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Abstract: Elevated tropospheric ozone concentration (O3) increases oxidative stress in vegetation
and threatens the stability of crop production. Current O3 pollution in the United States is
estimated to decrease the yields of maize (Zea mays) up to 10%, however, many bioenergy feedstocks
including switchgrass (Panicum virgatum) have not been studied for response to O3 stress. Using
Free Air Concentration Enrichment (FACE) technology, we investigated the impacts of elevated
O3 (~100 nmol mol�1) on leaf photosynthetic traits and capacity, chlorophyll �uorescence, the
Ball�Woodrow�Berry (BWB) relationship, respiration, leaf structure, biomass and nutrient composition
of switchgrass. Elevated O3 concentration reduced net CO2 assimilation rate (A), stomatal conductance
(gs), and maximum CO2 saturated photosynthetic capacity (Vmax), but did not a�ect other functional
and structural traits in switchgrass or the macro- (except potassium) and micronutrient content of
leaves. These results suggest that switchgrass exhibits a greater O3 tolerance than maize, and provide
important fundamental data for evaluating the yield stability of a bioenergy feedstock crop and for
exploring O3 sensitivity among bioenergy feedstocks.

Keywords: ozone; switchgrass; photosynthesis; stomatal conductance; chlorophyll �uorescence; leaf
anatomy; biomass

1. Introduction

Obtaining renewable energy from biomass feedstocks is projected to reduce reliance on traditional
fossil fuels and emissions of greenhouse gases while bene�tting economic growth and energy
security [1�3]. Currently, the production of corn-based ethanol is the most common biofuel feedstock
in the USA, but ethanol can also be derived from woody feedstocks or other dedicated bioenergy
crops [1,3�5]. Switchgrass, a native perennial warm-season C4 grass of North America [6], has
been recognized as an emerging and promising bioenergy feedstock [4,7,8]. With broad adaptability,
switchgrass can produce high biomass yields under limited water and nutrient supply on marginal
croplands [9�11]. Switchgrass also has the potential to produce greater biomass yields (13 Mg ha�1)
than maize grain (11 Mg ha�1) given similar inputs [4]. Several studies have examined the impact
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of environmental variables on switchgrass [10,12�15], the majority of those focusing on switchgrass
breeding and management, biomass improvement and enhancement and conversion e�ciency of
biomass to biofuels [1,3,7�11,16]. Another important consideration is the yield stability of bioenergy
feedstocks, which can be altered by atmospheric pollutants.

Tropospheric ozone (O3) is a well-known airborne pollutant that forms from reactions of NOx
with volatile organic compounds in the presence of sunlight [17,18]. The average current ambient O3
concentration in the northern hemisphere is 20�50 nmol mol�1, but, as a result of time-varying and
non-uniform distribution of pollutant precursors, higher concentrations of 120 nmol mol�1 or more can
be observed in industrial cities [19�23]. Long-range transport events may carry precursor pollutants over
long distances outside of industrial areas, and even over distances of intercontinental and hemispheric
scales [24�26]. Current concentration of tropospheric O3 signi�cantly reduce photosynthesis and
productivity on scales from individual plants to ecosystems, and lead to global crop yield losses and
reduced terrestrial net primary productivity [23,27�34].

As a strong oxidant, O3 enters plants through the stomata and reacts with the plasmalemma
to form reactive oxygen species (ROS) including hydrogen peroxide and superoxide, which can
subsequently alter cellular components, trigger signaling cascades, and eventually cause cellular
damage or even programmed cell death [23,35�39]. In addition, the photosynthetic apparatus can
be damaged by O3 leading to reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)
activity in the chloroplast, lower rates of carbon �xation and reduced quantum yield of primary
photochemistry [33,38�42]. O3 has also been shown to alter the relationship between photosynthesis
and stomatal conductance and reduce water use e�ciency [43]. However, O3 e�ects on stomatal
conductance vary greatly across plant species and depend on levels of O3 exposure [44]. Previous
studies have found that exposure to very high O3 can induce rapid stomata closure, subsequently
limiting CO2 uptake and reducing net assimilation [39,45]. Additionally, previous studies have shown
that exposure to chronic O3 pollution can induce stomatal sluggishness resulting in incomplete stomatal
closure and reduced water use e�ciency [46,47]. Changes in stomatal conductance at elevated O3 can
result from damage to guard cells and/or from altered stomatal density on the leaf surface, but few
studies have investigated such changes in C4 plants. The Ball�Woodrow�Berry (BWB) model [48]
describes stomatal conductance as a linear function of the relationship between photosynthesis,
atmospheric humidity and the concentration of CO2 at the leaf surface, and is fundamental to scaling
from the leaf to the canopy or to model carbon and water �ux [49]. Whether O3 pollution alters this
relationship in switchgrass has not been investigated and is important for accurately modeling carbon
and water �uxes in an elevated O3 environment.

