A. Bruno, D. J. Olshausen, and . Field, Sparse coding with an overcomplete basis set: A strategy employed by v1?, Vision research, vol.37, issue.23, pp.3311-3325, 1997.

J. Mairal, F. Bach, and J. Ponce, Sparse modeling for image and vision processing, Foundations and Trends R in Computer Graphics and Vision, vol.8, issue.2-3, pp.85-283, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01081139

M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, Image coding using wavelet transform, IEEE Transactions on image processing, vol.1, issue.2, pp.205-220, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01322224

L. Jacques, L. Duval, C. Chaux, and G. Peyré, A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity, Signal Processing, vol.91, issue.12, pp.2699-2730, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01330604

M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on signal processing, vol.54, issue.11, pp.4311-4322, 2006.

K. Schnass, On the identifiability of overcomplete dictionaries via the minimisation principle underlying K-SVD, Applied and Computational Harmonic Analysis, vol.37, pp.464-491, 2014.

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image processing, vol.15, issue.12, pp.3736-3745, 2006.

A. Ben-cohen, E. Klang, M. Amitai, and H. Greenspan, Sparsity-based liver metastases detection using learned dictionaries, IEEE 13th International Symposium on, pp.1195-1198, 2016.

. Hien-van-nguyen, M. Vishal, . Patel, M. Nasser, R. Nasrabadi et al., Kernel dictionary learning, Acoustics, Speech and Signal Processing, pp.2021-2024, 2012.

Y. Yankelevsky and M. Elad, Structure-aware classification using supervised dictionary learning, Acoustics, Speech and Signal Processing, pp.4421-4425, 2017.

R. Jenatton, J. Mairal, R. Francis, G. R. Bach, and . Obozinski, Proximal methods for sparse hierarchical dictionary learning, Proceedings of the 27th international conference on machine learning (ICML-10), pp.487-494, 2010.

C. Bao, H. Ji, Y. Quan, and Z. Shen, 0 norm based dictionary learning by proximal methods with global convergence, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.3858-3865, 2014.

L. Patrick, J. Combettes, and . Pesquet, Proximal splitting methods in signal processing, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp.185-212, 2011.

S. Ravishankar, R. R. Nadakuditi, and J. A. Fessler, Efficient sum of outer products dictionary learning (soup-dil) and its application to inverse problems, IEEE transactions on computational imaging, vol.3, issue.4, pp.694-709, 2017.

D. Bertsimas, A. King, and R. Mazumder, Best subset selection via a modern optimization lens, The annals of statistics, vol.44, pp.813-852, 2016.

S. Bourguignon, J. Ninin, H. Carfantan, and M. Mongeau, Exact sparse approximation problems via mixed-integer programming: Formulations and computational performance, IEEE Transactions on Signal Processing, vol.64, issue.6, pp.1405-1419, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01254856

M. Rebollo and L. F. Escudero, A mixed integer programming approach to multi-spectral image classification, Pattern Recognition, vol.9, issue.1, pp.47-57, 1977.

S. Garrido-jurado, R. Munoz-salinas, F. J. Madridcuevas, and R. Medina-carnicer, Generation of fiducial marker dictionaries using mixed integer linear programming, Pattern Recogn, vol.51, issue.C, pp.481-491, 2016.

X. Zhou, K. Jin, Q. Chen, M. Xu, and Y. Shang, Multiple face tracking and recognition with identity-specific localized metric learning, Distance Metric Learning for Pattern Recognition, vol.75, pp.41-50, 2018.

L. Cao, F. Luo, L. Chen, Y. Sheng, H. Wang et al., Weakly supervised vehicle detection in satellite images via multi-instance discriminative learning, Pattern Recognition, vol.64, pp.417-424, 2017.

C. Bliek, P. Bonami, and A. Lodi, Solving mixedinteger quadratic programming problems with IBM-CPLEX: a progress report, Proceedings of the Twenty-Sixth RAMP Symposium, pp.16-17, 2014.

