U. Avci, H. E. Petzold, I. O. Ismail, E. P. Beers, and C. H. Haigler, Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots, The Plant Journal, vol.56, pp.303-315, 2008.

J. C. Avice and E. P. , Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.), Journal of Experimental Botany, vol.65, pp.3813-3824, 2014.

Y. M. Cai, J. Yu, Y. Ge, A. Mironov, and P. Gallois, Two proteases with caspase-3-like activity, cathepsin B and proteasome, antagonistically control ER-stress-induced programmed cell death in Arabidopsis, New Phytologist. In press, 2018.

B. Chandrasekar, T. Colby, A. Emon, J. B. Jiang, T. N. Hong et al., Broadrange glycosidase activity profiling, Molecular & Cellular Proteomics, vol.13, pp.2787-2800, 2014.

Y. Chassin, E. Kapri-pardes, G. Sinvany, T. Arad, and Z. Adam, Expression and characterization of the thylakoid lumen protease DegP1 from Arabidopsis, Plant Physiology, vol.13, pp.857-864, 2002.

M. Desclos, P. Etienne, L. Coquet, T. Jouenne, J. Bonnefoy et al., A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation, Proteomics, vol.9, pp.3580-3608, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02337706

M. Diaz-mendoza, B. Velasco-arroyo, M. E. Santamaria, P. González-melendi, M. Martinez et al., Plant senescence and proteolysis: two processes with one destiny, Genetics and Molecular Biology, vol.39, pp.329-338, 2016.

D. Fahy, M. N. Sanad, and K. Duscha, Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY, Scientific Reports, vol.7, p.39069, 2017.

A. Figueiredo, F. Monteiro, and M. Sebastiana, Subtilisin-like proteases in plant-pathogen recognition and immune priming: a perspective, Frontiers in Plant Science, vol.5, p.739, 2014.

B. E. Floyd, S. C. Morriss, G. C. Macintosh, and D. C. Bassham, Evidence for autophagy-dependent pathways of rRNA turnover in Arabidopsis, Autophagy, vol.11, pp.2199-2212, 2015.

Y. Ge, Y. M. Cai, L. Bonneau, V. Rotari, A. Danon et al., Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis, Cell Death and Differentiation, vol.23, pp.1493-1501, 2016.

D. Greenbaum, K. F. Medzihradszky, A. Burlingame, and M. Bogyo, Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools, Chemistry & Biology, vol.7, pp.569-581, 2000.

A. Guiboileau, L. Avila-ospina, K. Yoshimoto, F. Soulay, M. Azzopardi et al., Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability, New Phytologist, vol.199, pp.683-694, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01168786

A. Guiboileau, K. Yoshimoto, F. Soulay, M. P. Bataillé, J. C. Avice et al., Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis, New Phytologist, vol.194, pp.732-740, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004199

K. Haussühl, B. Andersson, and I. Adamska, A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II, Embo Journal, vol.20, pp.713-722, 2001.

M. Havé, A. Marmagne, F. Chardon, and C. Masclaux-daubresse, Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops, Journal of Experimental Botany, vol.68, pp.2513-2529, 2017.

Y. Hayashi, K. Yamada, T. Shimada, R. Matsushima, N. K. Nishizawa et al., A proteinase-storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis, Plant & Cell Physiology, vol.42, pp.894-899, 2001.

R. Iglesias-fernández, D. Wozny, M. Iriondo-de-hond, L. Oñate-sánchez, P. Carbonero et al., The AtCathB3 gene, encoding a cathepsin B-like protease, is expressed during germination of Arabidopsis thaliana and transcriptionally repressed by the basic leucine zipper protein GBF1, Journal of Experimental Botany, vol.65, 2009.

J. Je, C. Song, J. E. Hwang, W. S. Chung, and C. O. Lim, DREB2C acts as a transcriptional activator of the thermo tolerance-related phytocystatin 4 (AtCYS4) gene, Transgenic Research, vol.23, pp.109-123, 2014.

H. Jin, B. Liu, and L. Luo, HYPERSENSITIVE TO HIGH LIGHT1 interacts with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 and functions in protection of photosystem II from photodamage in Arabidopsis, The Plant Cell, vol.26, pp.1213-1229, 2014.

J. A. Johnston, C. L. Ward, and R. R. Kopito, Aggresomes: a cellular response to misfolded proteins, The Journal of Cell Biology, vol.143, pp.1883-1898, 1998.

Y. Kato and W. Sakamoto, New insights into the types and function of proteases in plastids, International Review of Cell and Molecular Biology, vol.280, pp.185-218, 2010.

