L. Méric, G. Cailletaud, M. Gaspérini, and F. , calculations of copper bicrystal specimens submitted to tensioncompression tests, Acta Metall. Mater, vol.42, issue.3, pp.921-935, 1994.

E. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. Section B, vol.64, issue.9, pp.747-753, 1951.

N. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst, vol.173, pp.25-27, 1953.

H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci, vol.33, issue.4, pp.223-315, 1989.

M. Meyers, A. Mishra, and D. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci, vol.51, issue.4, pp.427-556, 2006.

A. Pineau, A. Benzerga, and T. Pardoen, Failure of metals III: Fracture and fatigue of nanostructured metallic materials, Acta Mater, vol.107, pp.508-544, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01308286

C. Keller, K. Tabalaiev, G. Marnier, J. Noudem, X. Sauvage et al., Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316l stainless steel obtained from ball-milled powder, Mater. Sci. Engng A, vol.665, pp.125-134, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01954247

E. Ma, Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys, JOM, vol.58, issue.4, pp.49-53, 2006.

L. Lu, Ultrahigh strength and high electrical conductivity in copper, Science, vol.304, issue.5669, pp.422-426, 2004.

C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals, Scripta Mater, vol.49, issue.7, pp.657-662, 2003.

S. Cheng, Y. Zhao, Y. Zhu, and E. Ma, Optimizing the strength and ductility of fine structured 2024 al alloy by nano-precipitation, Acta Mater, vol.55, issue.17, pp.5822-5832, 2007.

E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scripta Mater, vol.49, issue.7, pp.663-668, 2003.

G. Dirras, J. Gubicza, S. Ramtani, Q. Bui, and T. Szilágyi, Microstructure and mechanical characteristics of bulk polycrystalline ni consolidated from blends of powders with different particle size, Mater. Sci. Engng A, vol.527, issue.4-5, pp.1206-1214, 2010.

Z. Zhang, S. Vajpai, D. Orlov, and K. Ameyama, Improvement of mechanical properties in SUS304l steel through the control of bimodal microstructure characteristics, Mater. Sci. Engng A, vol.598, pp.106-113, 2014.

H. Azizi-alizamini, M. Militzer, and W. Poole, A novel technique for developing bimodal grain size distributions in low carbon steels, vol.57, pp.1065-1068, 2007.

M. Rao, V. Sarma, and S. Sankaran, Processing of Bimodal Grain-Sized Ultrafine-Grained Dual Phase Microalloyed V-Nb Steel with 1370 MPa Strength and 16 pct Uniform Elongation Through Warm Rolling and Intercritical Annealing, Metall Mater Trans A 45, issue.12, pp.5313-5317, 2014.

B. Flipon, L. Garcia-de-la-cruz, E. Hug, C. Keller, and F. Barbe, Elaboration of austenitic stainless steel with bimodal grain size distribution and investigation of their mechanical behavior, 20th Int. ESAFORM Conf. on Material Forming, pp.26-28, 2017.

S. Shekhar, J. Cai, J. Wang, and M. Shankar, Multimodal ultrafine grain size distributions from severe plastic deformation at high strain rates, Mater. Sci. Engng A, vol.527, pp.187-191, 2009.

K. Kurzyd-lowski and J. Bucki, Flow stress dependence on the distribution of grain size in polycrystals, Acta Metall. Mater, vol.41, issue.11, pp.3141-3146, 1993.

B. Flipon, C. Keller, L. G. De-la-cruz, E. Hug, and F. Barbe, Tensile properties of spark plasma sintered AISI 316L stainless steel with unimodal and bimodal grain size distributions, Mater. Sci. Engng A, vol.729, pp.249-256, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02061657

S. Joshi, K. Ramesh, B. Han, and E. Lavernia, Modeling the Constitutive Response of Bimodal Metals, Metall Mater Trans A, vol.37, pp.2397-2404, 2006.

B. Zhu, R. Asaro, P. Krysl, K. Zhang, and J. Weertman, Effects of grain size distribution on the mechanical response of nanocrystalline metals: Part II, Acta Mater, vol.54, pp.3307-3320, 2006.

L. Zhu and J. Lu, Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution, Int. J. Plasticity, vol.30, pp.166-184, 2012.

G. Weng, The overall elastoplastic stress-strain relations of dual-phase metals, J. Mech. Phys. Sol, vol.38, issue.3, pp.419-441, 1990.

S. Berbenni, V. Favier, and M. Berveiller, Impact of the grain size distribution on the yield stress of heterogeneous materials, Int. J. Plasticity, vol.23, issue.1, pp.114-142, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00128377

G. Weng, A micromechanical theory of grain-size dependence in metal plasticity, J. Mech. Phys. Sol, vol.31, issue.3, pp.193-203, 1983.

