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The market of functional foods has experienced a huge growth in the last decades due to the increased consumers’ awareness
in a healthy lifestyle. Dried fruits constitute good snacks, in alternative to salty or sweet ones, and food ingredients due to their
taste and nutritional/health benefits. Bioactive molecules are interesting sources to develop functional foods, as they play a major
role in improving the health status and minimizing disease risks. The bioactive compounds most widely discussed in literature
are presented in this review, for example, polyphenols, phytosterols, and prebiotics. Different technologies to dry bioproducts for
producing functional foods or ingredients are presented. New drying techniques for the preservation of bioactive compounds
are proposed, focusing more specifically on dielectric drying. A discussion on the techniques that can be used to optimize
drying processes is performed. An overview on dehydrated plant based foods with probiotics is provided. The microorganisms
used, impregnation procedures, drying methods, and evaluated parameters are presented and discussed. The principal bioactive
compounds responsible for nutritional and health benefits of plant derived dried food products—fruits and vegetables, fruits and
vegetables by-products, grains, nuts, and algae—are presented. Phytochemical losses occurring during pretreatments and/or drying
processes are also discussed.

1. Introduction

In the last decades, views on the role of foods in human
health have changed markedly. Even though a balanced diet
remains a key objective to prevent deficiencies and respective
associated diseases, an excellent nutrition will aim at estab-
lishing the optimum intake of as many food components
as possible in order to promote health or reduce the risk
of diseases. At the beginning of the twenty-first century,
the major challenge of the science of nutrition is, thus, to
progress from improving life expectancy to improving life
quality. On the road to an excellent nutrition, functional

food is an interesting and stimulating concept, as much
as it is supported by sound and consensual scientific data
generated by the recently developed functional food science.
This aims at improving dietary guidelines by integrating new
knowledge on the interactions between food components and
body functions and/or pathological processes.

The emergence of bioactive compounds with health
benefits offers an excellent opportunity for food scientists
to depict their role in health. Despite the mechanisms of
bioactive substances in physiological functions not being yet
fully depicted, their addition in food products is recognized
as holding high potential to decrease disease risk [1, 2]. The
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incorporation of bioactive compounds, such as vitamins, pre-
biotics, carotenoids, phenolic compounds, and phytosterols,
in food systems provides a way to develop novel functional
foods that may present health benefits or reduce the risk of
disease [3].

Functional foods could be (i) usual foods with naturally
occurring bioactive substances (i.e., dietary fibre), (ii) foods
supplemented with bioactive substances or microorganisms
(i.e., antioxidants, probiotics), and (iii) derived food ingredi-
ents introduced to conventional foods (i.e., prebiotics). Itmay
also be referred that functional foods are not medicines, such
as pills or capsules, but are consumed as part of a normal daily
diet.

The effectiveness of functional foods in preventing dis-
eases depends on preserving the stability, bioactivity, and
bioavailability of the active compounds [4]. This represents a
great challenge because only a small proportion of molecules
remains available after oral administration, usually due to
insufficient gastric residence time, low permeability, and/or
solubility in the gut, as well as instability under conditions
encountered in food processing or in the gastrointestinal
tract [5]. Dehydration of functional foods is an alternative
to make food products with longer shelf life, and easier
transportation and manipulation. However, the process of
drying food materials is extremely complex, involving cou-
pled transient mechanisms of heat and mass transports
accompanied by physical, chemical, structural, and phase
change transformation [6]. Therefore, the production of
dehydrated functional food will require food formulations
and production techniques to provide protectivemechanisms
that maintain the active molecular form until the time of
consumption and its release in the physiological target within
the organism [7, 8].

The objectives of this manuscript are to present different
technologies to dry bioproducts for producing functional
foods or food ingredients rich in bioactive compounds, to
describe new drying technologies for the preservation of
bioactive compounds, focusingmore specifically ondielectric
drying, and to discuss the techniques that can be used to
optimize drying processes. Moreover, this review presents an
overview on dehydrated plant based foods with probiotics.

2. Functional Foods

According to the International Life Sciences Institute (ILSI), a
food might be considered functional when consumed as part
of a normal food pattern and that exerts one or more target
functions in the human body, thereby improving health status
or minimizing disease risk [9]. Several organizations admit
that functional foods are “foods or ingredients of foods that
provide an additional physiological benefit beyond their basic
nutrition” [10]. It is important to distinguish functional food
from nutraceutical.

Due to their importance, scientific research has exten-
sively been developed during the last decade, producing
many advances for functional foods (Figure 1).

The market of functional foods has experienced an
amazing growth of around 100% from 2010 to 2017 due
to the increased consumers’ awareness and the interest
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Figure 1: Number of published articles, from 2000 to 2016, related
to the concepts of “Functional food,” “Probiotics,” “Prebiotics,” and
“Dehydrated functional food” (Web of Science, 2017) [11].

in promoting healthy diets and lifestyle. As examples of
already marketed functional foods, we cite the whole grains
and fibre breads (natural products), calcium-fortified milk,
vitamin D-fortified milk and vitamin C-fortified fruit juices,
margarine with phytosterols, prebiotics (chicory roots and
garlic), probiotics (yogurt and kefir), and eggs with increased
omega-3 produced by altering chicken feed (enhanced com-
modities) [12]. According to Fito et al. [13], the most frequent
ways of producing functional foods are (a) improvement
of conventional natural products, that is, plants and animal
production (i.e., eggs with a lower cholesterol content); (b)
genetically modified products (i.e., rice with enhanced 𝛽-
carotene content); (c) addition of functional ingredients to
the foods (i.e., breakfast cereals and bread); and (d) matrix
engineering (i.e., vacuum impregnation).

The development of functional foods turns out to be
increasingly challenging, as it has to fulfil the consumer’s
expectancy for products that are simultaneously relish and
healthy. Functional ingredients, such as purified bioactive
compounds or concentrated extracts from natural sources,
can be incorporated into conventional foods, providing
novel functional product categories and new commercial
opportunities. However, the challenge of ensuring that func-
tional ingredients remain stable and active and bioavailable
after food processing and storage endures. Therefore, food
industry developers have to takes into consideration many
variables to develop functional products, such as sensory
acceptance, stability, price, functional properties, and conve-
nience.

2.1. Bioactive Compounds in Functional Foods. Recent trends
have demonstrated that bioactive molecules are interesting
sources to develop many functional foods, as they play a
major role in the improving health status and minimizing
disease risks. Nutritionists and biomedical and food scientists
areworking together to discover newbioactivemolecules that
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have increased potency and therapeutic benefits [14]. These
bioactive compounds include vitamins, prebiotics, bioactive
peptides, carotenoids, phenolic compounds, phytoestrogens,
glucosinolates, phytosterols, fatty acids, and structured lipids,
which are already naturally present in foods, or can be added
to conventional foods to produce new functional foods.These
bioactivemolecules can be obtained either by extraction from
natural sources or by chemical and biotechnological syn-
thesis. In the following the most widely discussed bioactive
compounds in literature are summarized, for example, phe-
nolic compounds, phytosterols, and prebiotics. Probiotics are
discussed as well while bioactive ingredients for functional
foods.

2.1.1. Phenolic Compounds. Phenolic compounds are plant
secondary metabolites commonly found in plants and
derived products [15].These compounds have diverse biolog-
ical activity, being mainly acknowledged for their preventing
action against the damage caused by oxidative stress. Due
to their several physiological roles, phenolic compounds are
essential for the human diet and health [16]. For example,
phenolic acids may be about one-third of the phenolic
compounds in human diet, where these substances have a
high antioxidant activity [17].

