N. J. Appeldoorn, S. M. Bruijn, E. A. Koot-gronsveld, R. G. Visser, D. Vreugdenhil et al., Developmental changes in enzymes involved in the conversion of hexose phosphate and its subsequent metabolites during early tuberization of potato, Plant Cell Environ, vol.22, pp.1085-1096, 1999.

N. J. Appeldoorn, S. M. De-bruijn, E. A. Koot-gronsveld, R. G. Visser, D. Vreugdenhil et al., Developmental changes of enzymes involved in conversion of sucrose to hexose-phosphate during early tuberisation of potato, Planta, vol.202, pp.220-226, 1997.

A. Bahaji, J. Li, A. M. Sánchez-lópez, E. Baroja-fernández, F. J. Muñoz et al., Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields, Biotechnol. Adv, vol.32, pp.87-106, 2014.

P. Bancal, N. C. Carpita, and J. P. Gaudillère, Differences in fructan accumulated in induced and field-grown wheat plants: an elongation-trimming pathway for their synthesis, New Phytol, vol.120, pp.313-321, 1992.

B. Biais, C. Benard, B. Beauvoit, S. Colombie, D. Prodhomme et al., Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism, Plant Physiol, vol.164, pp.1204-1221, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639362

H. Bisswanger, Practical Enzymology, 2004.

G. D. Bonnett and R. J. Simpson, Fructan-hydrolysing activities from L. Rigidum Gaudin, New Phytol, vol.123, pp.443-451, 1993.

G. D. Bonnett and R. J. Simpson, Fructan exohydrolase activities from L. rigidum that hydrolyse ?-2,1-and ?-2,6-glycosidic linkages at different rates, New Phytol, vol.131, pp.199-209, 1995.

B. De-coninck, W. Van-den-ende, L. Roy, and K. , Fructan Exohydrolases (FEHs) in Plants: Properties, Occurrence and 3-D Structure, 2007.

F. Del-viso, A. Puebla, H. Hopp, and R. Heinz, Cloning and functional characterization of a fructan 1-exohydrolase (1-FEH) in the cold tolerant Patagonian species Bromus pictus, Planta, vol.231, pp.13-25, 2009.

P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev, vol.41, pp.1538-1558, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00700173

Y. Gibon, O. E. Blaesing, J. Hannemann, P. Carillo, M. Hohne et al., A Robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness, Plant Cell, vol.16, pp.3304-3325, 2004.

D. K. Großkinsky, A. Albacete, A. Jammer, P. Krbez, E. Van-der-graaff et al., A rapid phytohormone and phytoalexin screening method for physiological phenotyping, Mol. Plant, vol.7, pp.1053-1056, 2014.

D. K. Großkinsky, J. Svensgaard, S. Christensen, and T. Roitsch, Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap, J. Exp. Bot, vol.66, pp.5429-5440, 2015.

G. A. Hendry, Evolutionary origins and natural functions of fructans -a climatological, biogeographic and mechanistic appraisal, New Phytol, vol.123, pp.3-14, 1993.

D. K. Hincha, E. M. Hellwege, A. G. Heyer, and J. H. Crowe, Plant fructans stabilize phosphatidylcholine liposomes during freeze-drying, Eur. J. Biochem, vol.267, pp.535-540, 2000.

A. Jammer, A. Gasperl, N. Luschin-ebengreuth, E. Heyneke, H. Chu et al., Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants, J. Exp. Bot, vol.66, pp.5531-5542, 2015.

A. Kawakami, Y. , and M. , Graminan breakdown by fructan exohydrolase induced in winter wheat inoculated with snow mold, J. Plant Physiol, vol.169, pp.294-302, 2012.

A. Kawakami, M. Yoshida, and W. Van-den-ende, Molecular cloning and functional analysis of a novel 6&1-FEH from wheat (Triticum aestivum L.) preferentially degrading small graminans like bifurcose, Gene, vol.358, pp.93-101, 2005.

T. Krivorotova and J. Sereikaite, Determination of fructan exohydrolase activity in the crude extracts of plants, Electron. J. Biotechnol, vol.17, pp.329-333, 2014.