It is well established that elevated O3 negatively impacts plant growth, development and
production in C3 species, but fewer studies have been conducted to understand the overall e�ects
of elevated O3 on C4 species. Previous studies have shown that elevated O3 signi�cantly reduce
photosynthesis and biomass in maize (Zea mays L.) [50�54] and sugarcane [55�57]. In particular, O3
caused yield loss are greater in dry and hot conditions than that in wet and optimal temperature
conditions, implying that the yield response of O3 can be modulated by precipitation in future
climate [31,53]. Due to possessing Kranz anatomy and phosphoenolpyruvate carboxylase (PEPC)
but very low photorespiration, C4 plants generally exhibit high photosynthetic capacity under some
environmental conditions, and thus O3 response of C3 and C4 species might be very di�erent.
Additionally, greater sensitivity to O3 has been associated with lower leaf mass per unit area in C3
species [58], but the e�ects of O3 on C4 species have been less well studied. Therefore, examining
leaf photosynthetic and anatomical responses to O3 in C4 species can provide important insight
into understanding the mechanisms of O3 response as well as exploring O3 sensitivity of potential
bioenergy species.

In the present study, we used switchgrass, a promising bioenergy feedstock crop, to investigate
the e�ects of season-long elevated O3 on leaf photosynthetic gas exchange, respiration, chlorophyll
�uorescence, leaf structure, biomass and nutrient composition. Considering switchgrass has a close
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phyologenetic relationship with maize [59], we hypothesized that elevated O3 would lead to: (a)
reductions in photosynthetic traits and capacity; (b) alterations in leaf structure; and (c) changes in
biomass and nutrient composition.

2. Results

2.1. Leaf Photosynthetic and Chlorophyll Fluorescence Responses to Elevated O3

On 25 July (DOY 206) and 13 August (DOY 225), 2018, elevated O3 concentration signi�cantly
reduced in situ net CO2 assimilation rates (A) and stomatal conductance to water vapor (gs), but
there was no signi�cant e�ect of elevated O3 on intercellular CO2 concentration (Ci) or instantaneous
water use e�ciency (iWUE) (Figure 1). Chlorophyll �uorescence parameters were not as consistently
altered by elevated O3. A signi�cant reduction in PSII maximum e�ciency (Fv’/Fm’) was observed on
DOY 206, but not DOY 225 (Figure 2a), while signi�cant reductions in quantum yield of PSII (FPSII)
and electron transport rate (ETR) were only observed on DOY 225 (Figure 2b,c). The coe�cient of
photochemical quenching (qP) was not a�ected by elevated O3 on either DOY 206 or DOY 225 in 2018
(Figure 2d). A slight decrease in gs in aging leaves (DOY 206 vs. DOY 225) was observed in both
ambient (0.24 � 0.020 vs. 0.21 � 0.017) and elevated (0.18 � 0.016 vs. 0.16 � 0.015) O3 (Figure 1b).
Decreased Fv’/Fm’, FPSII and ETR and increased qP in aging leaves were also observed in ambient and
elevated O3 (Figure 2). Elevated O3 concentration did not a�ect the maximum carboxylation capacity
of phosphoenolpyruvate (Vpmax) (Figure 3a), but reduced the maximum CO2 saturated photosynthetic
capacity (Vmax) (Figure 3b) in switchgrass.
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Figure 1. Average values of: net CO2 assimilation rate (A) (a); stomatal conductance (gs) (b); intercellular
CO2 concentration (Ci) (c); and instantaneous water use e�ciency (iWUE) (d) of ambient and elevated
O3 concentration treated switchgrass leaf measured on 25 July (DOY 206) and 13 August (DOY 225) in
2018. Error bars show standard errors (n = 3). Signi�cant di�erences between ambient and elevated O3
are indicated by di�erent letters.
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2.2. Changes in the BWB Relationship due to Elevated O3 
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Figure 2. PSII maximum e�ciency (Fv’/Fm’) (a); quantum yield of PSII (FPSII) (b); electron transport
rate (ETR) (c); and coe�cient of photochemical quenching (qP) (d) in ambient and elevated O3
concentration treated switchgrass leaf measured on DOY 206 and DOY 225 in 2018. Error bars show
standard errors (n = 3). Signi�cant di�erences between ambient and elevated O3 are indicated by
di�erent letters.
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Figure 3. Maximum carboxylation capacity of PEPC (Vpmax) (a); and CO2-saturated photosynthetic
rate (Vmax) (b) of switchgrass grown at ambient and elevated O3 concentrations measured on DOY 206
in 2018. Error bars show standard errors (n = 3). Signi�cant di�erences between ambient and elevated
O3 are indicated by di�erent letters.