Flavonoids are the most common and widely distributed
group of plant phenolic compounds. They comprise a
large class of plant secondary metabolites with relevant
action on the plant defense system, having been reported
as important constituents of the human diet [18]. These
compounds have attracted interest due to the discovery
of their pharmacological activities and health regulation
function. Regarding their biological activity, they were previ-
ously reported to have antioxidant, hepatoprotective, antibac-
terial, anti-inflammatory, anticancer, and antiviral effects,
besides inhibiting lipid peroxidation [19]. When added to
food products, flavonoids are responsible for preventing
fat oxidation and protecting vitamins and enzymes, while
also contributing to food sensorial properties. Tannins are
polymeric flavonoids that form the anthocyanidins pigments
[20]. Although the antioxidant activity of tannins has been
less reported than the activity of flavonoids, recent research
studies have shown that the degree of polymerization is
related to the antioxidant activity: in condensed and hydrol-
ysed tannins of high molecular weight, this activity can
be up to 15–30 times superior to that attributed to simple
phenols [21]. As it would be easily anticipated, considering
the diverse biological activity of phenolic compounds, their
incorporation into food products has been largely studied.
Some of the most relevant examples include meat and fish
products, pasta [22, 23], ice cream, cheese, yogurt, and other
dairy products [24, 25].

2.1.2. Phytosterols. Phytosterols, which include plant sterols
and stanols [26], are currently among the most successful
phytochemicals for the development of functional foods with
unique health claims [27].When incorporated as a functional
food ingredient, plant sterols and stanols are frequently
esterified with a fatty acid ester to increase the solubility
in the food matrix [28]. Furthermore, dietary phytosterols

were reported as inhibiting the uptake of both dietary and
endogenously produced cholesterol on the intestinal cells and
several studies suggest a protective role of phytosterols against
colon, prostate, and breast cancer [29]. Phytosterols have
been included in several food matrices with different degrees
of effectiveness [30]. While their incorporation in chocolate,
orange juice, cheese, nonfat beverages, meats, croissants and
muffins, oil in bread, and cereal bars was notmuch efficient in
cholesterol lowering, the results were more satisfactory when
added to fat spreads, mayonnaise, salad dressings, milk, and
yogurt [31].

2.1.3. Prebiotics. The International Scientific Association for
Probiotics and Prebiotics (ISAPP) defined a prebiotic as a
“selectively fermented ingredient that allows specific changes
both in the composition and/or activity in the gastrointestinal
microflora that confers benefits upon host wellbeing and
health” [32].This definition expands the concept of prebiotics
to possibly include noncarbohydrate substances, applications
to body sites other than the gastrointestinal tract, and
diverse categories other than food. Actually, health effects of
prebiotics are evolving but, currently, they include benefits
to the gastrointestinal tract (i.e., inhibition of pathogens,
immune stimulation), cardiometabolism (i.e., reduction in
blood lipid levels, effects upon insulin resistance), mental
health (i.e., metabolites that influence brain function, energy,
and cognition), and bone (i.e., mineral bioavailability). Cur-
rently established prebiotics are carbohydrate-based, but
other substances, such as polyphenols and polyunsaturated
fatty acids converted to the respective conjugated fatty acids,
might fit the updated definition, assuming convincing weight
of evidence in the target host. To be an efficient prebiotic, a
molecule should possess some qualities such as it should not
be hydrolysed or absorbed in the upper part of the gut, gut
microflora should consume it, and beneficial bacteria of colon
should be stimulated by it [33].

Most prebiotic candidates identified today in the world
belong to saccharides group and can be classified according to
its number of monosaccharide’s units forming the molecules
(Table 1). The major prebiotics established in the market are
inulin, fructooligosaccharides (FOS), and galactooligosac-
charides (GOS) (Table 2). Inulin and FOS,GOS, and lactulose
are three major marketed prebiotics.

Industrially, inulin is most often extracted from chicory.
The structural relatives of inulin and FOS have been the
best-documented oligosaccharides for their effect on intesti-
nal bifidobacteria and are considered important prebiotic
substrates. They are produced in large quantities in several
countries and are added to various products such as biscuits,
drinks, yogurts, breakfast cereals, and sweeteners. Inulin
occurs naturally in Western foods such as onion, asparagus,
leek, garlic, wheat, and artichoke, although to a lesser extent
than in the commercial source chicory (Cichorium endivia).

Inulin and oligo-fructose proved to be the most widely
examined prebiotic compounds with the most important
prebiotic efficacy [36]. Now, inulin is gradually being used
in functional foods, particularly in a complete variety of
dairy products to enhance the intensification of the bene-
ficial intestinal bacteria [37]. Drabińska et al. [37] studied
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Table 1: Classification of potential prebiotics [34].

Origin
Disaccharides

Lactulose
Synthetic: enzymatically from

lactose
Oligosaccharides

Fructooligosaccharides (FOS) Enzymatic hydrolysis of inulin

Galactooligosaccharides (GOS)
Naturally in human breast milk
Enzymatic conversion of lactose
(GOS-LA) or lactulose (GOS-LU)

Xylooligosaccharides (XOS)

Naturally in bamboo shoots, fruits,
vegetables, milk, and honey

Enzymatic hydrolysis of xylan containing
lignocellulosic materials

Isomaltooligosaccharides (IMOS)
Naturally in sake, soy sauce,
honey, sugarcane juice and

derived products

Arabinoxylan oligosaccharides (AXOS)
Enzymatic hydrolysis of

arabinoxylan (part of fibre fraction
of cereal grain)

Polysaccharides
Inulin

Chicory root, wheat, barley, onion
and garlic

Table 2: Example of marketed prebiotics [35].

Food product Company Prebiotics Dosage form
Nutren Fibre� Nestle Inulin Powder

Miracle Fibre The Vitmin Shoppe,
North Bergen, NJ Inulin Powder

Kal NutraFlora
FOS

Nutraceutical Corp, Park
City, UT

Short-chain
fructooligosaccharides Powder

Solaray NutraFlora
FOS Nutraceutical Corp Short-chain

fructooligosaccharides Capsules

Fiber Choice GlaxoSmithKline,
Philadelphia, PA Inulin Chewable tablet/drops

Smart Fiber Stixx Intelligent Nutrition
LLC, New Orleans, LA Oligofructose and inulin Powder

Balance, Prebiotic
Fibre pHion

Inulin fibre; psyllium
seed husk

(Plantago ovata)
Powder

Organic, Inulin Now Foods Organic inulin (FOS) Powder
Frutafit�HD Sensus Inulin FOS Powder
Frutalose� L85 Sensus Oligofructose Syrup
Vivinal GOS Friesland Galactooligosaccharides Syrup

the addition of inulin to gluten-free products. The authors
showed that the new enriched flour has the potential to
improve the technological properties and sensory perception
of the obtained products. Palatnik et al. [38] developed a
novel reduced-fat cheese from partially skimmed bovine
milk with the addition of Agave fructans. The new product
with fructans showed an appropriate moisture and protein
retention. The sensorial aspects, including colour, did not
show significant difference in comparison with the control
samples, indicating that the fructans did not affect these
parameters. Even though it would be difficult to mimic

completely a full-fat cheese after fat has been removed, the
presence of fructans in reduced-fat formulations suggests an
acceptable likeness in comparison with the structure and
general characteristics of the full-fat control cheese.

Various prebiotic dairy desserts having low fat content
have been prepared using inulin as a prebiotic, in which
inulin supplementation not only presented a prebiotic effect
but also reduced the fat content and sugar content (12%
reduction) without affecting its acceptability to consumers
[39]. As inulin is metabolized in different parts of the large
intestine (short-chain inulin in the proximal colon portion
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and long-chain inulin in the more distal colonic portion),
the use of a blend of short and long-chain inulin to increase
fermentative and prebiotic effects is suggested in several
nutritional studies [40, 41]. Although lactulose was used
originally as a laxative [42], it has also received attention
as a potential prebiotic. Lactulose increased lactobacilli
and bifidobacteria and significantly decreased Bacteroides in
mixed continuous fecal culture [43], although total bacterial
numbers decreased. Lactulose has been consistently found to
have prebiotic potential in human trials. Although lactulose
looks to be a very promising prebiotic, it is not yet widely
distributed as such. It has an established market as a medical
product and would seem to have much value in the food
sector.

