A. Baeyer, Mittheilungen aus dem organischen Laboratorium des Gewerbeinstitutes in Berlin: Untersuchungen über die Harnsäuregruppe, vol.1864, pp.129-175

E. Fischer and M. Von, New class of narcotics, Ther. Ggw, vol.44, pp.97-101, 1903.

N. Moussier, L. Bruche, F. Viani, and M. Zanda, Fluorinated Barbituric Acid Derivatives: Synthesis and Bio-activity, Curr. Org. Chem, vol.7, pp.1071-1080, 2003.

J. T. Bojarski, J. L. Mokrosz, H. J. Barton, and M. H. Paluchowska, Recent progress in barbituric acid chemistry, Adv. Heterocycl. Chem, vol.38, pp.229-297, 1985.

R. G. Sans and M. G. Chozas, Historical aspects and applications of barbituric acid derivatives. A review, Pharmazie, vol.43, pp.827-829, 1988.

K. Nikoofar and Z. Khademi, Barbituric Acids in Organic Transformations, An Outlook to the Reaction Media, Mini-Rev. Org. Chem, vol.14, pp.143-173, 2017.

M. Bialer, How did phenobarbital's chemical structure affect the development of subsequent antiepileptic drugs (AEDs)? Epilepsia, vol.53, pp.3-11, 2012.

A. Renard, J. Lhomme, and M. Kotera, Synthesis and Properties of Spiro Nucleosides Containing the Barbituric Acid Moiety, J. Org. Chem, vol.67, pp.1302-1307, 2002.

S. Kim, A. T. Pudzianowski, K. J. Leavitt, J. Barbosa, P. A. Mcdonnell et al., Structure-based design of potent and selective

, Bioorg. Med. Chem. Lett, vol.15, pp.1101-1106, 2005.

R. J. Fessenden, J. G. Larsen, M. D. Coon, and J. S. Fessenden, Silicon Heterocyclic Compounds. III. Silicon-Substituted Spirobarbiturates, J. Med. Chem, vol.7, pp.695-698, 1964.

J. J. Duan, L. Chen, Z. Lu, B. Jiang, N. Asakawa et al., Discovery of low nanomolar non-hydroxamate inhibitors of tumor necrosis factor-? converting enzyme (TACE), Bioorg. Med. Chem. Lett, vol.17, pp.266-271, 2007.

V. N. Ingle, P. K. Gaidhane, S. S. Dutta, P. P. Naha, and M. S. Sengupta, Synthesis of Novel Galactopyranosyl-Derived Spiro Barbiturates, J. Carbohydr. Chem, vol.25, pp.661-671, 2006.

S. V. Hese, R. J. Meshram, R. D. Kamble, P. P. Mogle, K. K. Patil et al., Antidiabetic and allied biochemical roles of new chromeno-pyrano pyrimidine compounds: Synthesis, in vitro and in silico analysis, Med. Chem. Res, vol.26, pp.805-818, 2017.

P. N. Kalaria, S. P. Satasia, and D. K. Raval, Synthesis, characterization and biological screening of novel 5-imidazopyrazole incorporated fused pyran motifs under microwave irradiation, New J. Chem, vol.38, pp.1512-1521, 2014.

R. F. Gomes, J. A. Coelho, and C. A. Afonso, Synthesis and Applications of Stenhouse Salts and Derivatives, Chem. Eur. J, vol.24, pp.9170-9186, 2018.

G. Mohammadi-ziarani, F. Aleali, and N. Lashgari, Recent applications of barbituric acid in multicomponent reactions, RSC Adv, vol.6, pp.50895-50922, 2016.

A. Schade, K. Schreiter, T. Rüffer, H. Lang, and S. Spange, Interactions of Enolizable Barbiturate Dyes, Chem. Eur. J, vol.22, pp.5734-5748, 2016.

R. M. Shaker and E. A. Ishak, Barbituric acid utility in multicomponent reactions, Z. Naturforsch. B J. Chem. Sci, vol.66, pp.1189-1201, 2011.

J. Bojarski, Chiral barbiturates: Synthesis, chromatographic resolutions, and biological activity, Chem. Anal, vol.142, pp.201-234, 1997.