U. Kusch, S. Greiner, H. Steininger, A. D. Meyer, H. Corbière-divialle et al., Dissecting the regulation of fructan metabolism in chicory (Cichorium intybus) hairy roots, New Phytol, vol.184, pp.127-140, 2009.

J. M. Lee, D. J. Donaghy, P. Sathish, and J. R. Roche, Perennial ryegrass regrowth after defoliation -physiological and molecular changes, Proc. N. Z. Grassland Assoc, vol.72, pp.127-134, 2010.

J. M. Lee, P. Sathish, D. J. Donaghy, and J. R. Roche, Impact of defoliation severity on photosynthesis, carbon metabolism and transport gene expression in perennial ryegrass, Funct. Plant Biol, vol.38, pp.808-817, 2011.

D. Livingston, D. Hincha, and A. Heyer, Fructan and its relationship to abiotic stress tolerance in plants, Cell. Mol. Life Sci, vol.66, 2007.

J. Lothier, B. Lasseur, K. Le-roy, A. Van-laere, M. Prud'homme et al., Cloning, gene mapping, and functional analysis of a fructan 1-exohydrolase (1-FEH) from Lolium perenne implicated in fructan synthesis rather than in fructan mobilization, J. Exp. Bot, vol.58, pp.1969-1983, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02664471

J. Lothier, B. Lasseur, M. Prud'homme, and A. Bertrand, Hexokinase-dependent sugar signaling represses fructan exohydrolase activity in Lolium perenne, Funct. Plant Biol, vol.37, pp.1151-1160, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01168782

J. Lothier, A. Van-laere, M. Prud'-homme, W. Van-den-ende, and A. Bertrand, Cloning and characterization of a novel fructan 6-exohydrolase strongly inhibited by sucrose in Lolium perenne, Planta, vol.240, pp.629-643, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01169248

S. Manjunath, C. K. Lee, P. Vanwinkle, and J. Bailey-serres, Molecular and biochemical characterization of cytosolic phosphoglucomutase in maize. Expression during development and in response to oxygen deprivation, Plant Physiol, vol.117, pp.997-1006, 1998.

S. P. Marx, J. Nösberger, and M. Frehner, Hydrolysis of fructan in grasses: a ß-(2-6)-linkage specific fructan-ß-fructosidase from stubble of Lolium perenne, New Phytol, vol.135, pp.279-290, 1997.

A. Michiels, A. Van-laere, W. Van-den-ende, and M. Tucker, Expression analysis of a chicory fructan 1-exohydrolase gene reveals complex regulation by cold, J. Exp. Bot, vol.55, pp.1325-1333, 2004.

K. J. Moore, L. E. Moser, K. P. Vogel, S. S. Waller, B. E. Johnson et al., Describing and quantifying growth stages of perennial forage grasses, Agron. J, vol.83, pp.1073-1077, 1991.

A. Morvan, G. Challe, M. Prud'homme, J. L. Saos, and J. Boucaud, Rise of fructan exohydrolase activity in stubble of Lolium perenne after defoliation is decreased by uniconazole, an inhibitor of the biosynthesis of gibberellins, New Phytol, vol.136, pp.81-88, 1997.

A. Morvan-bertrand, J. Boucaud, J. Le-saos, and M. Prud'homme, Roles of the fructans from leaf sheaths and from the elongating leaf bases in the regrowth following defoliation of Lolium perenne L, Planta, vol.213, pp.109-120, 2001.

N. Pavis, J. Boucaud, and M. P. Prud'homme, Fructans and fructanmetabolizing enzymes in leaves of Lolium perenne, New Phytol, vol.150, pp.97-109, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02672897

N. Pavis, N. J. Chatterton, P. A. Harrison, S. Baumgartner, W. Praznik et al., Structure of fructans in roots and leaf tissues of Lolium perenne, New Phytol, vol.150, pp.83-95, 2001.

S. Pelleschi, J. Rocher, and J. Prioul, Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves, Plant Cell Environ, vol.20, pp.348-357, 1997.

M. Petreikov, N. Dai, D. Granot, and A. A. Schaffer, Characterization of native and yeast-expressed tomato fruit fructokinase enzymes, Phytochemistry, vol.58, pp.841-847, 2001.

C. J. Pollock and A. J. Cairns, Fructan metabolism in grasses and cereals, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.42, pp.77-101, 1991.