2.2. Probiotics as Bioactive Ingredient for Functional Foods.
Probiotics are viablemicroorganisms, such as lactobacilli and
bifidobacteria, that benefit the host by improving the intesti-
nal bacterial balance [44]. Multiple reports have described
their health benefits in gastrointestinal infections, antimicro-
bial activity, improvement in lactose metabolism, reduction
in serum cholesterol, immune system stimulation, antimu-
tagenic properties, anticarcinogenic properties, antidiarrheal
properties, improvement in inflammatory bowel disease,
and suppression of Helicobacter pylori infection, by addi-
tion of selected strains to food products [45]. Because of
their perceived health benefits, probiotic bacteria have been
increasingly incorporated into a range of functional foods
including yogurts, cheeses, ice cream, milk powders, and
frozen dairy desserts [46].

For industrial applications, probiotic strains have to
respond to several criteria. Barbosa and Teixeira [47] pro-
vided valuable criteria.

Probiotic status assessment requires demonstration
through human studies, and a scientific and technical
guidance in presenting applications for health claims on
food has been provided by the EFSA (Reg. EC 1924/2006).
The EFSA has rejected all health claim applications on
probiotics since 2008, which reflects the need for more
scientific evidence and well-designed human intervention
studies. Contrary to the European standard, Canada has a
positive list of species that can be marketed as probiotics.
This list represents a core group of well-studied species likely
to contribute to a healthy gut microbiota [48].

Each microorganism present in probiotic products must
be identified at species and strain level, according to the Inter-
national Code of Nomenclature, and its microbial genome
must be completely sequenced. This allows the identifica-
tion of every single gene involved in bacterial metabolism
and its function. Consequently, the safety of food products
and, above all, of commercial probiotic strains should be
evaluated before their launch on the market. Generally, the
guidelines require (i) a minimum concentration of 109 cfu
of live microorganisms/daily dose on labels (even less if the
usefulness of this lower dose has been clearly shown and
supported at scientific experimental level); (ii) the identifica-
tion of each probiotic strain by integrating phenotypic and
genotypic characterization; (iii) the absence of pathogenic
factors [49].

Currently, most of industrial functional foods containing
probiotics are mainly found in dairy products with limited
shelf life and are not suitable for consumers dealing with
lactose intolerance [50]. The microorganisms most used
in commercialized probiotic foods belong to genera Lacto-
bacillus (Lactobacillus plantarum, Lactobacillus acidophilus,
and Lactobacillus rhamnosus) [51, 52] and Bifidobacterium
(Bifidobacterium bifidum, Bifidobacterium longum) [53, 54],
which belong to the group of lactic acid bacteria. Infrequently,
other bacteria (Enterococcus faecium, Lactococcus lactis) [55,
56] and yeasts (Saccharomyces boulardii) [57] may also be
used as probiotic strains (Table 3).

Leone et al. [59] studied four different conditions for
the incorporation of Lactobacillus casei in dried yacon
(Smallanthus sonchifolius), which was crushed in the form
of flakes. The temperature of 25∘C was the most appropriate
for the incorporation of probiotics in dried yacon at the end
of the 56 days. Granado-Lorencio and Hernández-Alvarez
[60] stated that adding probiotics to fruit-based and cereal-
based matrices was more complex than formulating dairy
products, because the bacteria need protection from the
acidic conditions in these media. To solve this problem,
microencapsulation technologies have been developed and
successfully applied using various matrices to protect the
bacterial cells from the damage caused by the external
environment [61]. Puupponen-Pimiä et al. [62] proposed
the encapsulation of probiotics to enhance their viability
and stability in food matrices and controlled release during
human digestion. A recent industrial application, the Amer-
ican company Kraft� launched in 2008, produced the first
mass-distributed shelf stable probiotic nutrition bar, by using
the bacteria L. plantarum 299v [63].

Borges et al. [64] studied the effect of processing stages
to develop fruit powders (apple, banana, and strawberry)
enriched with a probiotic strain (L. plantarum 299v). The
authors found that hot air drying of the fruit followed by
addition of spray-dried probiotic culture was better than hot
air drying of the fruit incorporated with the probiotic culture.
The viability of L. plantarum 299v was considerably higher
during spray drying, and fruit powders with a microbial
content suitable for a probiotic food (108–109 cfu g−1) were
obtained.

In all the above cases, the rate of recovery of the pro-
biotics to the viable state is significantly influenced by the
rehydration conditions (temperature, volume of rehydrating
media, and rehydration time), physical properties of the
material to be rehydrated, and properties like osmolarity,
pH, and nutritional energy of the rehydration solution. The
rehydration temperature is a critical factor influencing cell
recovery of freeze-dried and spray-dried probiotics. Various
studies have indicated that there is not an “ideal” single
point rehydration temperature for the optimum growth of
cultures. For thermophilic cultures, temperature between 30
and 37∘C was found best for posthydration viabilities, while
the optimum range for mesophilic bacteria is 22–30∘C. The
rehydration temperature should not be higher than 40∘C in
any case [58].
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Table 3: List of probiotic strains used in commercial applications [58].

Company name Source/product Strain

Chr. Hansen

Produces natural ingredients (food
cultures, probiotics, enzymes and
colors) for the food, beverage,

dietary supplements and
agricultural industry

L. acidophilus LA1/LA5; L.
delbrueckii ssp. bulgaricus; Lb12;
Lactobacillus paracasei CRL431;

Bifidobacterium animalis ssp. lactis
Bb12

Danisco
Activities in food production,
enzymes, other bioproducts and

pharmaceutical industries

L. acidophilus NCFMs; L.
acidophilus La

L. paracasei Lpc; Bifidobacterium
lactisHOWARUTM/Bl

DSM Food
Specialties

Manufacturer of food enzymes,
cultures, savory ingredients and
other specialties for the food and

beverage industries

L. acidophilus LAFTIs L10; B. lactis
LAFTIs B94; L. paracasei LAFTIs

L26

Nestle

Manufacturer of baby food, medical
food, bottled water, breakfast

cereals, coffee and tea,
confectionery, dairy products, ice
cream, frozen food, pet foods, and

snacks

Lactobacillus johnsonii La1

Snow Brand Milk Dairy products
L. acidophilus SBT-20621; Products

Co. Ltd.
B. longum SBT-29281

Yakult Probiotic drinks L. casei Shirota; Bifidobacterium
breve strain Yaku

Fonterra Dairy products B. lactisHN019 (DR10); L.
rhamnosus HN001 (DR20)

Danone
Business lines: fresh dairy products,

waters, early life nutrition and
medical nutrition

L. casei Immunitas; B. animalis
DN173010

Essum AB

Manufacturer of probiotic bacteria
that are distributed to companies
that produce pharmaceuticals,
dietary supplements and food

L. rhamnosus LB21; Lactococcus
lactis L1A

Institute Rosell
Probiotics, dairy cultures, lactic
bacteria, acidophilus & lactic

starters

L. rhamnosus R0011; L. acidophilus
R0052

Probi AB Probiotics research and
development

L. plantarum 299V; L. rhamnosus
271

3. Advances in Dehydration Technologies
towards Healthy Products

3.1. Drying and Its Consequences on the Product Quality and
Energy Consumption. Drying is probably the most impor-
tant unit operation for most industrial processes, especially
because of its impact on the quality of the end product and
on energy consumption [65]. Thus, according to Chua et
al. [66], this process would be the most energy-intensive,
among all industries, with consumption of dried foods about
10–25% of total consumption. In most cases, drying involves
the application of different temperature conditions, which
may cause irreversible damage. In the case of freeze drying,
the temperature applied can be −30∘C or −80∘C, and in the
case of other methods such as air drying or spray drying,
the temperatures can be 45–80∘C or 125–140∘C, respectively.
Changes may occur in cellular structures (cell membranes)

constituting probiotics cells, and in key properties responsible
for the product functionality (cell membrane permeability,
mechanical strength of the cell membrane assembly, etc.)
[58, 67, 68]. Moreover, drying might cause changes in the
chemical structures responsible for the biological value of
various bioactive components (protein, fat) [67]. Besides,
drying with hot air can induce reactions, mainly of oxidation,
which decrease the functional value of nutritive compounds
(vitamin, antioxidant). This must be put into perspective fac-
ing the high reactivity of phytochemicals leading to various
degrees of degradation during processing [69].