I. Kolodziejek, J. C. Misas-villamil, and F. Kaschani, Proteasome activity imaging and profiling characterizes bacterial effector syringolin A, Plant Physiology, vol.155, pp.477-489, 2011.

Z. Lai, F. Wang, Z. Zheng, B. Fan, and Z. Chen, A critical role of autophagy in plant resistance to necrotrophic fungal pathogens, The Plant Journal, vol.66, pp.953-968, 2011.

O. Langella, B. Valot, T. Balliau, M. Blein-nicolas, L. Bonhomme et al., x!tandempipeline: a tool to manage sequence redundancy for protein inference and phosphosite identification, Journal of Proteome Research, vol.16, pp.494-503, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01484169

N. Lampl, N. Alkan, O. Davydov, and R. Fluhr,

R. J. Lee, C. L. Hart, C. W. Liu, A. A. Mccracken, G. Demartino et al., The 26S proteasome is sufficient to retro-translocate and degrade a soluble ERAD substrate, Molecular Biology of the Cell, vol.12, pp.132-132, 2001.

T. Lemaître, L. Gaufichon, S. Boutet-mercey, A. Christ, and C. Masclaux-daubresse, Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession, Plant & Cell Physiology, vol.49, pp.1056-1065, 2008.

H. D. Lenz, E. Haller, and E. Melzer, Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens, The Plant Journal, vol.66, pp.818-830, 2011.

A. Lilienbaum, Relationship between the proteasomal system and autophagy, International Journal of Biochemistry and Molecular Biology, vol.4, pp.1-26, 2013.

Y. Lin, Y. Ding, and J. Wang, Exocyst-positive organelles and autophagosomes are distinct organelles in plants, Plant Physiology, vol.169, pp.1917-1932, 2015.

H. Liu, X. Wang, H. Zhang, Y. Yang, X. Ge et al.,

Y. Liu and D. C. Bassham, Autophagy: pathways for self-eating in plant cells, Annual Review of Plant Biology, vol.63, pp.215-237, 2012.

O. Loudet, S. Chaillou, A. Krapp, and F. Daniel-vedele, Quantitative trait loci analysis of water and anion contents in interaction with nitrogen availability in Arabidopsis thaliana, Genetics, vol.163, pp.711-722, 2003.

O. Loudet, S. Chaillou, P. Merigout, J. Talbotec, and F. Daniel-vedele, Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis, Plant Physiology, vol.131, pp.345-358, 2003.

R. S. Marshall, F. Li, D. C. Gemperline, A. J. Book, and R. D. Vierstra, , vol.58, pp.1053-1066, 2015.

D. E. Martinez, M. L. Borniego, N. Battchikova, E. M. Aro, E. Tyystjärvi et al., SASP, a senescence-associated subtilisin protease, is involved in reproductive development and determination of silique number in Arabidopsis, Journal of Experimental Botany, vol.66, pp.161-174, 2015.

C. Masclaux-daubresse and F. Chardon, Exploring nitrogen remobilization for seed filling using natural variation in Arabidopsis thaliana, Journal of Experimental Botany, vol.62, pp.2131-2142, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01019350

C. Masclaux-daubresse, Q. Chen, and M. Havé, Regulation of nutrient recycling via autophagy, Current Opinion in Plant Biology, vol.39, pp.8-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01605933

C. Masclaux-daubresse, G. Clément, A. P. Routaboul, J. M. Guiboileau, A. Soulay et al., Stitching together the multiple dimensions of autophagy using metabolomics and transcriptomics reveals impacts on metabolism, development, and plant responses to the environment in Arabidopsis, The Plant Cell, vol.26, pp.1857-1877, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204037

S. Michaeli, T. Avin-wittenberg, and G. Galili, , 2014.

K. Morimoto and R. Van-der-hoorn, The increasing impact of activity-based protein profiling in plant science, Plant & Cell Physiology, vol.57, pp.446-461, 2016.

M. St and O. A. , Evolution of serine carboxypeptidase-like acyltransferases in the monocots, Plant Signaling & Behavior, vol.5, pp.193-195, 2010.

D. Munch, E. Rodriguez, S. Bressendorff, O. K. Park, D. Hofius et al., Autophagy deficiency leads to accumulation of ubiquitinated proteins, ER stress, and cell death in Arabidopsis, Autophagy, vol.10, pp.1579-1587, 2014.

C. Münz, The autophagic machinery in viral exocytosis, Frontiers in Microbiology, vol.8, p.269, 2017.

N. B. Nedelsky, P. K. Todd, and J. P. Taylor, Autophagy and the ubiquitinproteasome system: Collaborators in neuroprotection. BBA Molecular Basis of Disease 1782, pp.691-699, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00562868

Y. S. Noh and R. M. Amasino, Identification of a promoter region responsible for the senescence-specific expression of SAG12, Plant Molecular Biology, vol.41, pp.181-194, 1999.

