, 127.8 (C), 125.1 (C), 59.8 (CH3), vol.134

, 36.0 (CH2), 21.3 (CH3), 17.9 (CH3), 17.6 (CH3). ESI + -HRAM: m/z calculated for

+. , , p.149190, 1195.

, Following the general procedure D from 3-(prop-1-en-1-yl)-1,2,4-triazine 1m (36 mg, 0.30 mmol) and Nmethoxypropargylamine 2g (40 µL, 0.45 mmol, 1.5 equiv) for 5 days at room temperature (TLC monitoring in 7:3 petroleum ether/EtOAc), the title compound was obtained as a lightyellow oil (15 mg, 0.08 mmol, vol.1, p.1

. Etoac, Rf = 0.3). 1 H NMR (250 MHz, dimethylsulfoxide-d6, 80 °C): ?H 8.38 -8.28 (m, 2H), 7.53 -7.41 (m, 1H)

. Hz, Hz, 1H), 1.25 (d, J = 6.3 Hz, 3H). 13 C{ 1 H} NMR (63 MHz, dimethylsulfoxide-d6, 80 °C): ?C 153.6 (C), J =, vol.17, issue.6, pp.120-127

+. , , 1032.

, Following the general procedure D from 5-phenyl-3-(prop-1-en-1-yl)-1,2,4-triazine 1b (59 mg, 0.30 mmol) and O-benzyl-N-propargylhydroxylamine 2h (73 mg, 0.45 mmol, 1.5 equiv.) for 19 hours at room temperature (TLC monitoring in 4:1 petroleum ether/EtOAc), the title compound was obtained as a beige solid (30 mg, 30% yield) after silica gel column chromatography (dry loading, vol.80

, Following the general procedure E from 6-methoxy-7-pentyl-2-phenyl-5,6,7,8-tetrahydro-1,6-naphthyridine 4e (93 mg, 0.5 mmol) for 10 hours, the title compound was obtained as a light-orange oil (65 mg, 78% yield) after silica gel column chromatography (eluent = EtOAc, ESI + -HRAM: m/z calculated for, vol.3036, p.400, 1025.

. Mhz, 25 mmol) for 8 hours, the title compound was obtained as a yellow oil (38 mg, 70% yield) after silica gel column chromatography (eluent = 4:1 EtOAc/EtOH, Rf = 0.2). 1 H NMR (400 MHz, chloroform-d): ?H 7.99 -7.90 (m, 2H), 7.51 -7.40 (m, 3H), 7.42 -7.33 (m, 2H), 4.10 (d, J = 16.5 Hz, 1H), 4.06 (d, J = 16.5 Hz, 1H) 3.09 (dd, J = 16.9, 4.0 Hz, 1H), 2.98 (ddd, J = 10.5, 6.6, 4.0 Hz, 1H), 2.69 (dd, J = 16, vol.9

, chloroform-d): ?C 156.6 (C), 146.1 (q, 2 JC-F = 34, C{ 1 H} NMR (101 MHz, pp.134-143

, 134.1 (C), 121.7 (q, 1 JC-F = 274.0 Hz, CF3), 117.8 (q, 3 JC-F = 2.8 Hz, CH), 49.4 (CH), 47.6 (CH2), 40.5 (CH2), 22.3 (CH3). ESI + -HRAM: m/z

D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W. Thomas et al., Organic synthesis provides opportunities to transform drug discovery, Nat. Chem, p.383, 2018.

R. D. Taylor, M. Maccoss, A. D. Lawson, T. J. Ritchie, S. J. Macdonald et al., The impact of aromatic ring count on compound developability: further insights by examining carbo-and hetero-aromatic andaliphatic ring types, Drug Discovery Today, vol.57, p.164, 2011.

K. Hoegenauer, N. Soldermann, F. Zécri, R. S. Strang, N. Graveleau et al., Improvement in Aqueous Solubility in Small Molecule Drug Discovery Programs by Disruption of Molecular Planarity and Symmetry, Discovery of CDZ173 (Leniolisib), vol.8, p.1539, 2011.