Since the drying process always comprises a second
phase, which is generally long to very long, depending on
the hygroscopicity of the product, it is mainly responsible
for the numerous adverse effects that are linked to drying.
Most organic products are, in fact, deeply modified by drying
(colour, taste, texture, nutritional characteristics, functional
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properties, etc.) [70]. The bioactive compounds are, thus,
particularly altered during this drying phase. Therefore,
obviously this phase and/or its consequences on the quality
of the dried products are sought to be reduced by new drying
techniques and optimization of drying processes.

3.2. Conventional Techniques Used for Drying Foods or Func-
tional Ingredients. The most commonly used techniques to
produce fruit or vegetable powder are freeze drying, foam
drying, drum drying, and spray drying [71]. Freeze drying is
the technique that allows the best preservation of phytochem-
icals and their bioactivity in fruit and vegetable powders [71].
It is themost widely used technique for drying probiotics, but
in view of its high operating costs and low productivity [71],
spray drying seems to be a good alternative for production of
probiotics powder at industrial scale [72].

In spray drying, it is often necessary to use a carrier
agent for the product to be atomized [73]. Shishir and Chen
[71] reported about thirty studies in the literature on the
spray drying of various fruit or vegetable juices, showing
that different phytochemicals (anthocyanins, total flavonoids,
total polyphenol, gingerol, etc.) were more or less preserved
depending on the type and concentration of the carrier agent
used (maltodextrin, Arabic gum, inulin, mixture of carrier
agents, etc.).

Spray drying is also used for the drying of probiotics.The
carrier agents allow the preservation of molecules of interest
or probiotics by their encapsulation effect [74]. Concerning
probiotics, the main question is the viability of the cells after
drying. Spray drying to produce probiotic fruit powders will
be discussed in Section 4.

3.3. Drying Kinetics versus Kinetic Degradation of Indicators of
Interest. Alteration of product quality during drying is linked
to the time-temperature couple. Low temperatures tend to
have a positive effect on the quality of the final product,
which is generally found in low temperature processes such as
freeze drying or vacuumdrying. Similarly, short drying times
allow better preservation of bioactive compounds [69]. This
situation is found for fast drying processes such as spray or
drumdrying. In general, degradation ofmost phytochemicals
and probiotics follows first-order or a pseudo first-order
kinetics [69]. Hence, good fits with first-order kinetic models
applied to thermal degradation of different phytochemicals
were obtained by several authors. This is the case for the
degradation of anthocyanins [75–78] as well as polyphenols
[75, 78, 79]. However, simple first-order models are not
suitable when the residual concentration of the bioactive
compound is different from 0 for a very long heating time.
The kinetics of degradation of the bioactive compound is
then described by an equation called first-order fractional
conversion kinetic model [80].

Whatever the order of the thermal degradation reaction,
the rate constant of the kinetic depends on the temperature
according to the Arrhenius equation [75–77, 79] and nor-
mally the rate of degradation of biocompounds or probiotics
is higher at high temperatures. However, during convective
drying, it is possible to obtain a lower degradation of some
bioactive compounds, such as polyphenol (total polyphenol

content, TPC) and flavonoids, at higher temperatures [81].
The same trend was observed for TPC loss in convective
drying of carrot peels [82] and blueberries [83]. Hence,
the residual content of bioactive compounds after drying
depends at least on three parameters: its initial content,
the temperature, and the duration of the drying [78–80].
Therefore, to minimize the degradation of bioactive com-
pounds or probiotics, drying processes at low temperature
(freeze drying, vacuumdrying)may be used. However, under
these conditions the drying time will necessarily be long.
Therefore, the alternative is to use short dryingmethods, such
as spray drying, drum drying, dielectric drying, microwave
drying, and infrared (IR) drying. In these cases, the drying
temperature will necessarily be high, but the duration will
be short, which makes it possible to limit the degradation of
biocompounds and probiotics. Clearly, the kinetics of drying
must be sufficiently rapid with respect to the kinetics of
degradation of the compounds of interest. It is approximately
one of the targeted goals with advanced drying techniques.

3.4. AdvancedDryingTechniques. Even though freeze drying,
vacuum drying, or spray drying techniques limit the degra-
dation of bioactive compounds, they are either unsuitable for
the drying of certain products or have too low productivity
and excessively high operating cost to be implemented at
industrial scale. Conversely, the other techniques of conven-
tional drying by hot air (cabinet, tunnel, etc.) have a strong
negative effect on the retention of bioactive compounds.
For this reason, advanced drying techniques have been
proposed for many years. The majority of these techniques
have one thing in common, the type of energy used which
is always of electromagnetic (EM) nature: radio frequency
(RF), microwave (MW), IR, and ultraviolet (UV). These new
techniques can be used alone or in combination with one
another or with conventional techniques.

3.4.1. Dielectric and Microwave Drying. Actually, from a
physical point of view, the notion of dielectric heating can
be applied to all frequencies from high frequencies to IR.
However, from a practical point of view, the term dielectric
heating is reserved for frequencies between 1 and 100MHz,
while the MW heating is between 300MHz and 300GHz
[84].

Throughout MW drying of high moisture content prod-
uct, the high energy density absorbed results in a rapid
increase in temperature and an instantaneous vaporization
inside the product [65]. The internal pressure increases and
expulsion of liquidwater towards the surface occurs [84].This
phenomenon has been observed by many authors in the case
of different products (cotton, wood, slices of oranges, apple,
carrot, etc.). This outflow of water limits the phenomenon
of crusting and browning of the surface contrary to what is
observed in conventional drying. This also results in high
drying rates leading to considerable reduction in the drying
time. Even if the drying speed is always faster than that of hot
air drying, the drying efficiency is limited due to the rapid
saturation of the air, whose temperature is relatively low, at
the surface of the product. For this reason, microwaves are
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generally associated with hot air to improve water transfer at
the product surface.

At this stage, two fundamental points radically differ-
entiating dielectric drying from hot air drying should be
mentioned: (1) during convective drying by hot air, the
surface temperature of the product evolves until reaching the
air temperature at the end of drying and it is worth noting
that it can in no case exceed this temperature. This explains
why it is sufficient to dry thermosensitive products at low
air temperature to prevent their alteration. Regarding MW
drying, there is no real limit to the temperature rise of the
product except temperatures leading to its carbonization and
its destruction. (2)Given that drying involves removingwater
from a product, this action will have a decisive effect on how
the product will behave vis-a-vis the EMwave during drying.
Since water is the main molecule of the product concerned
by the absorption of EM energy, the dielectric properties (𝜀
and 𝜀) of the product will tend to evolve during drying. For
most products, the values of these properties will drop during
the two phases of the drying process [84]. 𝜀 falls very quickly
throughout the drying of the free water (1st phase), and, then,
𝜀 decreases with a lower slope after the critical moisture
content, corresponding to the beginning of drying of the
bound water. The critical moisture content is between 10 and
40% (dry basis) for highly hygroscopic products and about 1%
for nonhygroscopic products [84]. From what has just been
said and from point (1), it could be concluded that this is
rather positive for controlling the temperature of the product
and therefore its quality at the end of drying. Things are not
so simple because several other elements must be taken into
consideration. Firstly, if the applied power is kept constant
during drying (as is the case in most studies in the literature),
the energy density delivered to the product, which can be
evaluated by the specific power applied (i.e., the ratio between
the applied MW power and the mass product) increases
during drying. Koné et al. [85] showed that this evolution
was exponential with drying time in the case of drying of
tomatoes by microwaves/hot air. In other words, more and
more energy is being supplied to the product when less and
less is needed. The consequence of this is the phenomena
of thermal runaway reported in many studies on microwave
drying. In addition, another aspect must be considered,
namely, the change of the thermal properties of the product
during drying. Indeed, the thermal properties of foods also
depend on their moisture content. Thus, the specific heat
and the thermal diffusivity of the product decrease during
drying. Hence, it takes less and less energy to heat the product
and similarly, an area of the product that has undergone
overheating will find it increasingly difficult to evacuate its
overflow of heat by diffusion. All these elements make it
possible to understand that even if the dielectric properties of
the product decrease during drying, phenomena of thermal
runaway during microwave drying may arise [86]. The only
solution to control the quality of the product during a
microwave drying is therefore to control the energy supply
by adapting the specific power as a function of the moisture
content by acting on the power applied. By applying such
a strategy, Koné et al. [85] succeed in drying of tomato by
microwave/hot air with an improvement in the colour of the

dried product and in the residual content of lycopene. We
may conclude by saying that the management of the energy
supplied to the product during drying and the optimization
techniquesmay be useful for the control of microwave drying
in terms of organoleptic and nutritional qualities and energy
consumption.

