V. Abolghasemi, S. Ferdowsi, and S. Sanei, Fast and incoherent dictionary learning algorithms with application to fmri. Signal, Image and Video Processing, vol.9, pp.147-158, 2015.

C. Bao, H. Ji, Y. Quan, and Z. Shen, ? 0 norm based dictionary learning by proximal methods with global convergence, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.3858-3865, 2014.

C. Bao, Y. Quan, and H. Ji, A convergent incoherent dictionary learning algorithm for sparse coding, European Conference on Computer Vision, pp.302-316, 2014.

D. Barchiesi and M. D. Plumbley, Learning incoherent dictionaries for sparse approximation using iterative projections and rotations, IEEE Transactions on Signal Processing, vol.61, issue.8, pp.2055-2065, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00706028

D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont, 1999.

T. Blumensath and M. E. Davies, Iterative thresholding for sparse approximations, Journal of Fourier analysis and Applications, vol.14, issue.5-6, pp.629-654, 2008.

S. Bourguignon, J. Ninin, H. Carfantan, and M. Mongeau, Exact sparse approximation problems via mixed-integer programming : Formulations and computational performance, IEEE Transactions on Signal Processing, vol.64, issue.6, pp.1405-1419, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01254856

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image processing, vol.15, issue.12, pp.3736-3745, 2006.

P. Honeine, Analyzing sparse dictionaries for online learning with kernels, IEEE Transactions on Signal Processing, vol.63, issue.23, pp.6343-6353, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01965568

Y. Liu, S. Canu, P. Honeine, and S. Ruan, Mixed integer programming for sparse coding : Application to image denoising, IEEE Transactions on Computational Imaging, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02183028

B. Mailhé, D. Barchiesi, and M. D. Plumbley, INK-SVD : Learning incoherent dictionaries for sparse representations, Proc. ICASSP, pp.3573-3576, 2012.

J. Mairal, F. Bach, and J. Ponce, Sparse modeling for image and vision processing, Foundations and Trends R in Computer Graphics and Vision, vol.8, issue.2-3, pp.85-283, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01081139

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online dictionary learning for sparse coding, Proceedings of the 26th annual international conference on machine learning, pp.689-696, 2009.

N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends R in Optimization, vol.1, issue.3, pp.127-239, 2014.

I. Ramírez, F. Lecumberry, and G. Sapiro, Sparse modeling with universal priors and learned incoherent dictionaries, Proc. CAMSAP, 2009.

J. A. Tropp, Greed is good : Algorithmic results for sparse approximation, IEEE Trans. on Information theory, vol.50, issue.10, pp.2231-2242, 2004.

H. Zhu, X. Zhang, D. Chu, and L. Liao, Nonconvex and nonsmooth optimization with generalized orthogonality constraints : An approximate augmented lagrangian method, Journal of Scientific Computing, vol.72, issue.1, pp.331-372, 2017.