Skip to Main content Skip to Navigation
Journal articles

Highly dense and textured superconducting (Bi,Pb)2Sr2Ca2Cu3O10+δ ceramic samples processed by spark-plasma texturing

Abstract : Consolidated powders of the superconducting cuprate Bi1.65Pb0.35Sr2Ca2Cu3O10+δ (Bi-2223) by the spark-plasma texturing (SPT), spark-plasma sintering (SPS), and the traditional solid-state reaction method were investigated by several techniques and their features compared. The results show that SPT samples exhibit a higher degree of texture, as inferred by a Lotgering factor of ∼0.73 along the [00l] direction and a relative density of 96% of the theoretical value. From magnetic hysteresis loops M vs. H at 5 K, the intragranular critical current densities along two applied magnetic field orientations, Jc0c and Jc0ab, relative to the compacting pressure direction, were determined. The anisotropy factor, γJ=Jc0ab/Jc0c, yielded an estimate of ∼2 in the SPS sample and ∼19 for samples obtained via the SPT method. In the latter samples, Jc0c at 5 K is close to 1.3×108 A/cm2, a value higher than others found for the same compound. The temperature dependence of the electrical resistivity, ρ(T), analyzed within the framework of a current conduction model for granular superconductors, supports the higher degree of texture of SPT samples and indicates changes in the oxygen content when samples are subjected to a post-annealing heat treatment. All the results reveal the promising capabilities of the SPT method for improving volume density, texture, and grain boundary connectivity of superconducting Bi-2223 materials. © 2016 Elsevier Ltd and Techna Group S.r.l.
Complete list of metadata
Contributor : Université Normandie <>
Submitted on : Tuesday, July 16, 2019 - 11:33:14 AM
Last modification on : Friday, August 30, 2019 - 6:04:03 PM



L. Pérez-Acosta, E. Govea-Alcaide, J.G. Noudem, I.F. Machado, S.H. Masunaga, et al.. Highly dense and textured superconducting (Bi,Pb)2Sr2Ca2Cu3O10+δ ceramic samples processed by spark-plasma texturing. Ceramics International, Elsevier, 2016, 42 (11), pp.13248-13255. ⟨10.1016/j.ceramint.2016.05.122⟩. ⟨hal-02184771⟩



Record views