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14000 Caen, France

Abstract

The paper deals with the class REC of recognizable picture languages, UREC its
unambiguous variant and co-REC the complement class of REC. The aim of this paper
is two-fold:

First, the paper focuses on some necessary conditions for a language to be rec-
ognizable. Such conditions have already been identified in several works [13,
1, 5, 2, 3]. Here, we revisit them in the light of communication complexity
arguments.

Second, we use communication complexity measures in order to construct a lan-
guage which is a recognizable and co-recognizable language but not an unam-
biguous one. This answers a question raised in [14].

1 Introduction

The class REC of recognizable picture languages generalizes the notion of regular lan-
guages to two-dimensional setting. Initially introduced by D. Giammarresi and A.
Restivo in [4], this class has been proved to be very robust and has been character-
ized in several different ways, extending classic specifications of regular string languages.
For instance the recognizable picture languages can be described by tiling systems (i.e.,
as projections of local sets of tiles), by the on-line tessellation automata, or by a fragment
of existential monadic second-order logic [4, 10, 6, 7].

However the situation for recognizable picture languages is not as uniform as that for
regular string languages. Unlike one-dimensional case, adding non-determinism increases
the expressive power; indeed, the class REC is larger than its deterministic variant. In
particular, REC contains NP-complete problems [12]. Further many other properties
proved in the one-dimensional case, are no longer true; among other, REC is not closed
under complement [10].

Here, we are mainly interested in a subclass of REC, the class UREC of unambiguous
recognizable picture languages. Several studies have already made explicit the reduc-
tion of expressive power induced by the constraint of non-ambiguity and, notably, have
exhibited a necessary condition for any language to be unambiguously recognizable [1].
In this paper, we will see how such a criterion can be directly obtained from communi-
cation complexity arguments. In addition we will focus on the following open question
which was first raised in a more general context of grid graphs [14, 5, 2]: “Is there a
recognizable and co-recognizable language which is not unambiguous?” We will give a
positive answer. For that, we will use communication complexity results to identify a
candidate L with a significant gap between unambiguous communication complexity on
one side and non-deterministic and co-non-deterministic complexities on the other side.

The paper is organized as follows. Section 2 contains the definitions of recognizable
picture language, tiling system and its unambiguous variant. Section 3 recalls the neces-
sary background about communication complexity that we will need later on. Section 4
revisits already known lower bounds for tiling systems in the light of communication
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complexity. Finally, the presentation of a recognizable and co-recognizable language
which is not unambiguous, is given in Section 5.

2 Tiling system

We recall the standard definitions about recognizable picture languages.

Definition 1 (picture). For m,n ∈ N and Σ an alphabet, a picture p of size (m,n) is
an array with m rows and n columns of elements over Σ. The pixel p(i, j) refers to the
symbol on the i-th row and the j-th column.
Let ] be a special symbol not in Σ. The bordered picture of p is the picture p̂ of size
(m+ 2, n+ 2) obtained by surrounding p with ].

Σm,n denotes the set of all pictures over Σ of size (m,n) and Σ∗∗ the set of all pictures
over Σ. A picture language over Σ is a subset of Σ∗∗.

Definition 2 (tile, tilable picture). A tile is a picture of size (2, 2).
For Σ an alphabet, Θ a set of tiles over Σ ∪ {]} and p a picture over Σ, Θ tiles p if all
the sub-pictures of size (2, 2) of the bordered picture p̂ belong to Θ.

A language which can be described by the set of its (2, 2)-sub-pictures, is said local.

Definition 3 (local language). A picture language L over Σ is local if there exists a set
of tiles Θ over Σ ∪ {]} such that L contains exactly those pictures tilable by Θ. If so,
we write L = Local(Θ).

The key notion of recognizable languages is defined in terms of local language and
projection, and so involves both locality and non-determinism.

Definition 4 (projection). For Γ and Σ two alphabets and π : Γ → Σ a map, the
projection by π of a picture p ∈ Γm,n is the picture p′ ∈ Σm,n such that p′(i, j) = π(p(i, j))
for all pixels. The projection π(L) of a language L over Γ is the language over Σ defined
as {π(p) : p ∈ L}.
Definition 5 (tiling system). A tiling system is a quadruple T = (Σ,Γ,Θ, π) where

• Σ and Γ are finite alphabets;

• Θ is a set of tiles over Σ ∪ {]};

• π : Σ→ Γ is a projection.

Definition 6 (recognizable language). A picture language L over Γ is tiling recognizable
if there exist a tiling system T = (Σ,Γ,Θ, π) such that L = π(Local(Θ)).
REC denotes the family of all recognizable picture languages and co-REC the family of
languages whose complement is in REC.

Example 1 (the language INTERVAL). The language of all pictures p over {0, 1} such
that, given m the height of p, there exist two columns of p at distance m which are
equal.