3.4.2. Hybrid Drying Techniques. More and more studies
have suggested the synergistic effects of the combination
of different drying techniques on the quality of the dried
product and on the performance of the drying process
(drying time and energy consumption). Some hybrid drying
(HD) techniques are presented below.

(i) Microwave-Assisted Hot Air Drying (MWHAD). The sim-
plest combination imaginable for microwave drying is its
combination with hot air drying. It is also the one that is by
far the most used according to the literature. Schiffmann [84]
retains three possiblemodes from a perspective of application
at industrial scale. (1) Preheating. The microwaves are used to
preheat the product and, subsequently, the drying continues
with hot air only. The instantaneous generation of steam
inside the product due to the absorption of the MW energy
forces the flow of water towards the surface, thus allowing
conventional hot air drying to operate under conditions of
maximum efficiency. (2) Booster Drying. Drying starts with
hot air only and the MW energy is fed when the drying
rate begins to fall. The surface of the product being dry at
this point, by the effect of pumping on the internal water of
the product, the MW energy leads to the rewetting of the
surface, which makes it possible to maintain a high drying
rate. (3) Finish Drying. The falling phase of the drying rate is
responsible for the greatest degradation of the product quality
due to its length (more than two-thirds of the total drying
time). By introducing microwaves at the beginning of this
phase, internal energy generation allows the bound water to
be pushed towards the product surface, which increases the
drying rate and thus reduces the drying time.

This combination of microwaves and hot air results in an
improvement of the quality of the dried product, as well as
a reduction of the drying time and energy consumption [65,
84].

(ii) Microwave-Assisted Freeze Drying (MWFD). Freeze dry-
ing provides a good quality of the dried product by preventing
the degradation of the thermosensitive compounds due to
the low temperature used for the sublimation of water. The
major drawback of this technique is the very long drying
time required. Hence, it entails a low productivity and a large
consumption of energy [87].The combination of microwaves
with freeze drying makes it possible to shorten the drying
time (e.g., 40% in the case of the drying of protein of duck egg
white) without modification of the nutritional quality [87].

(iii) Microwave-Assisted Vacuum Drying (MWVD). Like
freeze drying, vacuum drying preserves the characteristics of
the dried product, but it also has the same drawbacks, namely,
a long drying time and a strong energy consumption. Thus,
the combination of microwaves with vacuum drying allows a
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better anthocyanin retention and a better antioxidant activity
in the case ofMWVDof blueberries [87]. In general, MWVD
makes it possible to obtain dried products of a quality as good
as those obtained by freeze drying with a colour closer to the
fresh product in the case of tomato, carrot, and banana [88].

(iv) Microwave-Assisted IR Drying (MWIRD). IR radiation is
characterized by a shallow depth of penetration inside the
product. Therefore, once the EM energy is absorbed at the
surface it is transmitted to the interior of the product by
conduction, which brings IR drying closer to conventional
hot air drying.The combination of IRwithmicrowaves allows
a faster and more homogeneous heating of the product and
a quicker drying of the product with an improved quality.
Thus, in the case ofMWIRD of raspberries, a 2.4 times higher
crustiness, a 25.63% higher rehydration, a 17.55% additional
retention of anthocyanins, and a 21.21% higher antioxidant
activity were obtained in relation to IR drying [88].

(v) Ultrasound-Assisted Drying (UAD). Ultrasonication is
one of several techniques used in the concept of hybrid
processes. It has already been applied to drying, among
other processes [89]. The mechanical energy provided by
ultrasound contributes to the reduction of internal and exter-
nal resistances to mass transfer and, particularly, to water
transfer, thanks to expansion and compression cycles (sponge
effect) [81]. In addition, microstreaming is produced at the
interfaces because of high-intensity airborne ultrasound,
which reduces the diffusion boundary layer. This leads to
diffusion enhancement and, hence, to mass transfer increase
[81, 90]. Musielak et al. [91] indicate that the first studies
on the use of ultrasound in drying were carried out in
the 1950s. However, even if there is a renewed interest on
this technology in recent years, it remains, for the moment,
limited to laboratory scale [90].

Numerous studies show the interest of combining ultra-
sound with a convective drying process to reduce energy
consumption and drying time as well as to improve
the quality of the dried product. Szadzinska et al. [92]
compared a convective drying (CVD) to different hybrid
drying processes—convective-ultrasonic drying (CVUD),
convective-microwave-ultrasonic drying (CVMWUD), and
convective-microwave drying (CVMWD)—in drying of
strawberry. In all cases, the hybrid processes made it possible
to obtain lower energy consumption and shorter drying time
than the convective drying. The energy consumption gain
was only 6.4% in CVUD, while it reached about 82% in
CVMWUD, and even 89% in CVMWD. Likewise, the drying
time was reduced by 52% and 93% in CVUD and CVMWD,
respectively.

3.5. Drying Optimization. The combination of several drying
techniquesmakes it possible to obtain synergistic effects both
on the preservation of the bioactive compounds and on the
energy consumption. However, it is necessary to optimize
these processes since many factors of the process can have a
decisive impact on the quality of the dried product. In the
past years, the food processes optimization was performed
by observing the effect of variation of a single variable at

a time on an experimental response, keeping constant all
others. This technique has the disadvantage of requiring
numerous tests and it does not take into account the effect of
interactions between variables on the assessed responses [93].
These difficulties can be circumvented using the Response
SurfaceMethodology (RSM).Thismethod consists in linking
each studied response of the process to the different inputs
(the factors) by means of a quadratic model [93]. This
method is regularly used for the optimization of drying
processes as reported by different authors. The goal pursued
in these different studies was to optimize drying conditions
for preserving certain bioactive compounds such as beta-
carotene and lycopene, phenolic compounds and antioxidant
activity [94], vitamin C, flavonoids, and anthocyanins [95].

In fact, RSM is a relatively efficient method for the
optimization of drying processes or others. Nonetheless, it
has some limitations: (1) it uses a priori models. Indeed,
whatever the response studied, a quadratic model is postu-
lated, which is not always adequate. (2) The number of tests
to be carried out increases very quickly with the number
of factors. Thus, a three-factor Box Behnken Design (BBD)
requires 13 experiments whereas it is necessary to carry out
29 experiments for a four-factor BBD; (3) the factors must
be fully independent; (4) the uncontrolled factors of the plan
cannot be taken into account.

These difficulties can be overcome using a method
proposed by Lesty [96] based on a new approach: the
CORICO method (ICOnographic CORrelation). CORICO
is a multidimensional data analysis method that also allows
experimental design analysis. Its peculiarity with conven-
tional optimization software based on the RSMmethodology
is that it does not use a priori models for the responses.
Indeed, it proposes a model only after the data analysis of the
experimental design (ED). Hence, the shape of the models
will be different from one response to another. CORICO
proposes regression models, whose regressors are logical
interactions (AND, exclusiveOR, IF, etc.) between the factors.
Unlike conventional EDs, CORICO accepts that factors are
linked and, moreover, it may take into account noncontrolled
factors. Furthermore, it requires very few tests to establish the
models of the ED. Thus, a CORICO design with five factors
requires only 13 assays against a minimum of 31 assays for a
five-factor Doehlert design.

TheCORICOmethod has recently been used successfully
in the agrofood sector for the optimization of microalgae
drying process [97].

4. Dehydrated Foods with Probiotics

Due to the low stability of probiotic strains, the food industry
is facing a challenge to develop new functional food with
probiotics, especially dehydrated food products. Drying pro-
biotic foods is a challenge as it causes severe loss in viability
of probiotics.