M. P. Prud'homme, A. Morvan-bertrand, B. Lasseur, J. Lothier, F. Meuriot et al., Lolium perenne, backbone of sustainable development, source of fructans for grazing animals and potential source of novel enzymes for biotechnology, Recent Advances in Fructooligosaccharides Research, pp.231-258, 2007.

R. S. Rao, J. R. Andersen, G. Dionisio, and B. Boelt, Fructan accumulation and transcription of candidate genes during cold acclimation in three varieties of Poa pratensis, J. Plant Physiol, vol.168, pp.344-351, 2011.

S. Rasmussen, A. J. Parsons, H. Xue, and J. A. Newman, High sugar grasses -harnessing the benefits of new cultivars through growth management, Proc. N. Z. Grassland Assoc, vol.71, pp.167-175, 2009.

T. Ritsema and S. Smeekens, Fructans: beneficial for plants and humans, Curr. Opin. Plant Biol, vol.6, 2003.

S. Ruuska, D. Lewis, G. Kennedy, R. Furbank, C. Jenkins et al., Large scale transcriptome analysis of the effects of nitrogen nutrition on accumulation of stem carbohydrate reserves in reproductive stage wheat, Plant Mol. Biol, vol.66, pp.15-32, 2008.

S. R. Sandve, A. Kosmala, H. Rudi, S. Fjellheim, M. Rapacz et al., Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates, Plant Sci, vol.180, pp.69-77, 2011.

U. Schurr, A. Walter, and U. Rascher, Functional dynamics of plant growth and photosynthesis -from steady-state to dynamics -from homogeneity to heterogeneity, Plant Cell Environ, vol.29, pp.340-352, 2006.

M. Stitt and Y. Gibon, Why measure enzyme activities in the era of systems biology?, Trends Plant Sci, vol.19, pp.256-265, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02631238

R. Sulpice, S. Trenkamp, M. Steinfath, B. Usadel, Y. Gibon et al., Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of Arabidopsis accessions, Plant Cell, vol.22, pp.2872-2893, 2010.

K. Tamura, Y. Sanada, K. Tase, T. Komatsu, Y. et al., Pp6-FEH1 encodes an enzyme for degradation of highly polymerized levan and is transcriptionally induced by defoliation in timothy (Phleum pratense L.), J. Exp. Bot, vol.62, pp.3421-3431, 2011.

R. Valluru, W. Lammens, W. Claupein, and W. Van-den-ende, Freezing tolerance by vesicle-mediated fructan transport, Trends Plant Sci, vol.13, pp.409-414, 2008.

R. Valluru and W. Van-den-ende, Plant fructans in stress environments: emerging concepts and future prospects, J. Exp. Bot, vol.59, pp.2905-2916, 2008.

W. Van-den-ende, Multifunctional fructans and raffinose family oligosaccharides, Front. Plant Sci, vol.4, p.247, 2013.

W. Van-den-ende, S. Clerens, R. Vergauwen, L. Van-riet, A. Van-laere et al., Fructan 1-Exohydrolases. beta-(2,1)-trimmers during graminan biosynthesis in stems of wheat? Purification, characterization, mass mapping, and cloning of two Fructan 1-Exohydrolase isoforms, Plant Physiol, vol.131, pp.621-631, 2003.

L. Van-riet, D. Altenbach, R. Vergauwen, S. Clerens, A. Kawakami et al., Purification, cloning and functional differences of a third fructan 1-exohydrolase (1-FEHw3) from wheat (Triticum aestivum), Physiol. Plant, vol.133, pp.242-253, 2008.

I. J. Vereyken, V. Chupin, R. A. Demel, S. C. Smeekens, D. Kruijff et al., Fructans insert between the headgroups of phospholipids, Biochim. Biophys. Acta, vol.1510, pp.307-320, 2001.

L. Vogt, U. Ramasamy, D. Meyer, G. Pullens, K. Venema et al., Immune modulation by different types of ß2?1-fructans is Toll-Like Receptor dependent, PLoS ONE, vol.8, p.68367, 2013.

Y. Xiong and S. Fei, Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.), Planta, vol.224, pp.878-888, 2006.

J. Zhang, Y. Xu, W. Chen, B. Dell, R. Vergauwen et al., A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought, New Phytol, vol.205, pp.293-305, 2015.