S. B. Mclaughlin, D. G. De-la-torre-ugarte, C. T. Garten, L. R. Lynd, M. A. Sanderson et al., High-value renewable energy from prairie grasses, Environ. Sci. Technol, vol.36, pp.2122-2129, 2002.

D. Tilman, R. Socolow, J. A. Foley, J. Hill, E. Larson et al., Beneficial biofuels-the food, energy, and environment trilemma, Science, vol.325, pp.270-271, 2009.

S. D. Wullschleger, E. B. Davis, M. E. Borsuk, C. A. Gunderson, and L. R. Lynd, Biomass production in switchgrass across the United States: Database description and determinants of yield, Agron. J, vol.102, pp.1158-1168, 2010.

P. A. Vadas, K. H. Barnett, and D. J. Undersander, Economics and energy of ethanol production from alfalfa, corn, and switchgrass in the upper Midwest, USA. Bioenerg. Res, vol.1, pp.44-55, 2008.

, Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry, 2011.

L. E. Moser and K. P. Vogel, Switchgrass, big bluestem, and indiangrass, An Introduction to Grassland Agriculture, pp.409-420, 1995.

S. B. Mclaughlin and L. A. Kszos, Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States, Biomass Bioenergy, vol.28, pp.515-535, 2005.

M. R. Schmer, K. P. Vogel, R. B. Mitchell, and R. K. Perrin, Net energy of cellulosic ethanol from switchgrass, Proc. Natl. Acad. Sci, vol.105, pp.464-469, 2008.

K. P. Vogel, Energy production from forages (or American agriculture-back to the future), J. Soil Water Conserv, vol.51, pp.137-139, 1996.

M. D. Casler, K. P. Vogel, C. M. Taliaferro, and R. L. Wynia, Latitudinal adaptation of switchgrass populations, Crop Sci, vol.44, pp.293-303, 2004.

R. Mitchell, K. P. Vogel, and G. Sarath, Managing and enhancing switchgrass as a bioenergy feedstock, Biofuels Bioprod. Bioref, vol.2, pp.530-539, 2008.

J. A. Stroup, M. A. Sanderson, J. P. Muir, M. J. Mcfarland, and R. L. Reed, Comparison of growth and performance in upland and lowland switchgrass types to water and nitrogen stress, Bioresour. Technol, vol.86, pp.65-72, 2003.

J. N. Barney, J. Jeremiah-mann, G. B. Kyser, E. Blumwald, A. Van-deynze et al., Tolerance of switchgrass to extreme soil moisture stress: Ecological implications, Plant Sci, vol.177, pp.724-732, 2009.

Y. Jiang, Y. Yao, and Y. Wang, Physiological response, cell wall components, and gene expression of switchgrass under short-term drought stress and recovery, Crop Sci, vol.52, pp.2718-2727, 2012.

S. Kim, A. L. Rayburn, T. Voigt, A. Parrish, and D. K. Lee, Salinity effects on germination and plant growth of prairie cordgrass and switchgrass, Bioenerg. Res, vol.5, pp.225-235, 2012.

M. A. Sanderson, P. R. Adler, A. A. Boateng, M. D. Casler, and G. Sarath, Switchgrass as a biofuels feedstoack in the USA, Can. J. Plant Sci, vol.86, pp.1315-1325, 2006.

S. Sillman, The relation between ozone, NO x and hydrocarbons in urban and polluted rural environments, Atmos. Environ, vol.33, pp.1821-1845, 1999.

R. Atkinson, Atmospheric chemistry of VOCs and NO x, Atmos. Environ, vol.34, pp.2063-2101, 2000.

D. Fowler, M. Amann, F. Anderson, M. Ashmore, P. Cox et al.,

, The Royal Society, 2008.

P. Sharma, J. C. Kuniyal, K. Chand, R. P. Guleria, P. P. Dhyani et al., Surface ozone concentration and its behaviour with aerosols in the northwestern Himalaya, Atmos. Environ, vol.71, pp.44-53, 2013.