2.2. Changes in the BWB Relationship due to Elevated O3

To further estimate the e�ect of elevated O3 on switchgrass carbon and water �uxes, the
Ball�Woodrow�Berry (BWB) model was applied to gas exchange data collected in the �eld. As predicted,
AHs
Cs

was strongly correlated with gs in both ambient (p < 0.0001) and elevated (p < 0.0001) O3 (Figure 4).
However, there was no signi�cant di�erence in the slope or intercept of the relationship between gs
and AHs

Cs
in ambient and elevated O3 (Figure 4).
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Figure 4. Relationship between stomatal conductance (gs) and AHs
Cs

for switchgrass grown under
ambient and elevated O3 concentrations measured on DOY 206 and DOY 225 in 2018, where A is net
CO2 assimilation rate (� mol (CO2) m�2 s�1), Hs is relative humidity (Pa (air) Pa (Saturated)�1) and Cs

is CO2 concentration (Pa (CO2) Pa (air)�1) at the leaf surface. The data were �tted by linear regressions.

2.3. Leaf Respiration and Dark Adapted Chlorophyll Fluorescence Responses to Elevated O3

Leaf dark respiration did not di�er signi�cantly between ambient and elevated O3 (Figure 5a).
Although elevated O3 treated leaves had signi�cantly greater dark adapted chlorophyll �uorescence
(Fv/Fm) than ambient leaves (Figure 5b), the Fv/Fm values were very similar and both were higher than
0.7 (0.70 � 0.0084 vs. 0.72 � 0.0039) at ambient and elevated O3, indicating that leaves under both
treatments were not experiencing photodamage.
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Figure 5. Leaf dark respiration (a); and maximum dark-adapted quantum yield of photosystem II
(Fv/Fm) (b) in ambient and elevated O3 concentration treated switchgrass leaf measured on DOY 206 in
2018. Error bars show standard errors (n = 3). Signi�cant di�erences between ambient and elevated O3
are indicated by di�erent letters.

2.4. Leaf Morphology and Anatomy Were Not Altered by Elevated O3

Leaf thickness, conduit size, inner bundle sheath size, vein size and sclerenchyma size tended to
be greater in ambient compared to elevated O3, however the trends were not statistically signi�cant
(Table 1). There were no signi�cant e�ects of elevated O3 on other traits of leaf anatomy (Table 1).
In addition, elevated O3 did not alter stomatal and minor vein characteristics in switchgrass (Table 1).
In both ambient and elevated O3 treatment, leaf minor vein length per leaf area was not correlated
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with stomatal density (Figure 6a), but was negatively correlated with guard cell length (Figure 6b) and
stomatal pore area index (Figure 6c).Plants 2019, 8, x FOR PEER REVIEW 7 of 19 
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Table 1. Leaf structural traits of switchgrass exposed to ambient and elevated O3 in 2018. Data are
presented as means � SE (n = 3). Signi�cant di�erences between ambient and elevated O3 are indicated
by di�erent letters.

Ambient O3 Elevated O3

Bundle sheath density (number mm�1) 5.63 � 0.13 (a) 5.70 � 0.11 (a)
Distance between secondary vein (mm) 1.08 � 0.056 (a) 0.97 � 0.025 (a)

Leaf thickness (� m) 203.3 � 4.99 (a) 195.9 � 5.81 (a)
Interveinal distance (IVD, � m) 175.2 � 3.56 (a) 173.1 � 2.65 (a)

Conduit diameter (� m) 32.5 � 1.09 (a) 31.6 � 1.22 (a)
Conduit size (� m2) 781.3 � 43.3 (a) 723.8 � 50.5 (a)

Out bundle sheath size (� m2) 20885.2 � 891.6 (a) 20315.1 � 945.2 (a)
Inner bundle sheath size (� m2) 12443.0 � 515.7 (a) 11928.3 � 625.7 (a)

Vein size (� m2) 4263.3 � 248.1 (a) 4034.5 � 289.0 (a)
Colorless cell size (� m2) 336.2 � 21.4 (a) 364.2 � 33.1 (a)

Upper epidermis cell size (� m2) 141.0 � 5.52 (a) 143.9 � 6.87 (a)
Lower epidermis cell size (� m2) 205.9 � 11.4 (a) 200.9 � 14.0 (a)

Motor cell size (� m2) 767.9 � 39.6 (a) 794.9 � 50.7 (a)
Sclerenchyma size (� m2) 755.4 � 43.2 (a) 657.5 � 50.4 (a)
Stomatal density (mm�2) 125.3 � 4.55 (a) 121.1 � 5.42 (a)
Guard cell length (� m) 35.2 � 1.34 (a) 35.3 � 1.51 (a)

Stomatal pore area index (SPI, �10�2) 0.15 � 0.0081 (a) 0.15 � 0.011 (a)
Vein density (mm mm�2) 5.85 � 0.092 (a) 5.68 � 0.10 (a)

2.5. No Changes in Biomass and Nutrient Composition between Ambient and Elevated O3

There was no signi�cant e�ect of elevated O3 on leaf area, biomass or tiller number in switchgrass
after growing in chronic elevated O3 for two months (Table 2). Additionally, there was no signi�cant
e�ect of elevated O3 on leaf mass per area (LMA) (64.8 � 1.12 vs. 69.4 � 2.60) (Table 2). Leaf and stem
N content, and leaf and stem C:N were also unchanged by elevated O3 (Table 2). Elevated O3 led to a
signi�cant decrease in potassium (K) and in leaf stable carbon isotope composition (� 13C) (Table 3).
However, no changes in the content of micronutrients or leaf stable nitrogen isotope composition
(� 15N) were observed (Table 3).