S. Ramtani, H. Bui, and G. Dirras, A revisited generalized self-consistent polycrystal model following an incremental small strain formulation and including grain-size distribution effect, Int. J. Engng Sci, vol.47, issue.4, pp.537-553, 2009.

J. Pipard, N. Nicaise, S. Berbenni, O. Bouaziz, and M. Berveiller, A new mean field micromechanical approach to capture grain size effects, Comput. Mater. Sci, vol.45, issue.3, pp.604-610, 2009.

V. Taupin, S. Berbenni, C. Fressengeas, and O. Bouaziz, On particle size effects: An internal length mean field approach using field dislocation mechanics, Acta Materialia, vol.58, issue.16, pp.5532-5544, 2010.

V. Taupin, R. Pesci, S. Berbenni, S. Berveiller, R. Ouahab et al., Lattice strain measurements using synchrotron diffraction to calibrate a micromechanical modeling in a ferritecementite steel, Materials Science and Engineering: A, vol.561, pp.67-77, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00959541

H. Chang, N. Cordero, C. Déprés, M. Fivel, and S. Forest, Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel, Arch. Appl. Mech, vol.86, pp.21-38, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01288962

A. Magee and L. Ladani, Representation of a microstructure with bimodal grain size distribution through crystal plasticity and cohesive interface modeling, Mech Mater, vol.82, pp.1-12, 2015.

B. Flipon, L. Milhem, C. Keller, R. Quey, and F. Barbe, Modelling of polycrystals using well-controlled Voronoitype tessellations and its applications to micromechanical analyses, physics and Mechanics of Random Media: from Morphology to Material Properties, pp.187-198, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01916848

I. Benedetti and F. Barbe, Modelling Polycrystalline Materials: An Overview of Three-Dimensional Grain-Scale Mechanical Models, Journal of Multiscale Modelling, vol.5, pp.1-51, 2013.

R. Quey and L. Renversade, Optimal polyhedral description of 3d polycrystals: Method and application to statistical and synchrotron x-ray diffraction data, Comput. Meth. Appl. Mech. Engng, vol.330, pp.308-333, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01626440

R. Quey, P. Dawson, and F. Barbe, Large-scale 3d random polycrystals for the finite element method: generation, meshing and remeshing, Comput. Meth. Appl. Mech. Engng, vol.200, pp.1729-1745, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00858028

F. Lavergne, R. Brenner, and K. Sab, Effects of grain size distribution and stress heterogeneity on yield stress of polycrystals: A numerical approach, Comput. Mater. Sci, vol.77, pp.387-398, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00946087

V. Phan, T. Nguyen, Q. Bui, and G. Dirras, Modelling of microstructural effects on the mechanical behavior of ultrafine-grained nickel using crystal plasticity finite element model, Int. J. Engng Sci, vol.94, pp.212-225, 2015.

S. Forest, Micromorphic approach for gradient elasticity, viscoplasticity, and damage, Journal of Engineering Mechanics, vol.135, pp.117-131, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00368014

N. Cordero, A. Gaubert, S. Forest, E. Busso, F. Gallerneau et al., Size effects in generalised continuum crystal plasticity for two-phase laminates, J. Mech. Phys. Sol, vol.58, issue.11, pp.1963-1994, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00542418

S. Wulfinghoff and T. Böhlke, Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.468, pp.2682-2703, 2012.

C. Keller, E. Hug, A. Habraken, and L. Duchene, Finite element analysis of the free surface effects on the mechanical behavior of thin nickel polycrystals, Int. J. Plasticity, vol.29, pp.155-172, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02124791

P. Franciosi, The concepts of latent hardening and strain hardening in metallic single crystals, Acta Metall, vol.33, issue.9, pp.1601-1612, 1985.

C. Gérard, G. Cailletaud, and B. Bacroix, Modeling of latent hardening produced by complex loading paths in fcc alloys, Int. J. Plasticity, vol.42, pp.194-212, 2013.

F. Barbe, R. Quey, A. Musienko, and G. Cailletaud, Three-Dimensional characterization of strain localization bands in a high-resolution elastoplastic polycrystal, Mech. Res. Com, vol.36, pp.762-768, 2009.

F. Barbe, S. Forest, and G. Cailletaud, Intergranular and intragranular behavior of polycrystalline aggregates. part 2: Results, Int. J. Plasticity, vol.17, issue.4, pp.537-563, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02327393

C. Keller, E. Hug, and X. Feaugas, Microstructural size effects on mechanical properties of high purity nickel, Int. J. Plasticity, vol.27, issue.4, pp.635-654, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02124784

H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Meth. Appl. Mech. Engng, vol.157, issue.1, pp.69-94, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01282728

P. Doumalin, M. Bornert, and J. Crépin, Characterisation of the strain distribution in heterogeneous materials, Mécanique & Industries, vol.4, pp.607-617, 2003.