P. S. Monks, A. T. Archibald, A. Colette, O. Cooper, M. Coyle et al., Tropospheric ozone and its precursors form the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys, vol.15, pp.8889-8973, 2015.

X. Yuan, V. Calatayud, L. Jiang, W. J. Manning, F. Hayes et al., Assessing the effects of ambient ozone in China on snap bean genotypes by using ethylenediurea (EDU), Environ. Pollut, vol.205, pp.199-208, 2015.

E. A. Ainsworth, Understanding and improving global crop response to ozone pollution, vol.90, pp.886-897, 2017.

M. Auvray and I. Bey, Long-range transport to Europe: Seasonal variations and implications for the European ozone budget, J. Geophys. Res, vol.110, 2005.

K. J. Liao, X. Hou, and D. R. Baker, Impacts of interstate transport of pollutants on high ozone events over the Mid-Atlantic United States, Atmos. Environ, vol.84, pp.100-112, 2014.

P. Weiss-penzias, D. A. Jaffe, L. Jaegle´, and Q. Liang, Influence of long-range-transported pollution on the annual and diurnal cycles of carbon monoxide and ozone at Cheeka Peak Observatory, J. Geophys. Res, vol.109, 2004.

Z. Feng, K. Kobayashi, and E. A. Ainsworth, Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): A meta-analysis, Glob. Chang. Biol, vol.14, pp.2696-2708, 2008.

V. E. Wittig, E. A. Ainsworth, A. L. Naidu, D. F. Karnosky, and S. P. Long, Quantifying the impact of current and future tropospheric ozone on the tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis, Glob. Chang. Biol, vol.15, pp.396-424, 2009.

E. A. Ainsworth, C. R. Yendrek, S. Sitch, W. J. Collins, and L. D. Emberson, The effects of tropospheric ozone on net primary productivity and implications for climate change, Annu. Rev. Plant. Biol, vol.63, pp.637-661, 2012.

S. Wilkinson, G. Mills, R. Illidge, and W. J. Davies, How is ozone pollution reducing our food supply?, J. Exp. Bot, vol.63, pp.527-536, 2012.

J. M. Mcgrath, A. M. Betzelberger, S. Wang, E. Shook, X. Zhu et al., An analysis of ozone damage to historical maize and soybean yields in the United States, Proc. Natl. Acad. Sci, vol.112, pp.14390-14395, 2015.

D. M. Rebouças, . .;-de, Y. M. Sousa, M. Bagard, J. H. Costa et al., Combined effects of ozone and drought on the physiology and membrane lipids of two cowpea (Vigna unguiculata (L.) Walp) cultivars, vol.6, 2017.

G. Mills, K. Sharps, D. Simpson, H. Pleijel, M. Broberg et al., Ozone pollution will compromise efforts to increase global wheat production, Glob. Chang. Biol, vol.24, pp.3560-3574, 2018.

E. A. Ainsworth, P. Lemonnier, and J. M. Wedow, The influence of rising tropospheric carbon dioxide and ozone on plant productivity, Plant Biol, 2019.

R. L. Heath, The Biochemistry of Ozone Attack on the Plasma Membrane of Plant Cells, In Phytochemical Effects of Environmental Compounds. Recent Advances in Phytochemistry

J. A. Saunders, L. Kosak-channing, and E. E. Conn, , vol.21, 1987.

S. P. Long and S. L. Naidu, Effect of oxidants at the biochemical, cell and physiological levels, with particular reference to ozone. In Air Pollution and Plant Life, pp.69-88, 2002.

S. Pasqualini, C. Piccioni, L. Reale, L. Ederli, T. G. Della et al., Ozone-induced cell death in tobacco cultivar Bel W3 plant. The role of programmed cell death in lesion formation, Plant Physiol, vol.133, pp.1122-1134, 2003.

E. L. Fiscus, F. L. Booker, and K. O. Burkey, Crop responses to ozone: Uptake, models of action, carbon assimilation and partitioning, Plant Cell Environ, vol.28, pp.997-1011, 2005.

S. Li, P. C. Harley, and Ü. Niinemets, Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris, Plant Cell Environ, vol.40, 1984.