H. Brunner, I. Deml, W. Dirnberger, B. Nuber, and W. Reißer, Enantioselective Palladium-Catalysed Allylation of 1,5-Dimethylbarbituric Acid, Eur. J. Inorg. Chem, 1998.

H. Brunner and J. Fürst, Enantioselective allylation of 1,5-dimethylbarbituric acid with Pd catalysts and new optically active PN ligands, Inorg. Chim. Acta, vol.220, pp.63-66, 1994.

H. Brunner, I. Deml, W. Dirnberger, K. Ittner, W. Reißer et al., Synthesis of the Stereoisomers of Methohexital by Palladium-Catalyzed Allylation, Eur. J. Inorg. Chem, 1999.

H. Brunner and T. Rückert, Enantioselektive Katalyse, 121. Mitt, Chirale Phosphanliganden mit zusätzlichen Sauerstoffunktionalitäten, vol.129, pp.339-354, 1998.

F. G. Bordwell, Equilibrium acidities in dimethyl sulfoxide solution, Acc. Chem. Res, vol.21, pp.456-463, 1988.

E. Pair, T. Cadart, V. Levacher, and J. Brière, Meldrum's Acid: A Useful Platform in Asymmetric Organocatalysis, ChemCatChem, vol.8, pp.1882-1890, 2016.

A. M. Dumas and E. Fillion, Meldrum's Acids and 5-Alkylidene Meldrum's Acids in Catalytic Carbon?Carbon Bond-Forming Processes, Acc. Chem. Res, vol.43, pp.440-454, 2009.

T. Bug and H. Mayr, Nucleophilic Reactivities of Carbanions in Water: The Unique Behavior of the Malodinitrile Anion, J. Am. Chem. Soc, vol.125, pp.12980-12986, 2003.

A. Schade, I. Tchernook, M. Bauer, A. Oehlke, M. Breugst et al., Kinetics of Electrophilic Alkylations of Barbiturate and Thiobarbiturate Anions, J. Org. Chem, vol.82, pp.8476-8488, 2017.

F. Seeliger, S. T. Berger, G. Y. Remennikov, K. Polborn, and H. Mayr, Electrophilicity of 5-Benzylidene-1,3-dimethylbarbituric and -thiobarbituric Acids, J. Org. Chem, vol.72, pp.9170-9180, 2007.

B. M. Trost and G. M. Schroeder, Palladium-Catalyzed Asymmetric Allylic Alkylation of Barbituric Acid Derivatives: Enantioselective Syntheses of Cyclopentobarbital and Pentobarbital, J. Org. Chem, vol.65, pp.1569-1573, 2000.

S. Del-pozo, S. Vera, M. Oiarbide, and C. Palomo, Catalytic Asymmetric Synthesis of Quaternary Barbituric Acids, J. Am. Chem. Soc, vol.139, pp.15308-15311, 2017.

B. M. Trost and D. L. Van-vranken, Asymmetric Transition Metal-Catalyzed Allylic Alkylations, Chem. Rev, vol.96, pp.395-422, 1996.

M. Rombola, C. S. Sumaria, T. D. Montgomery, V. H. Rawal, and . Development, Bifunctional Thiosquaramides: Enantioselective Michael Additions of Barbituric Acids to Nitroalkenes, J. Am. Chem. Soc, vol.139, pp.5297-5300, 2017.

Y. Liu, Y. Zhang, H. Duan, D. Wanyan, and Y. Wang, Enantioselective organocatalytic Michael additions of N,N -dialkylbarbituric acids to enones, Org. Biomol. Chem, vol.15, pp.8669-8679, 2017.

J. Zhang, G. Yin, Y. Du, Z. Yang, Y. Li et al., Addition Reactions Promoted by Secondary Amine-Thiourea: Stereocontrolled Construction of Barbiturate-Fused Tetrahydropyrano Scaffolds and Pyranocoumarins, J. Org. Chem, vol.82, pp.13594-13601, 2017.