M. S. Otegui, Y. S. Noh, D. E. Martínez, V. Petroff, M. G. Staehelin et al., Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean, The Plant Journal, vol.41, pp.831-844, 2005.

R. Pathirana, P. West, D. Hedderley, and J. Eason, Cell death patterns in Arabidopsis cells subjected to four physiological stressors indicate multiple signalling pathways and cell cycle phase specificity, Protoplasma, vol.254, pp.635-647, 2017.

C. Polge, M. Jaquinod, F. Holzer, J. Bourguignon, L. Walling et al., Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway: activation in response to cadmium, The Journal of Biological Chemistry, vol.284, pp.35412-35424, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00483927

M. Poret, B. Chandrasekar, R. Van-der-hoorn, and J. Avice, Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape, Plant Science, vol.246, pp.139-153, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02183629

A. Pru?inská, T. Shindo, S. Niessen, F. Kaschani, R. Tóth et al., Major Cys protease activities are not essential for senescence in individually darkened Arabidopsis leaves, BMC Plant Biology, vol.17, p.4, 2017.

J. C. Rogers, Aleurain, Handbook of proteolytic enzymes, pp.1888-1891, 2013.

S. Rustgi, E. Boex-fontvieille, C. Reinbothe, D. Von-wettstein, and S. Reinbothe, Serpin1 and WSCP differentially regulate the activity of the cysteine protease RD21 during plant development in Arabidopsis thaliana, Proceedings of the National Academy of Sciences, vol.114, pp.2212-2217, 2017.

A. R. Thompson, J. H. Doelling, A. Suttangkakul, and R. D. Vierstra, Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways, Plant Physiology, vol.138, pp.2097-2110, 2005.

M. Tsukada and Y. Ohsumi, Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae, FEBS Letters, vol.333, pp.169-174, 1993.

B. Valot, O. Langella, E. Nano, M. Zivy, R. Van-der-hoorn et al., MassChroQ: a versatile tool for mass spectrometry quantification, Handbook of proteolytic enzymes, vol.11, pp.1170-1178, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01481216

K. J. Van-wijk, Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes, Annual Review of Plant Biology, vol.66, pp.75-111, 2015.

K. A. Waite, D. Mota-peynado, A. Vontz, G. Roelofs, and J. , Starvation induces proteasome autophagy with different pathways for core and regulatory particles, The Journal of Biological Chemistry, vol.291, pp.3239-3253, 2016.

J. Wang, Y. Ding, J. Wang, S. Hillmer, Y. Miao et al., EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells, The Plant Cell, vol.22, pp.4009-4030, 2010.

J. C. Wang, C. Ma, M. Zhang, L. Yang, and W. L. Chen, ATG5 is required to limit cell death induced by Pseudomonas syringae in Arabidopsis and may be mediated by the salicylic acid pathway, Acta Physiologiae Plantarum, vol.37, p.1731, 2015.

Z. Wang, C. Gu, T. Colby, T. Shindo, R. Balamurugan et al., ?-Lactone probes identify a papainlike peptide ligase in Arabidopsis thaliana, Nature Chemical Biology, vol.4, pp.557-563, 2008.

N. Watanabe and E. Lam, Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses, The Plant Journal, vol.66, pp.969-982, 2011.

, Proteolysis in autophagy mutants | 1385

X. Yang and D. C. Bassham, New insight into the mechanism and function of autophagy in plant cells, International review of cell and molecular biology, vol.320, pp.1-40, 2015.

X. C. Yang, R. Srivastava, S. H. Howell, and D. C. Bassham, Activation of autophagy by unfolded proteins during endoplasmic reticulum stress, The Plant Journal, vol.85, pp.83-95, 2016.

X. Yao, W. Xiong, T. Ye, and Y. Wu, Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis, Journal of Experimental Botany, vol.63, pp.2579-2593, 2012.

K. Yoshimoto, Y. Jikumaru, Y. Kamiya, M. Kusano, C. Consonni et al., Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis, The Plant Cell, vol.21, pp.2914-2927, 2009.

F. Yu, S. Park, and S. R. Rodermel, The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes, Plant Journal, vol.37, pp.864-876, 2004.

D. Zhang, D. Liu, X. Lv, Y. Wang, Z. Xun et al., The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis, The Plant Cell, vol.26, pp.2939-2961, 2014.

K. Zientara-rytter and A. Sirko, To deliver or to degrade -an interplay of the ubiquitin-proteasome system, autophagy and vesicular transport in plants, The FEBS Journal, vol.283, pp.3534-3555, 2016.