P. Schneider and G. Schneider, Privileged Structures Revisited, Angew. Chem. Int

F. Lovering, J. Bikker, C. Humblet, and F. Lovering, Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success, J. Med. Chem, vol.56, issue.5, p.6752, 2009.

. J. Enantioselective-catalysis, . Org, . Chem, E. Badarau, R. Bugno et al., To the best of our knowledge only one study briefly mentioned the use of 3-vinyl-1,2,4-triazine in an aza-Michael reaction, 79, 831. (b) For reviews on conjugated addition reaction to alkenylazaarenes, see: Klumpp, D. A. Conjugate Additions to Vinyl-Substituted Aromatic N-Heterocycles. Synlett, vol.23, p.1590, 1958.

A. and R. ,

K. Ed, , 2010.

R. A. Foster, M. C. Willis, D. L. Boger, G. Duret, V. Le-fouler et al., Tandem inverse-electron-demand hetero-/retro-Diels-Alder reactions for aromatic nitrogen heterocycle synthesis, Eur. J. Org. Chem, vol.100, issue.75, p.6816, 1983.

, Organocatalyzed Thia-Michael Addition and Sequential Inverse Electron Demanding Diels-Alder Reaction to 3-Vinyl-1,2,4-triazine Platforms, Adv. Synth. Catal, vol.359, p.4106, 2017.

J. Jouha, F. Buttard, M. Lorion, C. Berthonneau, M. Khouili et al., ) (a) Platform 1 affords a new manifold in the field of the intramolecular ihDA/rDA reaction of 1,2,4-triazines towards the construction of original fused-pyridine derivatives, Archiv der Pharmazie, vol.19, issue.9, p.1807, 1984.

F. Haenel, R. John, G. Seitz, D. Branowska, S. Ostrowski et al., Tandem Vicarious Nucleophilic Substitution of Hydrogen/Intramolecular Diels–Alder Reaction of 1,2,4-Triazines into Functionalized Cycloalkenopyridines, Archiv der Pharmazie, vol.325, p.10181, 1992.

Y. Hajbi, F. Suzenet, M. Khouili, S. Lazar, and G. Guillaumet, 3-b]pyridines and 3,4-dihydro-2H-pyrano[2,3-b]pyridines via microwaveactivated inverse electron demand Diels-Alder reactions, Tetrahedron, vol.2, p.8286, 2007.

I. Akritopoulou-zanze, Y. Wang, H. Zhao, S. W. Djuric, Y. Hajbi et al., A Straightforward Approach to Substituted 2-(Hydroxymethyl)-2,3-dihydrofuro[2,3-b]pyridines and 3-Hydroxy-3,4-dihydro-2H-pyrano[2,3-b]pyridines. Synthesis, Synthesis of substituted fused pyridines, pyrazines and pyrimidines by sequential Ugi/inverse electron demand Diels-Alder transformations, vol.50, p.12430, 2009.

U. Shah, C. M. Lankin, C. D. Boyle, S. Chackalamannil, W. J. Greenlee et al., Design, synthesis, and evaluation of fused heterocyclic analogs of SCH 58261 as adenosine A2A receptor antagonists, Angew. Chem. Int. Ed, vol.55, 2016.

M. Kono, A. Ochida, T. Oda, T. Imada, Y. Banno et al., Chem. Lett, vol.18, p.4204, 2008.

, 2-methoxy-7,8-dihydro-1,6-naphthyridin-6(5H)-yl}carbonyl)cyclobutyl]acetic

R. J. Johnson, D. J. O'mahony, W. T. Edwards, M. A. Duncton, M. K. Jackl et al., A concise one-pot synthesis of trifluoromethyl-containing 2,6-disubstituted 5,6,7,8-tetrahydroquinolines and 5,6,7,8-tetrahydronaphthyridines, Acid (TAK-828F) as a Potent, Selective, and Orally Available Novel Retinoic Acid Receptor-Related Orphan Receptor ?t Inverse Agonist, vol.18, p.446, 2013.