M. D. Flowers, E. L. Fiscus, K. O. Burkey, F. L. Booker, and J. B. Dubois, Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone, Environ. Exp. Bot, vol.61, pp.190-198, 2007.

L. Guidi, E. Degl'innocenti, F. Martinelli, and M. Piras, Ozone effects on carbon metabolism in sensitive and insensitive Phaseolus cultivars, Environ. Exp. Bot, vol.66, pp.117-125, 2009.

S. Li, T. Tosens, P. C. Harley, Y. Jiang, A. Kanagendran et al., Glandular trichomes as a barrier against atmospheric oxidative stress: Relationships with ozone uptake, leaf damage, and emission of LOX products across a diverse set of species, Plant Cell Environ, vol.40, pp.1263-1277, 2018.

Y. Masutomi, Y. Kinose, T. Takimoto, T. Yonekura, H. Oue et al., Ozone changes the linear relationship between photosynthesis and stomatal conductance and decreases water use efficiency in rice, Sci. Total Environ, vol.655, pp.1009-1016, 2019.

E. Paoletti and N. E. Grulke, Does living in elevated CO 2 ameliorate tree response to ozone? A review on stomatal responses, Environ. Pollut, vol.137, pp.483-493, 2005.

T. Vahisalu, I. Puzõrjova, M. Brosché, E. Valk, M. Lepiku et al., Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1, Plant J, vol.62, pp.442-453, 2010.

E. Paoletti and N. E. Grulke, Ozone exposure and stomatal sluggishness in different plant physiognomic classes, Environ. Pollut, vol.158, pp.2664-2671, 2010.

Y. Hoshika, K. Omasa, and E. Paoletti, Both ozone exposure and soil water stress are able to induce stomatal sluggishness, Environ. Exp. Bot, vol.88, pp.19-23, 2013.

J. T. Ball, I. E. Woodrow, and J. A. Berry, A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, Progress in Photosynthesis Research

J. Biggins and . Ed, , pp.221-224, 1987.

K. J. Wolz, T. M. Wertin, M. Abordo, D. Wang, and A. D. Leakey, Diversity in stomatal function is integral to modelling plant carbon and water fluxes, Nat. Ecol. Evol, vol.1, pp.1292-1298, 2017.

L. Leitao, O. Bethenod, and J. Biolley, The impact of ozone on juvenile maize (Zea mays L.) plant photosynthesis: Effects on vegetative biomass, pigmentation, and carboxylases (PEPc and rubisco), Plant Biol, vol.9, pp.478-488, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01192013

L. Leitao, J. J. Maoret, and J. P. Biolley, Changes in PEP carboxylase, rubisco and rubisco activase mRNA levels from maize (Zea mays) exposed to a chronic ozone stress, Biol. Res, vol.40, pp.137-153, 2007.

A. A. Singh, S. B. Agrawal, J. P. Shahi, and M. Agrawal, Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone, Environ. Sci. Pollut. Res, vol.21, pp.2628-2641, 2014.

C. R. Yendrek, G. Erice, C. M. Montes, T. Tomaz, C. A. Sorgini et al., Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotype-specific manner, Plant Cell Environ, vol.40, pp.3088-3100, 2017.

C. R. Yendrek, T. Tomaz, C. M. Montes, Y. Cao, A. M. Morse et al., High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance, Plant Physiol, vol.173, pp.614-626, 2017.

D. A. Grantz and H. B. Vu, O 3 sensitivity in a potential C 4 bioenergy crop: Sugarcane in California, Crop Sci, vol.49, pp.643-650, 2009.

D. A. Grantz, H. B. Vu, T. L. Tew, and J. C. Veremis, Sensitivity of gas exchange parameters to ozone in diverse C 4 sugarcane hybrids, Crop Sci, vol.52, pp.1270-1280, 2012.

B. B. Moura, Y. Hoshika, R. V. Ribeiro, and E. Paoletti, Exposure-and flux-based assessment of ozone risk to sugarcane plants, Atmos. Environ, vol.176, pp.252-260, 2018.