Table 2. Leaf and stem biomass, N content and C:N of switchgrass exposed to ambient and elevated
O3 in 2018. Data are presented as means � SE (n = 3). Signi�cant di�erences between ambient and
elevated O3 are indicated by di�erent letters.

Ambient O3 Elevated O3

Leaf area (cm2 plant�1) 5624.5 � 659.6 (a) 6681.1 � 875.3 (a)
Leaf biomass (g plant�1) 36.4 � 4.28 (a) 44.1 � 4.58 (a)

Leaf mass per area (LMA, g m�2) 64.8 � 1.12 (a) 69.4 � 2.60 (a)
Tiller number 31.0 � 2.96 (a) 32.4 � 2.45 (a)

Tiller biomass (g plant�1) 75.2 � 8.89 (a) 97.0 � 13.12 (a)
Leaf area per tiller (cm2 branch�1) 178.8 � 13.99 (a) 198.6 � 13.37 (a)

Leaf mass per tiller (g plant�1) 1.15 � 0.086 (a) 1.36 � 0.054 (a)
Average tiller mass (g) 2.39 � 0.20 (a) 2.87 � 0.21 (a)

Leaf N (%) 2.53 � 0.045 (a) 2.49 � 0.035 (a)
Leaf C:N 17.8 � 0.29 (a) 18.1 � 0.24 (a)

Stem N (%) 1.36 � 0.057 (a) 1.39 � 0.049 (a)
Stem C:N 33.0 � 1.49 (a) 32.2 � 1.23 (a)
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Table 3. Leaf nutrient composition, stable carbon (� 13C) and nitrogen (� 15N) isotope composition of
switchgrass exposed to ambient and elevated O3 in 2018. Data are presented as means � SE (n = 3).
Signi�cant di�erences between ambient and elevated O3 are indicated by di�erent letters.

Ambient O3 Elevated O3

Mg (mg kg�1) 5079.1 � 229.8 (a) 5617.5 � 285.2 (a)
P (mg kg�1) 2466.8 � 65.9 (a) 2732.1 � 146.9 (a)
S (mg kg�1) 2326.0 � 77.0 (a) 2316.1 � 86.1 (a)
K (mg kg�1) 18695.6 � 737.5 (a) 16245.0 � 688.3 (b)
Ca (mg kg�1) 5994.7 � 387.8 (a) 7590.4 � 685.4 (a)
B (mg kg�1) 3.43 � 0.10 (a) 3.71 � 0.086 (a)

Mn (mg kg�1) 65.1 � 10.7 (a) 52.5 � 9.91 (a)
Fe (mg kg�1) 459.7 � 61.1 (a) 457.2 � 43.2 (a)
Ni (mg kg-1) 3.18 � 0.26 (a) 2.80 � 0.23 (a)
Cu (mg kg�1) 9.78 � 0.43 (a) 9.07 � 0.33 (a)
Zn (mg kg�1) 27.6 � 2.18 (a) 27.4 � 2.21 (a)
Mo (mg kg�1) 1.17 � 0.069 (a) 1.27 � 0.24 (a)
Na (mg kg�1) 106.3 � 11.5 (a) 142.7 � 23.5 (a)
V (mg kg�1) 0.36 � 0.021 (a) 0.36 � 0.014 (a)

Co (mg kg�1) 0.13 � 0.012 (a) 0.11 � 0.0080 (a)
� 13C (%�) �12.22 � 0.060 (a) �12.49 � 0.080 (b)
� 15N (%�) 4.04 � 0.46 (a) 5.35 � 0.78 (a)

3. Discussion

3.1. Impact of Elevated O3 on Photosynthesis and Stomatal Conductance

It is well known that elevated O3 negatively in�uences the growth, development, production and
yield of C3 plants. In contrast, there is a much more limited body of information about the impacts of
elevated O3 on photosynthesis and performance of C4 species. Here, we studied the e�ects of elevated
O3 on leaf photosynthetic and structural traits using a promising C4 bioenergy crop, switchgrass,
which was grown under season-long elevated O3 in the �eld with FACE technology. We found that
elevated O3 signi�cantly reduced midday A and gs (Figure 2), consistent with past observations in
maize [50�54] and sugarcane [56,57]. Additionally, maximum photosynthetic capacity (Vmax) was
lower in elevated O3 (Figure 3), also consistent with previous observations in maize [53]. However,
intercellular CO2 concentration (Ci) and instantaneous water use e�ciency (iWUE) did not statistically
di�er between ambient and elevated O3 (Figure 1), and the slope between gs and AHs