Y. Zhu, Z. Wang, J. Zhang, J. Yu, L. Yan et al., An Organocatalytic Synthesis of Chiral Pyrano[2,3-d]pyrimidines through [3 + 3] Annulation of 1,3-Dimethyl-barbituric Acid with 2-(1-Alkynyl)-2-alken-1-ones, Eur. J. Org. Chem, pp.347-354, 2018.

S. Reddy|chidipudi, D. J. Burns, I. Khan, and H. W. Lam, Enantioselective Synthesis of Spiroindenes by Enol-Directed Rhodium(III)-Catalyzed C-H Functionalization and Spiroannulation, Angew. Chem. Int. Ed, vol.54, pp.13975-13979, 2015.

H. Zhao, T. Tian, B. Li, Z. Yang, H. Pang et al., Diastereoselective Synthesis of Dispirobarbiturates through Et3N-Catalyzed [3 + 2] Cycloaddition of Barbiturate-Based Olefins with 3-Isothiocyanato Oxindoles, J. Org. Chem, vol.80, pp.10380-10385, 2015.

H. Zhao, T. Tian, H. Pang, B. Li, X. Chen et al., Organocatalytic [3 + 2] Cycloadditions of Barbiturate-Based Olefins with 3-Isothiocyanato Oxindoles: Highly Diastereoselective and Enantioselective Synthesis of Dispirobarbiturates, Adv. Synth. Catal, vol.358, pp.2619-2630, 2016.

S. Frankowski, T. Gajda, and ?. Albrecht, Isothiocyanate Strategy for the Synthesis of Quaternary ?-Amino Acids Bearing a Spirocyclic Ring System, Adv. Synth. Catal, vol.360, pp.1822-1832, 2018.

Y. Liu, W. Yang, Y. Wu, B. Mao, X. Gao et al., Asymmetric Construction of Highly Functionalized Spirobarbiturate-Cyclopentenes through Chiral Phosphine-Catalyzed [3 + 2] Annulation of Morita-Baylis-Hillman Carbonates with Barbiturate-Derived Alkenes, Adv. Synth. Catal, vol.358, pp.2867-2872, 2016.

X. Gao, Z. Li, W. Yang, Y. Liu, W. Chen et al., Phosphine-catalyzed [3 + 2] and [4 + 2] annulation reactions of ynones with barbiturate-derived alkenes, Org. Biomol. Chem, vol.15, pp.5298-5307, 2017.

E. E. Shul'ts, G. N. Andreev, M. M. Shakirov, N. I. Komarova, I. Y. Bagryanskaya et al., Diels-Alder reactions with cyclic sulfones: VIII. Organic catalysis in the synthesis of spiro, Russ. J. Org. Chem, vol.45, pp.87-101, 2009.

H. Liu, Y. Liu, C. Yuan, G. Wang, S. Zhu et al., Enantioselective Synthesis of Spirobarbiturate-Cyclohexenes through Phosphine-Catalyzed Asymmetric [4 + 2] Annulation of Barbiturate-Derived Alkenes with Allenoates, Org. Lett, vol.18, pp.1302-1305, 2016.

H. Zhao, N. Feng, J. Guo, J. Du, W. Ding et al., Diastereoselective and Enantioselective Synthesis of Barbiturate-Fused Spirotetrahydroquinolines via Chiral Palladium(0)/Ligand Complex Catalyzed [4 + 2] Cycloaddition of Vinyl Benzoxazinanones with Barbiturate-Based Olefins, J. Org. Chem, vol.83, pp.9291-9299, 2018.

D. Bhattacharjee, D. Sutradhar, A. K. Chandra, and B. Myrboh, l-proline as an efficient asymmetric induction catalyst in the synthesis of chromeno[2,3-d]pyrimidine-triones, xanthenes in water, Tetrahedron, vol.73, pp.3497-3504, 2017.

Z. Gao, C. Wang, L. Zhou, C. Yuan, Y. Xiao et al., Phosphine-Catalyzed [8 + 2]-Annulation of Heptafulvenes with Allenoates and Its Asymmetric Variant: Construction of Bicyclo, Org. Lett, vol.20, pp.4302-4305, 2018.