K. Yoshiizumi, M. Yamamoto, T. Miyasaka, Y. Ito, H. Kumihara et al., Synthesis and structure-Activity relationships of 5,6,7,8-Tetrahydropyrido[3,4-b]pyrazine-based hydroxamic acids as HB-EGF shedding inhibitors, Bioorg. Med. Chem. Lett, vol.11, p.433, 2003.

D. Cruz, Z. Wang, J. Kibbie, R. Modlin, O. Kwon et al., Diversity through phosphine catalysis identifies octahydro-1,6-naphthyridin-4-ones as activators of endothelium-driven immunity, Proc. Nalt. Acad. Sci. 2011, 108, 6769. (f), vol.32, p.2522, 1984.

S. Commun-;-vanlaer, A. Voet, C. Gielens, M. De-maeyer, F. Compernolle et al., Organocatalytic Enantioselective Direct Additions of Aldehydes to 4-Vinylpyridines and Electron-Deficient Vinylarenes and Their Synthetic Applications, Angew. Chem. Int. Ed, vol.31, issue.14, p.927, 2001.

A. Baschieri, L. Bernardi, A. Ricci, S. Suresh, M. F. Adamo et al., Enantioselective 1,6-Michael addition of anthrone to 3-methyl-4-nitro-5-alkenylisoxazoles catalyzed by bifunctional thiourea-tertiary amines, Angew. Chem. Int. Ed, vol.48, p.3991, 2009.

Q. Pei, H. Sun, Z. Wu, X. Du, X. Zhang et al., (b) For an insightful pioneer investigation of aza-Michael reaction to vinylpyridine mentioning the use of metal or base/acid promoters, see: Reich, H. E.; Levine, R. The Pyridylethylation of Active Hydrogen Compounds. IV. The Acid-catalyzed Pyridylethylation of Primary Amines, 76, 7849. (16) For a recent catalytic sulfa-Michael addition to alkenyl benzimidazoles, vol.9, p.3228, 1955.

C. Xu, C. W. Muir, A. G. Leach, A. R. Kennedy, A. J. Watson et al., As first hypothesis, from either a thermodynamic point of view or for the ability to activate the vinyl moiety, the protonation of N 2 of the vinyltriazines might be favored, Journal of Molecular Structure: THEOCHEM, vol.23, issue.22, p.135, 1211.

F. Alphonse, F. Suzenet, A. Keromnes, B. Lebret, G. Guillaumet et al., Copper(I)-Promoted Palladium-Catalyzed Cross-Coupling of Unsaturated Tri-n-butylstannane with Heteroaromatic Thioether, J. Am. Chem. Soc, vol.122, issue.24, p.8375, 2000.

D. Shi, J. R. Harjani, R. W. Gable, and J. B. Baell, Synthesis of 3-(Alkylamino)-, 3-(Alkoxy)-, 3-(Aryloxy)-, 3-(Alkylthio)-, and 3-(Arylthio)-1,2,4-triazines by Using a Unified Route with 3-(Methylsulfonyl)-1,2,4-triazine, Eur. J. Org. Chem, p.2842, 2016.

R. W. Gantt, R. D. Goff, G. J. Williams, J. S. Thorson, J. J. Shrikhande et al., A catalyst-free Nbenzyloxycarbonylation of amines in aqueous micellar media at room temperature, Angew. Chem. Int. Ed, vol.47, p.4799, 2008.

G. Gros, L. Martinez, A. S. Gimenez, P. Adler, P. Maurin et al., Modular construction of quaternary hemiaminal-based inhibitor candidates and their in cellulo assessment with HIV-1 protease, Bioorg. Med. Chem, p.5407, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01121305

Y. D. Wang, G. Kimball, A. S. Prashad, and Y. Wang, Zr-Mediated hydroboration: stereoselective synthesis of vinyl boronic esters, Tetrahedron Lett, vol.46, p.8777, 2005.

H. Miyabe, R. Asada, and Y. Takemoto, Cascade radical reaction of substrates with a carbon-carbon triple bond as a radical acceptor, Beilstein J. Org. Chem, vol.9, p.82, 1977.