Cs
was also di�erent

(Figure 4). In C3 species, it is commonly observed that elevated O3 impairs photosynthetic capacity,
with reduced gs being a consequence rather than a driver of lower A [29,60]. Additionally, stomata
can be damaged by O3 exposure leading to sluggish response to other environmental parameters [61].
Thus, in elevated O3, greater gs may be required to support a given A, which decreases water use
e�ciency [61]. In switchgrass, this was not observed, and both A and gs were proportionally a�ected,
leading to no change in iWUE or the slope of the BWB model. To our knowledge, this is the �rst
study to test how the slope of the BWB is a�ected by elevated O3 in C4 species, but, in rice, elevated
O3-induced changes in the BWB relationship were observed in O3 sensitive cultivars, but not more
tolerant cultivars [43]. In sugarcane, the degree to which A and gs were a�ected by elevated O3 varied
with genotype [57], thus it is possible that slope of the BWB relationship was also impacted, but this
was not explicitly tested. In this study on switchgrass, only one genotype was investigated, but it is
also possible that there is intraspeci�c genetic variation in O3 response within switchgrass.

Long-term exposure to elevated O3 stress often signi�cantly reduces either light- and/or
dark-adapted chlorophyll �uorescence parameters [39�42]. In switchgrass, the e�ects of elevated O3
on �uorescence were inconsistent. Reductions in Fv’/Fm’ were only found on DOY 206, while quantum
yield of PSII (FPSII) and electron transport rate (ETR) were reduced later in the growing season.
No changes in photochemical quenching (qP) were observed in O3-exposed leaves (Figure 2), indicating
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PSII photochemistry did not change in the O3-treated leaves of switchgrass. Although maximum
dark-adapted quantum yield of photosystem II (Fv/Fm) was signi�cantly increased in O3-exposed leaves,
both values of ambient and elevated O3 were higher than 0.7 (Figure 5b), which further con�rmed that
PSII reaction center was not damaged by elevated O3. Overall, PSII photochemistry in switchgrass
was not strongly impacted by O3 stress, even though there were reductions on photosynthetic capacity
and stomatal conductance.

3.2. E� ect of Elevated O3 on Leaf Structure

Leaf structural traits such as leaf mass per area (LMA) are predicted to contribute to O3 sensitivity
among species [62,63], but the e�ects of elevated O3 on leaf anatomical traits have not been well
studied, especially in C4 species. There was no signi�cant e�ect of O3 in switchgrass foliar anatomy
(Table 1), which may result from the unique leaf structural features of C4 species including large bundle
sheath volumes that enable greater Rubisco content than needed for photosynthetic saturation [64].
Feng et al. (2018) showed that tree species with greater LMA tended to have more O3 tolerance [63].
Switchgrass has greater LMA than maize [53], and showed greater tolerance to O3, although only a
single genotype of switchgrass was investigated. A more thorough characterization of the relationship
between LMA and O3 tolerance in grasses would be needed to test if the relationship found in trees
translates to other functional groups.

Leaf minor vein density is an important determinant of leaf water and nutrient transport e�ciency,
which together are essential for hydraulic conductance and stomatal function. Previous work in other
species reported that elevated O3 decreases whole plant hydraulic conductance [65], but studies have
not examined how elevated O3 impacts the anatomical determinants of hydraulic conductance such
as leaf minor vein density. Under temperature stress, leaf minor vein density and stomatal density
increased in parallel supporting greater leaf hydraulic conductance [66]. Other studies have also shown
that the correlation between leaf minor vein density and stomatal density varies with environmental
factors including temperature, atmospheric humidity and altitude [66�69]. In this study on switchgrass,
there was no correlation between leaf minor vein density and stomatal density (Figure 6a), but there
was an unexpected negative correlation between leaf minor vein density and guard cell length as well
as between the leaf minor vein density and stomatal pore area index (Figure 6b,c). Across a diverse
range of species, leaf minor vein density is positively correlated with stomatal density [70], however
the opposite pattern of what was observed here. Study of additional genotypes and conditions would
be needed to more broadly understand this relationship in switchgrass.

3.3. E� ect of Elevated O3 on Biomass and Nutrient Composition

Many previous studies have shown that elevated O3 negatively a�ects both biomass and yield
production across plant species [27,29]. A review of woody species estimated that elevated O3 reduces
biomass by 7% across diverse tree species [28]. Similarly, a review of the e�ects of elevated O3 on
reproductive processes suggested that yield and seed weight are reduced to a similar extent in both C3
and C4 species [71]. However, few C4 species have been studied in detail, and most of the prior work
focused on maize. In tobacco, growth at high N treatment protected from O3 damage [72] suggesting
that the negative impacts of O3 on biomass may be improved by soil nutrient conditions. Similar
results were observed in switchgrass which was grown under high fertility at the FACE site in this
study (Table 2). No di�erences in leaf and stem N content or above-ground biomass were observed in
ambient and elevated O3. Given the decrease in photosynthesis, it is somewhat surprising that no
di�erences in above-ground biomass were observed. However, in wheat, root biomass is reduced
more than shoot biomass at elevated O3 [27], and it is possible that there was a change in allocation in
switchgrass at elevated O3 as well.