Generally, food products are dried in order to increase
their shelf life at ambient temperature and to reduce the cost
of frozen storage [58]. Hot air drying, freeze drying, spray,
and vacuum drying are the common technologies used for
drying food products. Spray drying is the most common
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and economical method for drying liquid foods. However,
this process leads to a loss of viability of probiotic cells due
to the high temperature, mechanical shearing, dehydration,
and osmotic pressure [98]. On the other hand, freeze drying
maintains the viability of the probiotic cells, but the cost of
the process is one of the limitation for industrial application
[99]. Saarela et al. [100] studied the stability and functionality
of freeze-dried probiotic Bifidobacterium animalis ssp. lactis
E-2010 (Bb-12) cells during storage in juice and milk, using
sucrose as cryoprotectant and low-pH to improve stability.
Recently, fluidized bed drying and radiant energy under
vacuum drying techniques have successfully been applied for
improving the stability of dehydrated probiotics [50, 101].
Noorbakhsh et al. [50] studied the radiant energy under
vacuum technology for producing probiotic enriched apple
snacks. They concluded that this technology, a form of
vacuum microwave dehydration, is a rapid drying method
resulting in productswith unique characteristicswhile retain-
ing biological functions and properties. The retention of
biological activity is enhanced by the low drying temperature
and short drying time. In the case of fruits and vegetables,
the gas and liquid in the intercellular spaces (20–25% of
the total volume) can be removed by means of vacuum
and replaced by diffusion with compounds of interest such
as microorganisms (bacteria L. rhamnosus, for example),
minerals, or other bioactive and nonbioactive compounds
[10]. This would lead to the development probiotic enriched
dried fruits by vacuum impregnation. The apple pieces were
air-dried at 40∘C to a water content of 0.37 kg water kgDM−1
and stored at room temperature for two months [50]. The
content of L. casei viable cells in the dried apple was greater
than 106 cfu g−1, which is similar to that in commercial dairy
products. In an attempt to introduce probiotic properties
to breakfast cereals and similar food products, Patel et al.
[102] confirmed that oat bran contained balanced nutrients
to support a 25-fold L. plantarum propagation within a
range of moisture content from 50% to 58%, after 36 h
of cultivation. They applied the technique of solid-state
fermentation. This technique presents not only the potential
of simple downstream processing but also a more natural
growth environment for the target bacterium. Consequences
of increasedmicrobial growth with lowwater content include
slowdown of the growth of spoilage microorganisms and the
generation of microbial metabolites, which in turn provide
a range of health benefits (Figure 2). On the other hand,
the adequacy of raw materials with regard to probiotics
technology (including finding solutions for the stability and
viability problems of probiotics in food matrices, such as
fruits, cereals, and other vegetables) is certainly the key in the
research and development area for functional food markets
[50].

Some nondairy products with probiotics have been devel-
oped, in order to surpass the two main drawbacks of the
consumption of dairy products, namely, lactose intolerance
and the cholesterol content [104]. In Table 4 are described
some of the dehydrated functional plant foods that have been
developed. Apple is still the preferred base, although other
plant products may be used. Nevertheless, the fruit matrix is
an important parameter to take into account because those

Obesity

Immunomodulation

Dehydrated
functional
foods

Cancer

Acute
gastroenteritis

Lipid
regulation

Mineral
absorption

Figure 2: Health benefits of dehydrated functional foods [103].

more porous fruits seem to facilitate the incorporation of
probiotics in their tissues during immersion [105] and/or
during vacuum impregnation [13]. The probiotics tested
include several bacteria, Lactobacillus spp. and Bifidobac-
terium spp. being among the strains most commonly used.
Besides being generally considered to be safe for consumers,
some Lactobacillus spp. show interesting health effects. For
example, Betoret et al. [106] verified that Lactobacillus sali-
varius incorporated in a low moisture apple snack showed a
potential effect against H. pylori infection.

All studies performed until now tried to create a dry fruit
matrix with a high number of viable probiotic cells (>1 ×
107 cfu g−1) as suggested by Betoret et al. [106] and Rêgo et
al. [107]. To achieve this value, it is important to (i) have a
high cell concentration (approx. 1010 cfuml−1) in the initial
suspension in which the product will be immersed; (ii) guar-
antee a high adherence of the probiotics to the fruit matrix;
and (iii) assure that, after drying, the adhered cells still have
high viability [107]. Furthermore, it is also important that the
impregnation liquid must present certain physicochemical
characteristics, namely: (i) the pH of the impregnation liquid
and the fruitmust be suitable formicroorganisms’ growth; (ii)
the viscosity of the impregnation liquid should also allow flux
inside the pores or intercellular spaces; and (iii) the natural
characteristics of the impregnated fruit should not be affected
[106]. Another important point to consider is the method
used to promote cells adherence because it might influence
their viability. By observing Table 4, vacuum impregnation
is the most used method for probiotics impregnation into
fruit matrices. Nevertheless, Rêgo et al. [107] verified that
apple cubes that had been subjected to immersion under
vacuum presented lower viable numbers of probiotic bacteria
than those cubes subjected to immersion at normal pressure
and, so, no advantage, such as the increase of the number of
adhered cells or the stability during drying, was observed by
using vacuum. Furthermore, the vacuum immersed samples
had worse visual aspect (with more damage) after drying
than immersed samples at atmospheric pressure [107]. When
preparing cylindrically shaped apple samples with probiotics,
Betoret et al. [104] also observed that vacuum impregnation
seemed to decrease the microbial content by one logarithmic
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cycle. Additionally, some works have used osmotic dehy-
dration and pulsed vacuum osmotic dehydration as impreg-
nation methods [108] and it was observed that vacuum’s
application promotes the mass transfer in short-time period
processes [108]. However, the effect of vacuum on probiotic
cell entrapment was variable and depended on the solute
concentration and time.

In order to protect the probiotic cells, fruit juice, milk,
or trehalose may be used [107, 111], making the cells more
resistant to drying and in the human gastrointestinal tract.
Nevertheless, Betoret et al. [104] verified that yeast growth
(namely, Saccharomyces cerevisiae) was not influenced by
the culture media, while the growth of Lactobacillus strain
decreased when milk or commercial apple juice were used.
Furthermore, Leone et al. [111] verified that trehalose did not
have a protective effect on L. casei (LC-01) when incorporated
in dried yacon flakes.

In order to dehydrate foods with probiotics, the most
commonly used equipment are pilot scale air dryers or tray
dryers. In several situations, air drying of the impregnated
samples resulted in a reduction of the microbial content,
although the level of cells was enough to be considered
as probiotic, as stated by Betoret et al. [106] and Ribeiro
[105]. When Noorbakhsh et al. [50] applied air drying, freeze
drying, and air drying + radiant energy under vacuum (REV)
to apple slices impregnated with L. rhamnosus, they verified
that freeze drying protected bacteria better than the other two
methods.

Concerning storage, temperature and time are important
factors to be considered. For example, the bestway to preserve
probiotic cell viability in dried apple cubes or slices was at
4∘C [46, 107]. Nevertheless, Betoret et al. [104] also observed
that cylindrically shaped dried apple samples with probiotics
stored at 20∘C for 15 days kept an adequate microbial load
to achieve the desired probiotic effect. Storage time may
also play an important role because it may be prejudicial
for the survival of probiotics in proportion to its length, as
reported by Leone et al. [111]. The drying method may also
affect probiotics survival during storage. Noorbakhsh et al.
[50] observed a higher survival of L. rhamnosus in apple
slices subjected to air drying + radiant energy vacuum drying
when stored at 25∘C than air drying and freeze drying. They
explained this result based on the different structures that
may be obtained, as well as possible changes in the glassy state
of the dried apple slices. In fact, an amorphous glassy state is
important for the stability of bacteria during storage of dried
cells [112].