INTERVAL =
{
p ∈{0, 1}∗∗ : p is of the size (m,n) and

it exists j such that for all i = 1, . . . ,m : p(i, j) = p(i, j +m)
}

1 0 1 0 0 0 0 1 0 1 0

1 0 0 0 1 0 0 0 0 1 0

1 1 1 0 0 0 0 1 0 1 0

0 1 0 1 1 0 1 0 1 0 1

1 0 0 1 0 1 1 0 1 1 0

m

m
π

] ] ] ] ] ] ] ] ] ] ] ] ]

] 1 0 11 01 01 01 01 1 0 1 0 ]

] 1 0 00 00 10 00 00 0 0 1 0 ]

] 1 1 11 01 01 01 01 1 0 1 0 ]

] 0 1 00 10 10 00 10 0 1 0 1 ]

] 1 0 00 10 00 10 10 0 1 1 0 ]

] ] ] ] ] ] ] ] ] ] ] ] ]

Figure 1: A picture of INTERVAL and its tiling
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INTERVAL is in REC. We just give an informal description of the tiling system. As
depicted in Figure 1, the tiling system will

(i) choose non-deterministically one column: it is materialized by the line drawn from
the upper left corner;

(ii) transfer the chosen column to the right: the column elements are recorded in the
subscripts;

(iii) determine the column i + m at distance m of the chosen column i: it is achieved
by the mean of a diagonal which links the top of the column i with the bottom of
the column i+m− 1;

(iv) verify that the columns i and i+m are equal: the tiling ensures that each subscript
of the column m+ i− 1 matches the value on its right.

Here is another tiling for the same picture. That means the tiling is ambiguous: one
picture admits more than one local pre-images.

] ] ] ] ] ] ] ] ] ] ] ] ]

] 1 0 1 00 00 00 00 10 0 1 0 ]

] 1 0 0 00 10 00 00 00 0 1 0 ]

] 1 1 1 00 00 00 00 10 0 1 0 ]

] 0 1 0 11 11 01 11 01 1 0 1 ]

] 1 0 0 11 01 11 11 01 1 1 0 ]

] ] ] ] ] ] ] ] ] ] ] ] ]

A tiling system is unambiguous if it does not have two different tilings for any picture.

Definition 7 (unambiguous). A tiling system T = (Σ,Γ,Θ, π) that recognizes a lan-
guage L is unambiguous if for every picture p ∈ L there exists exactly one picture
q ∈ Local(Θ) such that p = π(q).
Any picture language recognized by an unambiguous tiling system is said unambiguous.
UREC denotes the family of all unambiguous recognizable picture languages and co-UREC
the family of languages whose complement is in UREC.

To end this section, let us mention the currently known relationships among these
classes REC, co-REC, UREC and co-UREC. REC and co-REC are incomparable because REC

is not closed under complement [10]. UREC (resp. co-UREC) is properly contained in REC

(resp. co-REC) [1]. Unfortunately, no relation is known between UREC and co-UREC, and
even, between UREC and co-REC.

REC co-REC

UREC co-UREC?

??(( ( (( (

6=

3 Communication complexity

The communication complexity framework provides efficient tools for proving lower
bounds. Introduced by Yao [15], the communication complexity measures the amount
of communication needed to compute a global function whose inputs are distributed
among several parties. Typically, two players Alice and Bob wish to jointly compute a
function f : X × Y → {0, 1}. Alice gets x ∈ X and Bob gets y ∈ Y . They exchange bits
according to some fixed protocol and stop when both know the value f(x, y). Several
different models of protocols exist.

Now we just list the definitions and results needed for our study. A comprehensive
treatment may be found in the book by Kushilevitz and Nisan [11]. For our context,
since tiling systems are intrinsically a non-deterministic device, the non-deterministic
model will be appropriate.
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Definition 8 (non-deterministic and unambiguous protocols). For f : X × Y → {0, 1}
a function, a non-deterministic protocol for f of cost k consists of two functions A :
X × {0, 1}k → {0, 1} and B : Y × {0, 1}k → {0, 1} such that

• f(x, y) = 1⇒ ∃z ∈ {0, 1}k : A(x, z) = 1 and B(y, z) = 1

• f(x, y) = 0⇒ ∀z ∈ {0, 1}k : A(x, z) = 0 or B(y, z) = 0

Such a protocol is unambiguous if for each tuple (x, y) such that f(x, y) = 1 there is
exactly one z: A(x, z) = 1 and B(y, z) = 1.

The above protocol can be understood in this following way. Alice and Bob both
share the functions f , A and B. If Alice receives x and Bob y, then the information
required to convince them that f(x, y) = 1, corresponds to the certificate z of size k.
Now the communication complexity of f quantifies the information transfer.

Definition 9 (non-deterministic and unambiguous communication complexities). The
non-deterministic communication complexity of f , N 1(f), is the minimal cost k of a
protocol, over all non-deterministic protocols for f .
The co-non-deterministic communication complexity of f , N 0(f), equals N 1(¬f) where
¬f(x, y) = 1− f(x, y).
The unambiguous communication complexity of f , UN 1(f), is the minimal cost k of a
protocol, over all unambiguous protocols for f .

To evaluate these complexities, the fundamental ingredients are the characteristic
matrix of the function f , also named communication matrix or Hankel matrix, and its
all ones or all zeros sub-matrices.