Other nutrients including magnesium (Mg), phosphorus (P), sulfur (S), potassium (K), zinc
(Zn), calcium (Ca) and iron (Fe) are important components of the photosynthetic apparatus and
reactions [73�75] and also impact the e�ciency of biomass combustion systems [76]. Here, a signi�cant
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decrease in elevated O3 was only observed for K (Table 3), which may be associated with reductions in
net CO2 assimilation (A) and stomatal conductance (gs) (Figure 1) [75]. Indeed, changes in nutrient
composition highly depend on the soil properties and on the O3 impact on plant metabolism [77�79].
There was a signi�cant, but small, reduction in leaf stable carbon isotope composition (� 13C) but no
change in nitrogen isotope composition (� 15N) at elevated O3. Generally, � 13C is positively correlated
with water use e�ciency [80�82], while � 15N serves as an indicator of plant N acquisition, �xation and
cycling [83�85]. Both � 13C and � 15N are strongly controlled by environmental conditions. Although
elevated O3 did not alter iWUE on DOY 206 and DOY 225 (Figure 1 and Table 1), decreased � 13C
suggests that there was an accumulated e�ect of elevated O3 over the life-time of the leaf, albeit small.
As discussed above, plants grown in su�cient N were not compromised by elevated O3, which could
partially explain the limited e�ects of elevated O3 on � 15N [72].

3.4. Implications for Bioenergy Feedstock Development

Although a successful bioenergy industry will require high productivity and yield stability
of bioenergy feedstocks, how the bioenergy crops acclimate to a rapidly changing, more polluted
environment should be considered seriously. Our results provide evidence that switchgrass exhibits O3
tolerance, and suggest that C4 bioenergy crops including maize and switchgrass di�er in O3 tolerance.
However, the year of our experiment was extremely wet, and previous work in maize also showed
that O3 sensitivity was greater in dry years [31], thus additional side-by-side experiments with more
genotypes and species are needed for a de�nitive comparison. In natural environments ambient O3
concentrations strongly vary over the land surface throughout the day and over the season, resulting
in geographic variation in O3 pollution. Therefore, understanding variation in C4 bioenergy feedstock
responses to elevated O3 could be used to better place speci�c feedstocks on a dynamic landscape.

4. Materials and Methods

4.1. Field Site, Plant Material and Growth Condition

The study was conducted at the Free Air Concentration Enrichment (FACE) facility in Champaign,
IL, USA (www.igb.illinois.edu/soyface/, 40�02’N, 88�14’W) in 2018. Six plots in octagonal shape of
20 m diameter were designed for this study: three at ambient O3 concentration (30�50 nmol mol�1) and
three fumigated to elevated O3 concentration (~100 nmol mol�1). The weather conditions including
daily maximum and minimum air temperature, averaged light intensity (9:00�18:00), precipitation,
averaged daily relative humidity and O3 concentration (10:00�18:00) during growing season of 2018
were monitored by an on-site weather station at the FACE facility and shown in Figure 7.

Seedlings of switchgrass (Panicum virgatum Kanlow, generously provided by DK Lee, University of
Illinois at Urbana-Champaign) were transplanted in the central part of each plot on 24 May (DOY 144)
in 2018. Elevated O3 plots were fumigated on 25 May (DOY 145) in 2018 and followed the protocol
described in detail by Morgan et al. (2004) [86] and Yendrek et al. [53,54]. Elevated O3 fumigation was
carried out using the O3-enriched air that was delivered to and released within the experimental plots
with FACE technology. O3 was generated by an O3 generator (CFS-3 2G; Ozonia) using pure oxygen
and monitored by a chemiluminescence O3 sensor (Model 49i, Thermo Scienti�c, Massachusetts, USA)
that connected to the tube pumping air from the central point of plot. Fumigation was applied for
8 h per day from 10:00 to 18:00 when leaves were not too wet and when wind speed was not too low,
with the target O3 concentration of 100 nL L�1 at the central point of elevated plots. O3 fumigation
was stopped on 13 August (DOY 225) in 2018 once the second round of midday photosynthesis
measurements were �nished (Figure 7e). In 2018, the 1 min average O3 concentrations within the
elevated plots were within 20% of the target concentration 81.6% of the time.

www.igb.illinois.edu/soyface/
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4.2. Leaf Midday Gas Exchange, Chlorophyll Fluorescence and A/Ci Curve