F. Bussotti, Functional leaf traits, plant communities and acclimationprocesses in relation to oxidative stress in trees: A critical overview, Glob. Chang. Biol, vol.14, pp.2727-2739, 2008.

, Phylogeny and subfamilial classification of the grasses (Poaceae), Ann. Mo. Bot. Gard, vol.88, pp.373-457, 2001.

P. B. Reich, Quantifying plant response to ozone: A unifying theory, Tree Physiol, vol.3, pp.63-91, 1987.

Y. Hoshika, G. Katata, M. Deushi, M. Watanabe, T. Koike et al., Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests, Sci. Rep, vol.5, p.9871, 2015.

P. Li, V. Calatayud, F. Gao, J. Uddling, and Z. Feng, Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels, Tree Physiol, vol.36, pp.1105-1116, 2016.

Z. Feng, P. Büker, H. Pleijel, L. Emberson, P. E. Karlsson et al., A unifying explanation for variation in ozone sensitivity among woody plants, Glob. Chang. Biol, vol.24, pp.78-84, 2018.

C. P. Pignon, M. R. Lundgren, C. P. Osborne, and S. P. Long, Bundle sheath chloroplast volume can house sufficient Rubisco to avoid limiting C4 photosynthesis during chilling, J. Exp. Bot, vol.70, pp.357-365, 2019.

W. Zhang, M. Wang, A. Wang, X. Yin, Z. Feng et al., Elevated ozone concentration decreases whole-plant hydraulic conductance and disturbs water use regulation in soybean plants, Physiol. Plant, vol.163, pp.183-195, 2018.

J. Hu, Q. Yang, W. Huang, S. B. Zhang, and H. Hu, Effects of temperature on leaf hydraulic architecture of tobacco plants, Planta, vol.240, pp.489-496, 2014.

D. Uhl and V. Mosbrugger, Leaf venation density as a climate and environmental proxy: A critical review and new data, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.149, pp.15-26, 1999.

L. L. Kouwenberg, W. M. Kürschner, and J. C. Mcelwain, Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry, Rev. Mineral. Geochem, vol.66, pp.215-241, 2007.

C. Murphy, M. R. Jordan, G. J. Brodribb, and T. J. , Acclimation to humidity modifies the link between leaf size and the density of veins and stomata, Plant Cell Environ, vol.37, pp.124-131, 2014.

T. J. Brodribb, G. J. Jordan, and R. J. Carpenter, Unified changes in cell size permit coordinated lead evolution, New Phytol, vol.199, pp.559-570, 2013.

C. P. Leisner and E. A. Ainsworth, Quantifying the effects of ozone on plant reproductive growth and development, Glob. Chang. Biol, vol.18, pp.606-616, 2012.

C. R. Yendrek, C. P. Leisner, and E. A. Ainsworth, Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in Nicotiana sylvestris, Glob. Chang. Biol, vol.19, pp.3155-3166, 2013.

D. J. Longstreth and P. S. Nobel, Nutrient influences on leaf photosynthesis, Plant Physiol, vol.65, pp.541-543, 1980.

S. Spiller and N. Terry, Limiting factors in photosynthesis: II. iron stress diminishes photochemical capacity by reducing the number of photosynthetic units, Plant Physiol, vol.65, pp.121-125, 1980.

D. Zhao, D. M. Oosterhuis, and C. W. Bednarz, Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants, Photosynthetica, vol.39, pp.103-109, 2001.

I. Lewandowski and A. Kicherer, Combustion quality of biomass: Practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus, Eur. J. Agron, vol.6, pp.163-177, 1997.

P. B. Reich and A. W. Schoettle, Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils. III Nutrient relations, Can. J. Bot, vol.66, pp.1517-1531, 1988.

E. Oksanen, J. Riikonen, S. Kaakinen, T. Holopainen, and E. Vapaavuori, Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO 2 and ozone, Glob. Chang. Biol, vol.11, pp.732-748, 2005.