J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. Bach, Supervised dictionary learning, Advances in neural information processing systems, pp.1033-1040, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00322431

M. Umut, ?. En, and H. Erdogan, Linear classifier combination and selection using group sparse regularization and hinge loss, Pattern Recognition Letters, vol.34, issue.3, pp.265-274, 2013.

M. Nikolova, Relationship between the optimal solutions of least squares regularized with l0-norm and constrained by k-sparsity, Applied and Computational Harmonic Analysis, vol.41, issue.1, pp.237-265, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00944006

O. Bousquet and L. Bottou, The tradeoffs of large scale learning, Advances in neural information processing systems, pp.161-168, 2008.

D. Needell and R. Vershynin, Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit, IEEE Journal of selected topics in signal processing, vol.4, issue.2, pp.310-316, 2010.

R. Garg and R. Khandekar, Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property, Proceedings of the 26th Annual International Conference on Machine Learning, pp.337-344, 2009.

J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Mathematical Programming, vol.146, issue.1-2, pp.459-494, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00916090

J. Mairal and B. Yu, Complexity analysis of the LASSO regularization path, Proceedings of the 29th International Conference on International Conference on Machine Learning, pp.1835-1842, 2012.

P. Hong, P. Dang, and . Chainais, Towards dictionaries of optimal size: A bayesian non parametric approach, Journal of Signal Processing Systems, pp.1-12, 2016.

F. Zhu and P. Honeine, Online kernel nonnegative matrix factorization, Signal Processing, vol.131, pp.143-153, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01965046

R. E. Bixby, A brief history of linear and mixed-integer programming computation, Documenta Mathematica, pp.107-121, 2012.

R. C. Jeroslow, There cannot be any algorithm for integer programming with quadratic constraints, Operations Research, vol.21, issue.1, pp.221-224, 1973.

A. Neumaier and O. Shcherbina, Safe bounds in linear and mixed-integer linear programming, Mathematical Programming, vol.99, issue.2, pp.283-296, 2004.

M. Oskar-von-stryk and . Glocker, Decomposition of mixed-integer optimal control problems using branch and bound and sparse direct collocation, Proc. ADPM 2000 -The 4th Int. Conf. on Automatisation of Mixed Processes: Hybrid Dynamical Systems, pp.99-104, 2000.

K. L. Hoffman and T. K. Ralphs, Integer and combinatorial optimization, Encyclopedia of Operations Research and Management Science, pp.771-783, 2013.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3-d transform-domain collaborative filtering, IEEE Transactions on image processing, vol.16, issue.8, pp.2080-2095, 2007.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising, IEEE Transactions on Image Processing, vol.26, issue.7, pp.3142-3155, 2017.

I. Buciu, Image denoising via sparse data representation: A comparative study, Fundamentals of Electrical Engineering, pp.1-4, 2014.

C. Soussen, J. Idier, J. Duan, and D. Brie, Homotopy based algorithms for L0-regularized least-squares, IEEE Transactions on Signal Processing, vol.63, issue.13, pp.3301-3316, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00948313

J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Transactions on Information theory, vol.50, issue.10, pp.2231-2242, 2004.

P. Honeine, Analyzing sparse dictionaries for online learning with kernels, IEEE Transactions on Signal Processing, vol.63, issue.23, pp.6343-6353, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01965568

B. Mailhé, D. Barchiesi, and M. D. Plumbley, INK-SVD: Learning incoherent dictionaries for sparse representations, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.3573-3576, 2012.

P. Honeine, An eigenanalysis of data centering in machine learning, CoRR, pp.1-13, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01966116

A. Billionnet, S. Elloumi, and A. Lambert, Exact quadratic convex reformulations of mixed-integer quadratically constrained problems, Mathematical Programming, vol.158, issue.1-2, pp.235-266, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01500210