Dernière modification le : mardi 19 novembre 2019 - 11:25:08

Fichier

haefner20193dv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Bjoern Haefner, Yvain Quéau, Daniel Cremers. Photometric Segmentation: Simultaneous Photometric Stereo and Masking. International Conference on 3D Vision (3DV 2019), Sep 2019, Québec, Canada. ⟨10.1109/3DV.2019.00033⟩. ⟨hal-02266352⟩

Partager

Métriques

Consultations de la notice

79

Téléchargements de fichiers

181