Probiotic fruit powders have also been developed, as
presented in Table 5.These powders have longer shelf life and
lower transportation cost and may produce an easy-handling
form that reconstitutes rapidly to a product resembling the
original juice [113]. These powders have been obtained by
spray drying, freeze drying, and spouted bed drying of fruit
juices. Fruit juices atomization is not an easy process because
the powders obtained have tendency to form agglomerates
and become sticky [114], leading to lower product yield and
severe operatingmaintenance problems.Thus, it is important
to adjust the drying temperature, outlet air temperature,
feed flow rate, air drying speed, atomization pressure, and

the use of drying agents to ensure the physicochemical
quality of the powder product [115]. Barbosa and Teixeira
[47] discuss the current knowledge on the different spray
drying parameters to obtain high-quality powders. Spray
drying is commonly used as microencapsulation method;
however, the high temperatures applied might cause injuries
to microbial cells. Good results have been obtained with
freeze drying, as stated by Vikram Simha et al. [113] and
Barbosa et al. [116], when producing probiotic pomegranate
and orange powders, respectively. Spouted bed drying has
also been used in some works because lower temperatures
are applied [117] when compared to spray drying. Alves
et al. [117] observed that spouted bed orange juice dried
samples presented higher viable microbial cell counts than
the spray-dried ones; however, the last ones showed lower
values of moisture content and water activity. Both samples,
spray-dried and spouted bed dried, presented acceptable
glass transition temperatures (Tg), which can assure powder
quality when stored at temperatures below 30∘C [117]. The
encapsulating material is also very important. The common
strategy to spray-dry sticky products is to use wall materials
with high molecular weight [118] such as maltodextrin,
Arabic gum, starch, and gum acacia. Anekella and Orsat
[119] verified that increasing themicroencapsulatingmaterial
concentration increased the survival rate of probiotics. Fur-
thermore, using suitable wall materials such as maltodextrin
can reduce the stickiness to the walls of the spray dryer and
increase the free-flowing nature of the powder [119]. Nev-
ertheless, Chaikham et al. [120] when preparing dehydrated
maoluang juices with probiotics verified that the treatments
with maltodextrin alone showed higher cell loss than the
mixtures of maltodextrin with Tiliacora triandra gum and/or
with inulin, showing these protective effects. Kingwatee et
al. [121] and Pereira et al. [122] also stated that the addition
of inulin with other carriers and gum Arabic combined
with maltodextrin would enhance cells survival, respectively.
Furthermore, powders produced with gum Arabic presented
a higher rehydration time (approx. 9 times) than those
obtained with maltodextrin, probably due to its higher sol-
ubility in water [122]. This is an important property because
the powders with higher rehydration capacity will be easily
reconstituted by the consumers [117]. Another important
point to raise is that Anekella and Orsat [119] also refer that
exposing the probiotics to a sublethal thermal shock before
spray drying might increase the subsequent tolerance to near
lethal thermal stresses. These authors stated that spray-dried
raspberry juices with probiotic cells subjected to a heat shock
treatment had higher viability than nonheat shock treated
cells.

Concerning storage, temperature and powder’s character-
istics are important factors. Barbosa et al. [118] and Pereira
et al. [122] when producing orange and cashew apple juice
powders, respectively, with lactic acid bacteria (LAB) verified
that the powders stored at 4∘C presented higher survival rates
than at room temperature. Furthermore, the highest level of
probiotic bacteria was observed for the orange juice powders
produced at the lowest feed flow rate (0.2 L h−1), probably
due to their low water contents [117]. However, these results
were different to Mestry et al. [126], who when preparing
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Table 6:Main bioactive compounds responsible for nutritional and health benefits of plant derived dried food products (fruits and vegetables,
fruits and vegetable by-products, grains, nuts, and algae).

Bioactive
compounds

Nutritional
benefits Health benefits Dried product References

Polyphenols,
carotenoids,
melanoidins

Antioxidant
activity

Chronic disease
Protection (CVD,
cancer, macular
degeneration)

Stone fruits, apple, figs,
pear, pineapple, kiwi,

berries, carrots
[131–137]

Phenols, indols,
glucosinolates Detoxification Chronic disease

protection

Stone fruits, apple, pear,
pineapple, kiwi, berries,
carrots, cruciferous

vegetables

[137–139]

FOS, GOS,
inulin,
glucan, etc.

Resistant starch,
Prebiotic
content

Immunity boost, colonic
and systemic health

benefits

Chicory, Jerusalem
artichoke, garlic, onion,

asparagus, banana,
broccoli, dandelion

[140]

Beneficial
microorganisms
(Probiotics)

Regulation of
gut microbiota

Immunity boost, colonic
and systemic health

benefits
Anhydrobiotics [141]

carrot and watermelon juices powders, observed that higher
feed rates resulted in higher retention of viability due to the
formation of larger droplets, resulting in less exposure to
higher air temperatures.

5. Health Benefits of Functional
Dehydrated Foods

From the point of view of consumers’ health, dried foods
are a good source of nutrients, minerals (i.e., magne-
sium, potassium, calcium, and/or phosphorus) and vitamins
(i.e., vitamin E, niacin, choline, and/or folic acid), and,
especially, bioactive compounds. In addition, plant derived
foods contain fibre, phytochemicals (phenolic compounds,
carotenoids, and/or phytosterols) [127] (Table 6). In general,
phytochemicals from this type of food are well absorbed
and their bioavailability is high. For example, polyphenols
and tocopherols from nuts and dried fruits have proved to
be rapidly accessible in the stomach, thus maximizing the
possibility of absorption in the upper small intestine [128,
129]. Antioxidants from dried fig can increase the plasma
antioxidant capacity and protect lipoproteins from subse-
quent oxidation, therefore, demonstrating the bioavailability
of antioxidants in dried fruits [130].

Dried fruits constitute a healthy snack, as an alternative
to salty or sweet ones, and food ingredients to other foods
due to their taste and nutritional/health benefits [142]. In
fact, they provide concentrated compounds, such as the
ones mentioned above, since a considerably large quantity
of water is removed from the fresh commodity, through
several different drying technologies. They also combine
this healthy issue with a unique taste and aroma, very
attractive to consumers. In fact, the natural sugars in fruits
(glucose, fructose) are concentrated as well, the dried fruit
becoming sweeter that the fresh equivalent. This type of food
product is in the current dietary recommendations of various
countries. Scientific evidence (epidemiological and in vitro
and in vivo studies) suggests that individuals who regularly

consume great amounts of dried fruits suffer lower incidence
of cardiovascular diseases, obesity, various types of cancer,
type 2 diabetes, inflammation, brain dysfunction, and other
chronic diseases [143–150].

Most chronic diseases involve inflammatory processes.
Additionally, free radicals induce oxidative stress, which leads
to DNA damage and other genetic alterations that may cause
cancer if left unrepaired [151, 152]. As disease prevention is
the key to mitigating the damage caused by these disorders,
the consumption of phytochemicals from fruits, vegetables,
whole grains, and algae, in foods, may decrease the risk of
CVD and stroke [153–158].

Selected dried fruits, rich in specific compounds, such
as amla fruits or Indian gooseberries, avocados, berries,
mangoes, mangosteens, persimmons, prunes, raisins, and
kiwi fruits, may also present cancer chemopreventive effects
[159].

Processing to produce dried fruits significantly decreases
the content (on a dry weight basis) of bioactive compounds,
such as vitamins and phenolic compounds. Pretreatments
before dryingmay also influence the loss of these compounds
during drying. For example, depending on the product, some
vegetables that are adequately blanched before drying may
present less than 5% decrease in the carotenoids content,
while if they are processed without enzyme inactivation, this
reduction is increased to 80% [160]. Dipping in sulphite
and other solutions has also shown to reduce the loss of
vitamins during drying. Lin et al. [161] reported that losses of
vitamin C and carotene were higher during air drying than
with vacuum freeze drying. This may be explained by the
fact that the main losses in vitamins and other substances
occur due to water solubility, heat sensitivity, and enzymatic
oxidation during processing [162], which are absent during
vacuum freeze drying. Most vitamins such as A, C, and
thiamine are heat sensitive; some (A and C) are also sensitive
to oxidative degradation. Sulphuring can destroy thiamine,
and riboflavin is light sensitive. Consequently, the losses of
bioactive compounds also depend on the drying operations
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Table 7: Phytochemical losses during the pretreatment and/or drying process [166].

