, On the other hand, comparing Proposition 7.9 and the growth condition (a) of (i) shows that f (X, w) must be reducible in F [X, w, Suppose that (i) holds. Since F is a subfield of Q[X]/f (X, w 0 ) which is of degree d over Q, we see that e divides d

, Let K be a CM-field of degree 2g, let ? 0 (w) ? K[w], r 0 (w) ? Q[w] and let k 2 be an integer. We say that (? 0 , r 0 ) represents a family of g-dimensional varieties with embedding degree k and complex multiplication by K if: (i)

, ii) there is an infinite set W 0 of integers such that p 0 (w 0 ) and r 0 (w 0 ) are prime numbers for all w 0 ? W 0

N. , 1) and ? k (p 0 (w)) are both divisible by r 0 (w)

, Assuming a weak form of the Bateman-Horn-Conrad heuristics, this definition is essentially equivalent to Definition 3.6 in Freeman

, (w)) and suppose that C w (X) is irreducible. If w 0 ? W 0 , then C w0 (X) is the characteristic polynomial of the corresponding abelian variety, and we obtain a polynomial family in the sense of Definition 7.1 with fixed CM-field K. Conversely, let P be a polynomial family in the sense of Definition

, the roots of C w0 (X) are p 0 (w 0 )-Weil numbers

. Thus, Freeman's definition is essentially equivalent to our Definition 7.1 of families P having fixed CM-field K. Finally

R. Balasubramanian and N. Koblitz, The improbability that an elliptic curve has subexponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm, J. Cryptology, vol.11, pp.141-145, 1998.

P. Barreto and M. Naehrig, Pairing-friendly elliptic curves of prime order, Lecture Notes in Computer Science, vol.3897, pp.319-331, 2006.
DOI : 10.1007/11693383_22

URL : http://cryptojedi.org/papers/pfcpo.pdf

P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp, vol.16, pp.363-367, 1962.

W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput, vol.24, pp.235-265, 1997.

J. Boxall, Heuristics on pairing-friendly elliptic curves, J. Math. Cryptol, vol.6, pp.81-104, 2012.
DOI : 10.1515/jmc-2011-0004

URL : https://hal.archives-ouvertes.fr/hal-02153424

F. Brezing and A. Weng, Elliptic curves suitable for pairing based cryptography, Des. Codes Cryptogr, vol.37, pp.133-141, 2005.
DOI : 10.1007/s10623-004-3808-4

S. D. Cohen, The distribution of Galois groups and Hilbert's irreducibility theorem, Proc. Lond. Math. Soc, vol.43, pp.227-250, 1981.

K. Conrad, Hardy-Littlewood constants', Mathematical properties of sequences and other combinatorical structures, pp.133-154, 2002.
DOI : 10.1007/978-1-4615-0304-0_15

A. Enge and A. V. Sutherland, Class invariants by the CRT method, Algorithmic number theory, vol.6197, pp.142-156, 2010.
DOI : 10.1007/978-3-642-14518-6_14

URL : https://hal.archives-ouvertes.fr/inria-00448729

D. Freeman, A generalized Brezing-Weng method for constructing pairing-friendly ordinary abelian varieties', Pairing-based cryptography: Pairing, Lecture Notes in Computer Science, vol.5209, pp.146-163, 2008.
DOI : 10.1007/978-3-540-85538-5_11

URL : http://theory.stanford.edu/~dfreeman/papers/generalized-bw.pdf

D. Freeman, M. Scott, and E. Teske, A taxonomy of pairing-friendly elliptic curves, J. Cryptology, vol.23, pp.224-280, 2010.
DOI : 10.1007/s00145-009-9048-z

URL : https://link.springer.com/content/pdf/10.1007%2Fs00145-009-9048-z.pdf

D. Freeman, P. Stevenhagen, and M. Streng, Abelian varieties with prescribed embedding degree, Algorithmic number theory (ANTS 8), vol.5011, pp.60-73, 2008.
DOI : 10.1007/978-3-540-79456-1_3

URL : http://arxiv.org/pdf/0802.1886

S. Galbraith, J. Mckee, and P. C. Valença, Ordinary abelian varieties having small embedding degree, Finite Fields Appl, vol.13, pp.800-814, 2007.
DOI : 10.1016/j.ffa.2007.02.003

URL : https://doi.org/10.1016/j.ffa.2007.02.003

T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan, vol.20, pp.83-95, 1968.

J. Urroz, F. Luca, and I. Shparlinski, On the number of isogeny classes and pairing-friendly elliptic curves and statistics for MNT curves, Math. Comp, vol.81, pp.1093-1110, 2012.

D. Kohel, Echidna databases. Databases for elliptic curves and higher dimensional analogues

E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 1909.

K. Lauter and N. Shang, Generating pairing-friendly parameters for the CM construction of genus 2 curves over prime fields, Des. Codes Cryptogr, vol.67, issue.3, pp.341-355, 2013.

F. Luca and I. Shparlinski, Elliptic curves of low embedding degree, J. Cryptology, vol.19, pp.553-562, 2006.
DOI : 10.1007/s00145-006-0544-0

URL : http://eprint.iacr.org/2005/363.pdf

W. Narkiewicz, Elementary and analytic theory of algebraic numbers, 1974.

K. Rubin and A. Silverberg, Using abelian varieties to improve pairing-based cryptography, J. Cryptology, vol.22, pp.330-364, 2009.
DOI : 10.1007/s00145-008-9022-1

URL : http://math.uci.edu/~asilverb/bibliography/rubsilav.pdf

M. Sha, Heuristics of the Cocks-Pinch method, Adv. Math. Commun, vol.8, pp.103-118, 2014.

G. Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, vol.46, 1997.
DOI : 10.1515/9781400883943

J. T. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math, vol.2, pp.134-144, 1966.
DOI : 10.1007/bf01404549

J. T. Tate, Classes d'isogénie des variétés abéliennes sur un corps fini (d'aprés T. Honda), vol.69, pp.347-363, 1968.

W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci.Éc. Norm. Supér, vol.2, issue.4, pp.521-560, 1969.

A. Weil, Courbes algébriques et variétés abéliennes, 1948.