In situ midday gas exchange and chlorophyll �uorescence measurements were made on fully
expanded leaves between 11:00 and 14:00 on sunny days of 25 July (DOY 206) and 13 August (DOY 225)
in 2018. The net CO2 assimilation rates (A), stomatal conductance to water vapor (gs), intercellular
CO2 concentration (Ci) and chlorophyll �uorescence (Fv’/Fm’, FPSII, ETR, and qP) under illumination
were measured with a portable photosynthesis system (LI 6400, LICOR Biosciences, Lincoln, NE, USA)
following previously published protocols [53,87,88]. Brie�y, the environmental conditions within
the leaf cuvette were set to match ambient conditions: leaf cuvette temperature was 29 �C, CO2
concentration was 400 � mol mol�1, light intensity at the leaf surface was 1950 � mol m�2 s�1 and
relative humidity was 60% for the DOY 206; leaf cuvette temperature was 31 �C, CO2 concentration
was 420 � mol mol�1, light intensity at the leaf surface was 1750 � mol m�2 s�1 and relative humidity
was 60% for DOY 225, 2018. The measurement was performed when photosynthesis had stabilized,
typically 3�5 min after leaf enclosure. Considering the heterogeneity of physiology and structure within
a given leaf [89,90], we measured photosynthesis and other functional traits (see below) in the middle
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part of all leaves. In all cases, 4�5 leaves of di�erent individuals within each plot were measured, and
were averaged for analyses. The instantaneous water use e�ciency (iWUE) was calculated as A/gs.

Three sun-exposed leaves of di�erent individuals within each plot were selected to measure the
response of A to Ci using a LI-6400. Predawn on DOY 206, leaves were excised and recut immediately
under water to prevent leaf water potential decrease, chloroplast inorganic phosphate concentration or
maximum photosystem II e�ciency decrease [91]. With the cut end immersed, leaves were quickly
transported to the laboratory where they were exposed to ambient CO2 concentration and saturating
light levels to achieve a steady-state. The middle part of the leaf was then enclosed in cuvette and
measurements were initiated at a CO2 concentration of 400 � mol mol�1, air temperature of 25 �C,
light intensity of 1800 � mol m�2 s�1 and relative humidity of 60%. CO2 concentration within the
cuvette was then changed sequentially as follows: 400, 300, 200, 100, 50, 400, 500, 600, 800, 1000, and
1200 � mol mol�1. The maximum carboxylation capacity of phosphoenolpyruvate (Vpmax) and CO2
saturated photosynthetic capacity (Vmax) were calculated according to Farquhar et al. (1980), von
Caemmerer (2000) and Markelz et al. (2011) [92�94].

4.3. Ball�Woodrow�Berry Relationship

The Ball�Woodrow�Berry (BWB) relationship was calculated as:

gs = a
AHs
Cs

+ b (1)

where gs is stomatal conductance to water vapor (mol (H2O) m�2 s�1); A is net CO2 assimilation rate
(� mol (CO2) m�2 s�1); Hs and Cs are relative humidity (Pa (air) Pa (Saturated)�1) and CO2 concentration
(Pa (CO2) Pa (air)�1) at the leaf surface, respectively; and a and b are the slope (mol (H2O) mol (CO2)�1)
and intercept (mol (H2O) m�2 s�1) of the BWB relationship, respectively [43,48].

Hs was calculated as:

Hs=
Es

Esat
(2)

where Es is the partial pressure (Pa) of vapor at the leaf surface and Esat is the partial pressure (Pa) of
vapor at saturation.

Es was determined as:

Tr = gs
Ei � Es

P
(3)

where Tr is transpiration (mol (H2O) m�2 s�1) and P is air pressure (Pa). Ei is the partial pressure of
vapor (Pa) at substomatal cavity and is assumed to be saturated:

Ei = Esat = 611 exp(
�
R

(
1

273.15
�

1
Tl

)) (4)

where � and R are the latent heat of vaporization and (set at 2,500,000 J kg�1) and the gas constant of
vapor and (set at 461 J kg�1 K�1) [40], respectively, and Tl is leaf temperature (K).

Cs was determined by the following equation:

A =
gs

1.6
(Cs � Ci) (5)

where 1.6 is the ratio of conductance for H2O to that for CO2 and has dimensions of ((mol(H2O) m�2 s�1)/
(mol(CO2) m�2 s�1)) and Ci is intercellular CO2 concentration (Pa (CO2) Pa (air)�1).

The values of A, gs, Tr, Ci, P and Tl were observed from a portable photosynthesis analyzer
Licor-6400. The slope a and intercept b of the BWB relationship were estimated using linear regression
with observed gs and calculated AHs

Cs
.



Plants 2019, 8, 85 13 of 18

4.4. Dark Respiration and Dark-Adapted Chlorophyll Fluorescence

Leaf respiration rates and chlorophyll �uorescence under dark were also measured using the
LI-6400. Immediately after each A/Ci curve was completed, the leaf was removed from the cuvette
and kept in the cabinet under dark for at least 50 min. Environmental controls inside the cuvette were
maintained to match the ambient conditions: leaf cuvette temperature was 27 �C, CO2 concentration
was 400 � mol mo�1, relative humidity was 60% but light intensity at the leaf surface was 0 � mol m�2 s�1.
Leaf dark respiration was measured after readings stabilized, typically 3�10 min after leaf enclosure.
To examine the e�ects of elevated O3 on photosystem II (PS II) activity, dark-adapted chlorophyll
�uorescence was measured. Following the respiration rates measurements, the leaf was further
illuminated with a saturating irradiance (>7000 � mol m�2 s�1) to measure the minimum �uorescence
yield (F0) and the maximum dark-adapted �uorescence yield (Fm). The spatially averaged maximum
dark-adapted quantum yield of photosystem II (PSII), Fv/Fm was calculated as the ratio of (Fm � F0)
to Fm.