Phytochemicals/vitamins Product Pretreatment Drying method Phytochemicals/vitamins
Losses References

Carotenoids

Carrot With blanching
treatment Fluidized bed dryer 15.7% carotenoids [167]

Carrots, broccoli and
spinach Microwave drying 63% carotenoids [168]

Paprika Without treatment
(without enzyme
inactivation)

Flow dryer 80% carotene [160]

Paprika With blanching
treatment Flow dryer 5% (depends on the

product) [160]

Lycopene

Tomato Osmotic-vacuum
drying

Better than vacuum drying
and air drying
8.1 to 20.9%

[169]

Tomato pulp Depends upon the
conditions [170]

Carrots Inert gas drying No effect [171]

Vitamin C
Carrot Blanching

treatment
Vacuum, microwave,
air and freeze-drying 37% before drying [161]

Apple and strawberry 60% Sucrose
solution Microwave vacuum 40% [172]

Vitamin C and carotenoids Carrot
Blanching with
sulphite and

L-Cysteine-HCl
Fluidized bed dryer

L-Cysteine-HCl retained
highest content of vit. C
Na metabisulphite able to

reduce oxidation of
carotenoids

[173]

Carotene and vitamin C
Carrots, paprika,

potatoes Inert gas drying 15% carotene;
13% vit.C [162]

Strawberry and carrot Refractance window
similar to freeze-drying [174]

Vitamin C and PUFA’s Seaweed
Sun-drying,

oven-drying, and
freeze-drying

Much lower in
freeze-drying than oven

and sun-drying
[175]

Tocopherol, carotenoids
and vitamin C Paprika Blanching by

steaming or hot air Flow dryer Better retention [160]

Total phenolic content and
antioxidant activity Apple Microwave drying 39% (TPC) and 30% (AA) [176]

D3 (milk powder) Milk Spray-drying Negligible losses [177]
Folic acid CMCmodel system Spray-drying Increase folate retention [178]
Thiamine, riboflavin and
niacin Spaghetti Convection air Loss of vit.

Drying 16–28% [179]

Vitamin E Whole meal wheat
flour Drum dryer

More loss of vit. E during
scalding (75%) than during

drum drying (15%)
[180]

(time, temperature, atmosphere composition, and others).
Experimental studies have been conducted to reduce such
losses by using pretreatments, selection of adequate drying
methods, use of novel methods of drying, and optimization
of drying conditions. In the literature, the methods reported
for drying of food materials vary from solar techniques to
recently developed microwave and heat pump drying [163–
165]. An overview of phytochemical losses prior to or during
drying is provided in Table 7. From this table, it becomes
apparent that inert gas drying, spray drying, and freeze

drying produce negligible/low losses of phytochemicals and
vitamins, namely, carotene and vitamin C, while microwave
drying results in high losses of carotenoids.

However, the drying process may lead to an elevated
antioxidant activity (AA). VitaminC, Vitamin E, carotenoids,
polyphenols, melanoids, and indoles are some bioactive com-
pounds that present AA [181]. In fact, during drying, phenolic
compounds may be generated as Maillard reactions products
[131]. The net antioxidant activity reflects the cumulative
effects of the total phenolics losses and Maillard reaction
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production. Antioxidants in dried cranberries, grapes, and
plums showed to be twice as potent as those in the fresh fruits
[130].

Storage of dried food products may bring more severe
losses of nutrients and bioactive compounds than during the
drying process itself [163, 182–184]. For example, Kaminski
et al. [185] observed a rapid degradation of carotenoids in
freeze-dried carrots during storage.

6. Conclusions

Due to the importance of functional foods for a healthy
lifestyle, scientific research has extensively been developed
in this domain during the last decade, namely, focusing on
prebiotics, probiotics, and bioactive compounds, in general.
The number of published research on this type of foods has
duplicated in the last 5 years, reaching almost 4,000.

Drying is a unit operation of stabilization and conser-
vation of the bioproducts much used. However, it entails
many modifications and alterations of the dried product.
The drying processes having the least adverse effects on the
quality of the product and the bioactive compounds are
those operating at low temperature (freeze drying, vacuum
drying) or with very short durations (spray drying, drum
drying). Freeze drying is the technique of drying allowing
the greatest preservation of the antioxidant properties of the
phytochemicals and the viability of the probiotics. However,
it presents high operating cost and low productivity. Spray
drying is a good alternative for industrial development. New
drying techniques based mostly on electromagnetic energy
(dielectric drying, MW, IR, UV, etc.) show encouraging
results in terms of preservation of bioactive compounds.
Nevertheless, all these processes need to be optimized.
The RSM is an increasingly used optimization method but
new approaches such as the CORICO method bring new
possibilities.

This review also reports the most recent findings on
dehydrated plant products with probiotics and the studies
that have been made, highlighting the microorganisms used,
the impregnation procedures, dryingmethods, and evaluated
parameters. Apple is still the preferred matrix; however, the
use of other plant products may be noticed. Furthermore, the
production processes of fruit powders with probiotics were
discussed, focusing the drying processes and carriers used.

Dried fruits and vegetables, fruits and vegetable by-
products, grains, nuts, and algae are rich in bioactive
compounds, whose properties are responsible for a lower
incidence of cardiovascular diseases, obesity, various types
of cancer, type 2 diabetes, inflammation, brain dysfunction,
and other chronic diseases. This review presents these health
benefits.

The losses of bioactive compounds, such as phytochem-
icals and vitamins, during drying depend on the drying
method and drying conditions, but also on the pretreatment
eventually used. These losses may be considerable, but the
drying process may lead to an increase in the antioxidant
activity. Storage may bring higher losses in important bioac-
tive compounds than the drying process itself.
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[83] J. López, E. Uribe, A. Vega-Gálvez et al., “Effect of air tem-
perature on drying kinetics, vitamin C, antioxidant activity,
total phenolic content, non-enzymatic browning and firmness
of blueberries variety O’neil,” Food and Bioprocess Technology,
vol. 3, no. 5, pp. 772–777, 2010.

[84] R. F. Schiffmann, “Microwave and dieclectric drying,” in Hand-
book of Industrial Drying, pp. 345–372, 2006.
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J. Mättö, “Stability and functionality of freeze-dried probiotic
Bifidobacterium cells during storage in juice and milk,” Interna-
tional Dairy Journal, vol. 16, no. 12, pp. 1477–1482, 2006.

[101] A. Nag and S. Das, “Improving ambient temperature stability
of probiotics with stress adaptation and fluidized bed drying,”
Journal of Functional Foods, vol. 5, no. 1, pp. 170–177, 2013.

[102] H. M. Patel, R. Wang, O. Chandrashekar, S. S. Pandiella, and C.
Webb, “Proliferation of Lactobacillus plantarum in Solid-State
Fermentation of Oats,” Biotechnology Progress, vol. 20, no. 1, pp.
110–116, 2004.

[103] K. Venema and A. P. do Carmo, “Probiotics and prebiotics:
current status and future trends,” in Probiotics and Prebiotics:
Current Research and Future Trends, Caister Academic Press,
2015.

[104] N. Betoret, L. Puente, M. J. Dı́az et al., “Development of
probiotic-enriched dried fruits by vacuum impregnation,” Jour-
nal of Food Engineering, vol. 56, no. 2-3, pp. 273–277, 2003.

[105] C. Ribeiro, R. Freixo, J. Silva, P. Gibbs, A. M. M. B. Morais, and
P. Teixeira, “Dried Fruit Matrices Incorporated with a Probiotic
Strain of Lactobacillus plantarum,” International Journal of Food
Studies, vol. 3, no. 1, pp. 69–73, 2014.

[106] E. Betoret, N. Betoret, A. Arilla et al., “No invasivemethodology
to produce a probiotic low humid apple snack with potential
effect against Helicobacter pylori,” Journal of Food Engineering,
vol. 110, no. 2, pp. 289–293, 2012.
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