Elliptic logarithms, diophantine approximation and the Birch and Swinnerton-Dyer conjecture

Abstract : Most, if not all, unconditional results towards the abc-conjecture rely ultimately on classical Baker's method. In this article, we turn our attention to its elliptic analogue. Using the elliptic Baker's method, we have recently obtained a new upper bound for the height of the S-integral points on an elliptic curve. This bound depends on some parameters related to the Mordell-Weil group of the curve. We deduce here a bound relying on the conjecture of Birch and Swinnerton-Dyer, involving classical, more manageable quantities. We then study which abc-type inequality over number fields could be derived from this elliptic approach.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [47 références]  Voir  Masquer  Télécharger

https://hal-normandie-univ.archives-ouvertes.fr/hal-02151923
Contributeur : Vincent Bosser <>
Soumis le : lundi 10 juin 2019 - 17:12:45
Dernière modification le : vendredi 28 juin 2019 - 16:38:55

Fichier

art11.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Vincent Bosser, Andrea Surroca. Elliptic logarithms, diophantine approximation and the Birch and Swinnerton-Dyer conjecture. Boletim da Sociedade Brasileira de Matemática / Bulletin of the Brazilian Mathematical Society, Springer Verlag, 2014, 45 (1), ⟨10.1007/s00574-014-0038-x⟩. ⟨hal-02151923⟩

Partager

Métriques

Consultations de la notice

22

Téléchargements de fichiers

66