4.5. Leaf Anatomy

Immediately after each dark-adapted chlorophyll �uorescence measurement was completed, leaf
samples of 16 cm2 were excised with a razor blade and stored in 70% ethanol for further analysis
in the laboratory. For each leaf sample, three hand-cut transverse sections were viewed under a
microscope (Leica DM 2000, Leica Microsystems, Wetzlar, Germany) and imaged using a digital camera
(SPOT Insight 4 Mp CCD, Diagnostic Instruments, Inc. USA). Using an image analysis software
(Image J, National Institutes of Health, Bethesda, MD, USA), the following leaf structural traits were
measured followed previous published methods [95,96]: bundle sheath density (number mm�1),
distance between secondary vein (mm), leaf thickness (� m), interveinal distance (IVD, � m), conduit
diameter (� m), conduit size (� m2), out bundle sheath size (� m2), inner bundle sheath size (� m2), vein
size (� m2), colorless cell size (� m2), upper epidermis cell size (� m2), lower epidermis cell size (� m2),
motor cell size (� m2), and sclerenchyma size (� m2).

To measure stomatal density and guard cell length, clear nail polish impressions were collected
from abaxial surface of the lamina using other leaf discs from the same leaf sample used for leaf
anatomical measurement and viewed and imaged under microscope. The stomatal pore area index
(SPI) was calculated as (stomatal density) � (guard cell length)2 [97].

Using a ~2 cm2 leaf disc from the same leaf sample used for leaf anatomical and stomatal
measurement, minor vein density (i.e., minor vein length per leaf area) was determined. After the
epidermis was removed with a sharp razor blade, the remaining leaf samples were put in bleach
(Clorox Professional Products Company, Oakland, CA, USA) to clear mesophyll cells. The samples
were then stained with toluidine blue (Electron Microscopy Sciences, Hat�eld, PA, USA) and imaged
under microscope. The length minor vein per leaf area was measured with Image J manually.

4.6. Biomass, C and N Content and Nutrient Composition Quanti�cation

All plants were harvest on 23 August (DOY 235) in 2018. Three individuals of each plot were
selected for the biomass, C and N content measurement. Leaf area was measured by an area meter
(LI-2000, LICOR Biosciences, Lincoln, NE, USA) and the number of tillers of each plant was counted.
Leaf and stem dry mass were determined after oven-drying for 1 week at 50 �C. Leaf dry mass per area
(LMA) was calculated as dry mass/ area. Dried leaf and stem samples were then ground and weighted,
and C and N content (%) was determined by a Costech 4010 elemental analyzer (Costech Analytical
Technologies, Inc., Valencia, CA, USA).

Macro- and micronutrients were quanti�ed as previously described [98] by inductively
high-resolution coupled plasma mass spectrometry (Element 2TM, Thermo Scienti�c). Brie�y, samples
were submitted to a microwave acid sample digestion (Multiwave ECO, Anton Paar, les Ulis, France)
(1 mL of concentrated HNO3, 250 � L of H2O2 and 900 � L of Milli-Q water for 40 mg DW). All samples



Plants 2019, 8, 85 14 of 18

were previously spiked with two internal standard solutions of gallium and rhodium for �nal
concentrations of 10 and 2 � g L�1. After acid digestion, samples were diluted to 50 mL with Milli-Q
water to obtain solutions containing 2.0% (v/v) of nitric acid, then �ltered at 0.45 � m using a te�on
�ltration system. Quanti�cation of each element was performed using external standard calibration
curves. The quality of mineralization and analysis were checked using a certi�ed reference material of
Citrus leaves (CRM NCS ZC73018, Sylab, Metz, France). Isotopic analysis of C and N was performed
with a continuous �ow isotope mass spectrometer (Isoprime, GV Instruments, Manchester, UK) linked
to a C/N/S analyser (EA3000, EuroVector, Milan, Italy).

4.7. Statistical Analysis

The di�erences in physiological and structural traits between ambient and elevated O3 were tested
with one-way ANOVA followed by the Tukey’s post hoc test using SPSS 16.0 (SPSS, Chicago, Illinois,
USA). The di�erences in slope and intercept of BMB relationship (observed stomatal conductance vs.
AHs
Cs

) between ambient and elevated O3 were tested with standardized major axis tests using SMATR
v2.0 [99]. All statistical tests were considered signi�cant at p < 0.05.
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