V. F. Thomas, S. Braun, and W. Flückiger, Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, growth, and nutrient concentrations of young beech trees (Fagus sylvatica), Environ. Pollut, vol.143, pp.341-354, 2006.

G. D. Farquhar, M. H. O'leary, and J. A. Berry, On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves, Aust. J. Plant Physiol, vol.9, pp.121-137, 1982.

G. D. Farquhar, J. R. Ehleringer, and K. T. Hubick, Carbon isotope discrimination and photosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.40, pp.503-537, 1989.

G. D. Farquhar and R. A. Richards, Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes, Aust. J. Plant Physiol, vol.11, pp.539-552, 1984.

L. L. Handley and J. A. Raven, The use of natural abundance of nitrogen isotopes in plant physiology and ecology, Plant Cell Environ, vol.15, pp.965-985, 1992.

R. D. Evans, Physiological mechanisms influencing plant nitrogen isotope composition, Trends Plant Sci, vol.6, pp.121-126, 2001.

D. Robinson, 15 N as an integrator of the nitrogen cycle, Trends Ecol. Evol, vol.16, pp.153-162, 2001.

P. B. Morgan, C. J. Bernacchi, D. R. Ort, and S. P. Long, An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean, Plant Physiol, vol.135, pp.2348-2357, 2004.

S. L. Naidu and S. P. Long, Potential mechanisms of low-temperature tolerance of C 4 photosynthesis in Miscanthus × giganteus: An in vivo analysis, Planta, vol.220, pp.145-155, 2004.

A. D. Leakey, M. Uribelarrea, E. A. Ainsworth, S. L. Naidu, A. Rogers et al., Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO 2 concentration in the absence of drought, Plant Physiol, vol.140, pp.779-790, 2006.

A. Nardini, E. Gortan, M. Ramani, and S. Salleo, Heterogeneity of gas exchange rates over the leaf surface in tobacco: An effect of hydraulic architecture?, Plant Cell Environ, vol.31, pp.804-812, 2008.

S. Li, Y. J. Zhang, L. Sack, C. Scoffoni, A. Ishida et al., Heterogeneity and spatial pattering of structure and physiology across the leaf surface in giant leaves of Alocasia macrorrhiza, PLoS ONE, issue.8, p.66016, 2013.

C. J. Bernacchi, P. B. Morgan, D. R. Ort, and S. P. Long, The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity, Planta, vol.220, pp.434-446, 2005.

G. D. Farquhar, S. Von-caemmere, and J. A. Berry, A biochemical model of photosynthetic CO 2 fixation in C 3 species, Planta, vol.149, pp.178-190, 1980.

V. Caemmerer and S. , Biochemcial models of leaf photosynthesis, 2000.

R. J. Markelz, R. S. Strellner, and A. D. Leakey, Impairment of C 4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO 2 ] in maize, J. Exp. Bot, vol.62, pp.3235-3246, 2011.

E. K. Twidwell, K. D. Johnson, J. A. Patterson, J. H. Cherney, and C. E. Bracker, Degradation of switchgrass anatomical tissue by rumen microorganisms, Crop Sci, vol.30, pp.1321-1328, 1991.

P. Christin, C. P. Osborne, D. S. Chatelet, J. T. Columbus, G. Besnard et al., Anatomical enablers and the evolution of C4 photosynthesis in grasses, Proc. Natl. Acad. Sci, vol.110, pp.1381-1386, 2013.

L. Sack, P. D. Cowan, N. Jaikumar, and N. M. Holbrook, The hydrology of leaves: Co-ordination of structure and function in temperate woody species, Plant Cell Environ, vol.26, pp.1343-1356, 2003.

A. Maillard, P. Etienne, S. Diquélou, J. Trouverie, V. Billard et al., Nutrient deficiencies modify the ionomic composition of plant tissues: A focus on cross-talk between molybdenum and other nutrients in Brassica napus, J. Exp. Bot, vol.67, pp.5631-5641, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01493884

D. I. Warton, I. J. Wright, D. S. Falster, and M. Westoby, Bivariate line-fitting methods for allometry, Biol. Rev, vol.81, pp.259-291, 2006.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI