L. Simpson-herren and H. H. Lloyd, Kinetic parameters and growth curves for experimental tumor systems, Cancer Chemother. Rep, vol.54, pp.143-74, 1970.

L. Norton, R. Simon, H. D. Brereton, A. E. Bogden, J. Pouysségur et al., Hypoxia signalling in cancer and approaches to enforce tumour regression, Nature, vol.264, pp.437-480, 1976.

M. M. Leblond, A. N. Gérault, A. Corroyer-dulmont, E. T. Mackenzie, E. Petit et al., Hypoxia induces macrophage polarization and reeducation toward an M2 phenotype in U87 and U251 glioblastoma models, Oncoimmunology, vol.5, p.1056442, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01576135

A. Corroyer-dulmont, A. Chakhoyan, S. Collet, L. Durand, E. T. Mackenzie et al., Imaging modalities to assess oxygen status in glioblastoma, Front Med, vol.2, p.57, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01587314

S. M. Evans, K. W. Jenkins, H. I. Chen, W. T. Jenkins, K. D. Judy et al., The relationship among hypoxia, proliferation, and outcome in patients with de novo glioblastoma: a pilot study, Transl Oncol, vol.3, pp.160-169, 2010.

A. M. Spence, M. Muzi, K. R. Swanson, F. O'sullivan, J. K. Rockhill et al., Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival, Clin. Cancer Res, vol.14, pp.2623-2653, 2008.

E. Gerstner, Z. Zhang, J. Fink, M. Muzi, L. Hanna et al., Assessment of tumor hypoxia in newly diagnosed GBM using 18F-FMISO PET and MRI, Clin Cancer Res, vol.6684, 2016.

R. Rampling, G. Cruickshank, A. D. Lewis, S. A. Fitzsimmons, and P. Workman, Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors, Int J Radiat Oncol Biol Phys, vol.29, pp.427-458, 1994.

D. R. Collingridge, J. M. Piepmeier, S. Rockwell, and J. P. Knisely, Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue, Radiother Oncol, vol.53, pp.127-158, 1999.

R. A. Popple, R. Ove, and S. Shen, Tumor control probability for selective boosting of hypoxic subvolumes, including the effect of reoxygenation, Int J Radiat Oncol Biol Phys, vol.54, pp.921-928, 2002.

M. R. Horsman and J. Overgaard, The impact of hypoxia and its modification of the outcome of radiotherapy, J Radiat Res, pp.90-98, 2016.

L. H. Gray, A. D. Conger, M. Ebert, S. Hornsey, and O. C. Scott, The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy, Br J Radiol, vol.26, pp.638-686, 1953.

N. Rohwer and T. Cramer, Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways, Drug Resist Updat, vol.14, pp.191-201, 2011.

A. L. Harris, Hypoxia-a key regulatory factor in tumour growth, Nat Rev Cancer, vol.2, pp.38-47, 2002.

S. Dische, Chemical sensitizers for hypoxic cells: a decade of experience in clinical radiotherapy, Radiother Oncol, vol.3, pp.97-115, 1985.

L. Ostergaard, A. Tietze, T. Nielsen, K. R. Drasbek, K. Mouridsen et al., The relationship between tumor blood flow, angiogenesis, tumor hypoxia, and aerobic glycolysis, Cancer Res, vol.73, pp.5618-5642, 2013.

M. W. Dewhirst, Y. Cao, and B. Moeller, Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response, Nat Rev Cancer, vol.8, pp.425-462, 2008.

R. G. Bristow and R. P. Hill, Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability, Nat Rev Cancer, vol.8, pp.180-92, 2008.

M. W. Dewhirst, Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress, Radiat Res, vol.172, pp.653-65, 2009.

M. J. Trotter, D. J. Chaplin, and P. L. Olive, Effect of angiotensin II on intermittent tumour blood flow and acute hypoxia in the murine SCCVII carcinoma, Eur J Cancer, vol.27, pp.887-93, 1991.

D. J. Chaplin, P. L. Olive, and R. E. Durand, Intermittent blood flow in a murine tumor: radiobiological effects, Cancer Res, vol.47, pp.597-601, 1987.

P. Howard-flanders and D. Moore, The time interval after pulsed irradiation within which injury to bacteria can be modified by dissolved oxygen. I. A search for an effect of oxygen 0.02 second after pulsed irradiation, Radiat Res, vol.9, pp.422-459, 1958.

Q. Fan, C. Y. Tang, D. Gu, J. Zhu, G. Li et al., Investigation of hypoxia conditions using oxygen-enhanced magnetic resonance imaging measurements in glioma models, Oncotarget, vol.8, pp.31864-75, 2017.

F. Colliez, M. Neveu, J. Magat, C. Pham, T. T. Gallez et al., Qualification of a noninvasive magnetic resonance imaging biomarker to assess tumor oxygenation, Clin Cancer Res, vol.20, pp.5403-5414, 2014.

T. Christen, N. A. Pannetier, W. W. Ni, D. Qiu, M. E. Moseley et al., MR vascular fingerprinting: a new approach to compute cerebral blood volume, mean vessel radius, and oxygenation maps in the human brain, Neuroimage, vol.89, pp.262-70, 2014.

H. Zhang, C. J. Koch, C. A. Wallen, and K. T. Wheeler, Radiation-induced DNA damage in tumors and normal tissues. III. Oxygen dependence of the formation of strand breaks and DNA-protein crosslinks, Radiat Res, vol.142, pp.163-171, 1995.

T. Alper and P. Howard-flanders, Role of oxygen in modifying the radiosensitivity of E. coli B, Nature, vol.178, pp.978-987, 1956.

W. Tinganelli, M. Durante, R. Hirayama, M. Krämer, A. Maier et al., Kill-painting of hypoxic tumours in charged particle therapy, Sci Rep, vol.5, p.17016, 2015.

B. G. Wouters and J. M. Brown, Cells at intermediate oxygen levels can be more important than the "hypoxic fraction" in determining tumor response to fractionated radiotherapy, Radiat Res, vol.147, pp.541-50, 1997.

J. P. Freyer, K. Jarrett, S. Carpenter, and M. R. Raju, Oxygen enhancement ratio as a function of dose and cell cycle phase for radiation-resistant and sensitive CHO cells, Radiat Res, vol.127, pp.297-307, 1991.

Y. Furusawa, K. Fukutsu, M. Aoki, H. Itsukaichi, K. Eguchi-kasai et al., Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C-and (20)Ne-ion beams, Radiat Res, vol.154, pp.485-96, 2000.

C. D. Schlaff, A. Krauze, A. Belard, J. J. O'connell, and K. A. Camphausen, Bringing the heavy: carbon ion therapy in the radiobiological and clinical context, Radiat Oncol, vol.9, p.88, 2014.

T. Wenzl and J. J. Wilkens, Modelling of the oxygen enhancement ratio for ion beam radiation therapy, Phys Med Biol, vol.56, pp.3251-68, 2011.

T. Alper and P. E. Bryant, Reduction in oxygen enhancement ratio with increase in LET: tests of two hypotheses, Int J Radiat Biol Relat Stud Phys Chem Med, vol.26, pp.203-221, 1974.

K. F. Baverstock and W. G. Burns, Primary production of oxygen from irradiated water as an explanation for decreased radiobiological oxygen enhancement at high LET, Nature, vol.260, pp.316-324, 1976.

B. D. Michael and K. M. Prise, A multiple-radical model for radiation action on DNA and the dependence of OER on LET, Int J Radiat Biol, vol.69, pp.351-359, 1996.

J. Meesungnoen and J. Jay-gerin, High-LET ion radiolysis of water: oxygen production in tracks, Radiat Res, vol.171, pp.379-86, 2009.

S. Valable, A. Corroyer-dulmont, A. Chakhoyan, L. Durand, J. Toutain et al., Imaging of brain oxygenation with magnetic resonance imaging: a validation with positron emission tomography in the healthy and tumoural brain, J Cereb Blood Flow Metab, vol.37, pp.2584-97, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01575065

T. Christen, P. Bouzat, N. Pannetier, N. Coquery, A. Moisan et al., Tissue oxygen saturation mapping with magnetic resonance imaging, J Cereb Blood Flow Metab, vol.34, pp.1550-1557, 2014.

V. Tóth, A. Förschler, N. M. Hirsch, J. Hollander, H. Kooijman et al., MR-based hypoxia measures in human glioma, J Neurooncol, vol.115, pp.197-207, 2013.

J. O'connor, J. Boult, Y. Jamin, M. Babur, K. G. Finegan et al., Oxygen-enhanced MRI accurately identifies, quantifies, and maps tumor hypoxia in preclinical cancer models, Cancer Res, vol.76, pp.787-95, 2016.

A. Corroyer-dulmont, E. A. Pérès, E. Petit, L. Durand, L. Marteau et al., Noninvasive assessment of hypoxia with 3-[18F]-fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([18F]-FMISO): a PET study in two experimental models of human glioma, Biol Chem, vol.394, pp.529-568, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01660598

S. T. Lee and A. M. Scott, Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole, Semin Nucl Med, vol.37, pp.451-61, 2007.

L. Tran, A. Bol, D. Labar, B. Jordan, J. Magat et al., Hypoxia imaging with the nitroimidazole 18F-FAZA PET tracer: a comparison with OxyLite, EPR oximetry and 19F-MRI relaxometry, Radiother Oncol, vol.105, pp.29-35, 2012.

L. J. Wack, D. Mönnich, W. Van-elmpt, C. Zegers, E. Troost et al., Comparison of [18F]-FMISO, [18F]-FAZA and [18F]-HX4 for PET imaging of hypoxia-a simulation study, Acta Oncol, vol.54, pp.1370-1377, 2015.

Y. Shimizu, S. Zhao, H. Yasui, K. Nishijima, H. Matsumoto et al., A novel PET probe "[18F]DiFA" accumulates in hypoxic region via glutathione conjugation following reductive metabolism, Mol Imaging Biol, vol.21, pp.122-131, 2018.

M. Colombié, S. Gouard, M. Frindel, A. Vidal, M. Chérel et al., Focus on the controversial aspects of (64)Cu-ATSM in tumoral hypoxia mapping by PET imaging, Front Med, vol.2, p.58, 2015.

D. R. Grimes, D. R. Warren, and S. Warren, Hypoxia imaging and radiotherapy: bridging the resolution gap, Br J Radiol, vol.90, 2017.

L. G. Marcu, L. Moghaddasi, and E. Bezak, Imaging of tumor characteristics and molecular pathways with PET: developments over the last decade toward personalized cancer therapy, Int J Radiat Oncol Biol Phys, vol.102, pp.1165-82, 2018.

S. A. Nehmeh, N. Y. Lee, H. Schröder, O. Squire, P. B. Zanzonico et al., Reproducibility of intratumor distribution of (18)F-fluoromisonidazole in head and neck cancer, Int J Radiat Oncol Biol Phys, vol.70, pp.235-277, 2008.

M. Inubushi, M. Tatsumi, Y. Yamamoto, K. Kato, T. Tsujikawa et al., European research trends in nuclear medicine, Ann Nucl Med, vol.32, pp.579-82, 2018.

C. C. Ling, J. Humm, S. Larson, H. Amols, Z. Fuks et al., Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality, Int J Radiat Oncol Biol Phys, vol.47, pp.551-60, 2000.

S. M. Bentzen and V. Gregoire, Molecular-imaging-based dose painting-a novel paradigm for radiation therapy prescription, Semin Radiat Oncol, vol.21, pp.101-111, 2011.

J. H. Chang, M. Wada, N. J. Anderson, D. Lim-joon, S. T. Lee et al., Hypoxia-targeted radiotherapy dose painting for head and neck cancer using (18)F-FMISO PET: a biological modeling study, Acta Oncol, vol.52, pp.1723-1732, 2013.

K. Hendrickson, M. Phillips, W. Smith, L. Peterson, K. Krohn et al., Hypoxia imaging with [F-18] FMISO-PET in head and neck cancer: potential for guiding intensity modulated radiation therapy in overcoming hypoxia-induced treatment resistance, Radiother Oncol, vol.101, pp.369-75, 2011.

A. Søvik, E. Malinen, H. K. Skogmo, S. M. Bentzen, O. S. Bruland et al., Radiotherapy adapted to spatial and temporal variability in tumor hypoxia, Int J Radiat Oncol Biol Phys, vol.68, pp.1496-504, 2007.

R. T. Flynn, S. R. Bowen, S. M. Bentzen, T. R. Mackie, and R. Jeraj, Intensity modulated x-ray (IMXT) vs. proton (IMPT) therapy for theragnostic hypoxia-based dose painting, Phys Med Biol, vol.53, pp.4153-67, 2008.

S. M. Bentzen, Theragnostic imaging for radiation oncology: dose-painting by numbers, Lancet Oncol, vol.6, pp.112-119, 2005.

C. Zegers, W. Van-elmpt, B. Reymen, A. Even, E. Troost et al., In vivo quantification of hypoxic and metabolic status of NSCLC tumors using [18F]HX4 and [18F]FDG-PET/CT imaging, Clin Cancer Res, vol.20, pp.6389-97, 2014.

S. Thureau, B. Dubray, R. Modzelewski, P. Bohn, S. Hapdey et al., FDG and FMISO PET-guided dose escalation with intensitymodulated radiotherapy in lung cancer, Radiat Oncol, vol.13, p.208, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02102378

E. Malinen, A. Søvik, D. Hristov, Ø. S. Bruland, and D. R. Olsen, Adapting radiotherapy to hypoxic tumours, Phys Med Biol, vol.51, pp.4903-4924, 2006.

W. Choi, S. Lee, S. H. Park, J. S. Ryu, S. J. Oh et al., Planning study for available dose of hypoxic tumor volume using fluorine-18-labeled fluoromisonidazole positron emission tomography for treatment of the head and neck cancer, Radiother Oncol, vol.97, pp.176-82, 2010.

N. Y. Lee, J. G. Mechalakos, S. Nehmeh, Z. Lin, O. D. Squire et al., Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study, Int J Radiat Oncol Biol Phys, vol.70, pp.2-13, 2008.

I. Toma-dasu, J. Uhrdin, L. Antonovic, A. Dasu, S. Nuyts et al., Dose prescription and treatment planning based on FMISO-PET hypoxia, Acta Oncol, vol.51, pp.222-252, 2012.

G. Powathil, M. Kohandel, M. Milosevic, and S. Sivaloganathan, Modeling the spatial distribution of chronic tumor hypoxia: implications for experimental and clinical studies, Comput Math Methods Med, p.410602, 2012.

M. Alber, F. Paulsen, S. M. Eschmann, and H. J. Machulla, On biologically conformal boost dose optimization, Phys Med Biol, vol.48, pp.31-35, 2003.

A. Chakhoyan, J. Guillamo, S. Collet, F. Kauffmann, N. Delcroix et al., FMISO-PET-derived brain oxygen tension maps: application to glioblastoma and less aggressive gliomas. Sci Rep, vol.7, p.10210, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02268075

E. Lindblom, A. Dasu, J. Uhrdin, A. Even, W. Van-elmpt et al., Defining the hypoxic target volume based on positron emission tomography for image guided radiotherapy-the influence of the choice of the reference region and conversion function, Acta Oncol, vol.56, pp.819-844, 2017.

A. Søvik, E. Malinen, Ø. S. Bruland, S. M. Bentzen, and D. R. Olsen, Optimization of tumour control probability in hypoxic tumours by radiation dose redistribution: a modelling study, Phys Med Biol, vol.52, pp.499-513, 2007.

M. R. Arnesen, I. S. Knudtsen, B. L. Rekstad, K. Eilertsen, E. Dale et al., Dose painting by numbers in a standard treatment planning system using inverted dose prescription maps, Acta Oncol, vol.54, pp.1607-1620, 2015.

T. A. Wilson, M. A. Karajannis, and D. H. Harter, Glioblastoma multiforme: state of the art and future therapeutics, Surg Neurol Int, vol.5, p.64, 2014.

S. N. Badiyan, S. Markovina, J. R. Simpson, C. G. Robinson, T. Dewees et al., Radiation therapy dose escalation for glioblastoma multiforme in the era of temozolomide, Int J Radiat Oncol Biol Phys, vol.90, pp.877-85, 2014.

P. P. Connell and S. Hellman, Advances in radiotherapy and implications for the next century: a historical perspective, Cancer Res, vol.69, pp.383-92, 2009.

K. S. Chao, W. R. Bosch, S. Mutic, J. S. Lewis, F. Dehdashti et al., A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy, Int J Radiat Oncol Biol Phys, vol.49, pp.1171-82, 2001.

T. Sato, S. Masunaga, H. Kumada, and N. Hamada, Depth distributions of RBEweighted dose and photon-isoeffective dose for boron neutron capture therapy, Radiat Prot Dosim, vol.183, pp.247-50, 2018.

M. Safavi-naeini, A. Chacon, S. Guatelli, D. R. Franklin, K. Bambery et al., Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons, Sci Rep, vol.8, p.16257, 2018.

L. Zaidi, M. Belgaid, S. Taskaev, and R. Khelifi, Beam shaping assembly design of 7Li(p,n)7Be neutron source for boron neutron capture therapy of deep-seated tumor, Appl Radiat Isot, vol.139, pp.316-340, 2018.

G. Cirrone, L. Manti, D. Margarone, G. Petringa, L. Giuffrida et al., First experimental proof of proton boron capture therapy (PBCT) to enhance protontherapy effectiveness, Sci Rep, vol.8, p.1141, 2018.

J. Jung, D. Yoon, B. Barraclough, H. C. Lee, T. S. Suh et al., Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a Monte Carlo study, Oncotarget, vol.8, pp.39774-81, 2017.

R. F. Kallman, The phenomenon of reoxygenation and its implications for fractionated radiotherapy, Radiology, vol.105, pp.135-177, 1972.

S. Stieb, A. Eleftheriou, G. Warnock, M. Guckenberger, and O. Riesterer, Longitudinal PET imaging of tumor hypoxia during the course of radiotherapy, Eur J Nucl Med Mol Imaging, vol.45, pp.2201-2218, 2018.

D. Thorwarth, S. Eschmann, F. Paulsen, and M. Alber, A model of reoxygenation dynamics of head-and-neck tumors based on serial 18F-fluoromisonidazole positron emission tomography investigations, Int J Radiat Oncol Biol Phys, vol.68, pp.515-536, 2007.

I. N. Fleming, R. Manavaki, P. J. Blower, C. West, K. J. Williams et al., Imaging tumour hypoxia with positron emission tomography, Br J Cancer, vol.112, pp.238-50, 2015.

D. Zips, K. Zöphel, N. Abolmaali, R. Perrin, A. Abramyuk et al., Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer, Radiother Oncol, vol.105, pp.21-29, 2012.

S. Löck, R. Perrin, A. Seidlitz, A. Bandurska-luque, S. Zschaeck et al., Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging, Radiother Oncol, vol.124, pp.533-573, 2017.

P. Dirix, V. Vandecaveye, D. Keyzer, F. Stroobants, S. Hermans et al., Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI, J Nucl Med, vol.50, pp.1020-1027, 2009.

M. Kikuchi, S. Koyasu, S. Shinohara, Y. Usami, Y. Imai et al., Prognostic value of pretreatment 18F-fluorodeoxyglucose positron emission tomography/CT volume-based parameters in patients with oropharyngeal squamous cell carcinoma with known p16 and p53 status, Head Neck, vol.37, pp.1524-1555, 2015.

S. Eschmann, F. Paulsen, M. Reimold, H. Dittmann, S. Welz et al., Prognostic impact of hypoxia imaging with 18F-misonidazole PET in nonsmall cell lung cancer and head and neck cancer before radiotherapy, J Nucl Med, vol.46, pp.253-60, 2005.

S. Okamoto, T. Shiga, K. Yasuda, Y. M. Ito, K. Magota et al., High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer, J Nucl Med, vol.54, pp.201-208, 2013.

K. Graham and E. Unger, Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment, Int J Nanomed, vol.13, pp.6049-58, 2018.

J. Johnson, M. C. Dolezal, A. Kerschen, T. O. Matsunaga, and E. C. Unger, In vitro comparison of dodecafluoropentane (DDFP), perfluorodecalin (PFD), and perfluoroctylbromide (PFOB) in the facilitation of oxygen exchange, Artif Cells Blood Substit Immobil Biotechnol, vol.37, pp.156-62, 2009.

A. Chakhoyan, A. Corroyer-dulmont, M. M. Leblond, A. Gérault, J. Toutain et al., Carbogen-induced increases in tumor oxygenation depend on the vascular status of the tumor: A multiparametric MRI study in two rat glioblastoma models, J Cereb Blood Flow Metab, vol.37, pp.2270-82, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01575557

P. Lesueur, V. Calugaru, C. Nauraye, D. Stefan, K. Cao et al., Proton therapy for treatment of intracranial benign tumors in adults: a systematic review, Cancer Treat Rev, vol.72, pp.56-64, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02478975

M. Mizumoto, K. Tsuboi, H. Igaki, T. Yamamoto, S. Takano et al., Phase I/II trial of hyperfractionated concomitant boost proton radiotherapy for supratentorial glioblastoma multiforme, Int J Radiat Oncol Biol Phys, vol.77, pp.98-105, 2010.

M. Mizumoto, T. Yamamoto, S. Takano, E. Ishikawa, A. Matsumura et al., Long-term survival after treatment of glioblastoma multiforme with hyperfractionated concomitant boost proton beam therapy, Pract Radiat Oncol, vol.5, pp.9-16, 2015.

R. Orecchia, M. Krengli, B. A. Jereczek-fossa, S. Franzetti, and J. P. Gerard, Clinical and research validity of hadrontherapy with ion beams, Crit Rev Oncol Hematol, vol.51, pp.81-90, 2004.

M. Takahashi, H. Hirakawa, H. Yajima, N. Izumi-nakajima, R. Okayasu et al., Carbon ion beam is more effective to induce cell death in sphere-type A172 human glioblastoma cells compared with X-rays, Int J Radiat Biol, vol.90, pp.1125-1157, 2014.

S. E. Combs, L. Zipp, S. Rieken, D. Habermehl, S. Brons et al., In vitro evaluation of photon and carbon ion radiotherapy in combination with chemotherapy in glioblastoma cells, Radiat Oncol, vol.7, p.9, 2012.

J. Mizoe, H. Tsujii, A. Hasegawa, T. Yanagi, R. Takagi et al., Phase I/II clinical trial of carbon ion radiotherapy for malignant gliomas: combined X-ray radiotherapy, chemotherapy, and carbon ion radiotherapy, Int J Radiat Oncol Biol Phys, vol.69, pp.390-396, 2007.

S. E. Combs, M. Kieser, S. Rieken, D. Habermehl, O. Jäkel et al., Randomized phase II study evaluating a carbon ion boost applied after combined radiochemotherapy with temozolomide versus a proton boost after radiochemotherapy with temozolomide in patients with primary glioblastoma: the CLEOPATRA trial, BMC Cancer, vol.10, p.478, 2010.

Y. Prezado, G. Jouvion, D. Hardy, A. Patriarca, C. Nauraye et al., Proton minibeam radiation therapy spares normal rat brain: long-term clinical, radiological and histopathological analysis. Sci Rep, vol.7, p.14403, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01704960

Y. Prezado, G. Fois, L. Duc, G. Bravin, and A. , Gadolinium dose enhancement studies in microbeam radiation therapy, Med Phys, vol.36, pp.3568-74, 2009.

E. Bräuer-krisch, R. Serduc, E. A. Siegbahn, L. Duc, G. Prezado et al., Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue, Mutat Res, vol.704, pp.160-166, 2010.

A. Patriarca, C. Fouillade, M. Auger, F. Martin, F. Pouzoulet et al., Experimental set-up for FLASH proton irradiation of small animals using a clinical system, Int J Radiat Oncol Biol Phys, vol.102, pp.619-645, 2018.

M. Durante, E. Bräuer-krisch, and M. Hill, Faster and safer? FLASH ultrahigh dose rate in radiotherapy, Br J Radiol, vol.91, 2018.

M. Vozenin, D. Fornel, P. Petersson, K. Favaudon, V. Jaccard et al., The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients, Clin Cancer Res, vol.25, pp.35-42, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01812514

P. Montay-gruel, K. Petersson, M. Jaccard, G. Boivin, J. Germond et al., Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s, Radiother Oncol, vol.124, pp.365-374, 2017.