Definition 10 (characteristic matrix, monochromatic rectangle). For f : X×Y → {0, 1}
a function, the characteristic matrix Mf is a |X|×|Y |matrix whose (x, y) entry is f(x, y).
Let v be 0 or 1. A v-monochromatic rectangle of Mf is a subset R = A × B ⊆ X × Y
such that f(x, y) = v for all x ∈ A and y ∈ B.

Several attributes describe the structure of the characteristic matrix:

Definition 11 (cover and partition numbers, rank). For f : X × Y → {0, 1} a function
and Mf its characteristic matrix

• The v-cover number, Cv(f), is the minimum number of v-monochromatic rectan-
gles needed to cover all the v in Mf (possibly with overlaps).

• The v-partition number, Xv(f), is the minimum number of v-monochromatic rect-
angles needed to cover all the v in Mf without overlap.

• The rank, rank(f), is the rank of Mf .

As emphasized in the following key lemma, a non-deterministic protocol for f of
cost k corresponds to a cover of all the 1 with at most 2k rectangles. For unambiguous
protocol, the cover involves rectangles with no overlaps.

Lemma 1. • N 1(f) = logC1(f) and N 0(f) = logC0(f)

• UN 1(f) = logX1(f) and UN 0(f) = logX0(f)

Based on linear algebra, the next results relate the partition number and the ranks.

Fact 1. • X1(f) ≥ rank(f) and X0(f) ≥ rank(¬f)

• | rank(f)− rank(¬f)| ≤ 1

It gives us lower bounds on unambiguous communication complexities in terms of
rank.
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Lemma 2. UN 1(f) ≥ log rank(f) and UN 0(f) ≥ log(rank(f)− 1)

Here is an example to illustrate these notions.

Example 2 (the function NEQ). The non-equality function is as following.

NEQm : {0, 1}m × {0, 1}m → {0, 1}

(x, y) →
{

1 if x 6= y
0 else

The characteristic matrix of NEQm is the complement of the 2m × 2m identity matrix.

x ∈ {0, 1}m

y ∈ {0, 1}m

(a)
MNEQ4

stands for 1
stands for 0

(b)

A 1-monochromatic rectangle drawn in gray
With the inputs in lexicographic order,
it corresponds to R2,0 ={x0x1x2x3 ∈ {0, 1}4 :
x2 = 0} × {y0y1y2y3 ∈ {0, 1}4 : y2 = 1}

Figure 2: The characteristic matrix of NEQm with m = 4.

Observe that for any couple (x, y) ∈ {0, 1}m × {0, 1}m, a certificate that x 6= y is an
integer i in range 0, . . . ,m − 1 and a value v = 0 or 1 such that xi = v and yi = 1− v.
The size of the certificate is logm + 1 (logm bits to code i and 1 bit to code v). In
parallel, the couples (x, y) such that xi = v and yi = 1 − v draw a 1-monochromatic
rectangle Ri,v = {x ∈ {0, 1}m : xi = v} × {y ∈ {0, 1}m : yi = 1 − v}. And the union
of the 2m rectangles Ri,v:

⋃
0≤i<m,v=0,1

Ri,v is a 1-cover of the characteristic matrix. In

other words, N 1(NEQm) ≤ logm+1. On the other hand, these rectangles overlap and do
not form a 1-partition. As a matter of fact, the characteristic matrix has full rank 2m.
Thus UN 1(NEQm) ≥ log rank(NEQm) = m. Note also that N 0(NEQm) = UN 0(NEQm) = m
since all 0-monochromatic rectangles are of size 1 and form a 0-partition.

In the sequel, to specify the communication complexities bounds, we will use the
standard asymptotic notation. The big O defines the upper bounds: O(f) is the set of
functions bounded above by f . The big omega defines the lower bounds: Ω(f) is the set
of functions bounded below by f . The little omega defines the strict lower bounds: ω(f)
is the set of functions dominating f .

4 Tiling system limits in light of communication complex-
ity

Several different lower bounds on picture language recognition have been demonstrated
in a set of works [13, 1, 5, 2, 3]. The common approach is based on a technique that
consists in reducing two-dimensional languages to string languages over the alphabet of
the columns. Then the results are obtained in the setting of regular string languages. As
a matter of fact, all these proofs involve indirectly communication complexity arguments.
Here, our aim is to make explicitly use of the communication complexity tools to yield
direct and simple proofs of these results. Let us mention that communication complexity
has already proved to be fruitful in the context of tiling systems over infinite picture [8].
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Besides the techniques, as considered below on finite pictures, simply generalize the
communication complexity techniques specified for regular string languages in [9].

The starting point rests on the following common observation. When we divide a
picture into two parts, the size of the cut sets a bound on the information that can pass
from one side to the other. For a tiling system, the communication consists of the tiled
boundary between the two parts. Now the question is in what extent this bottleneck
will entail limit on its recognition capacity. The communication complexity framework
will help us to formalize this.

The capacity of a tiling system to recognize some language L will be limited by the
communication complexity of the following related functions.

Definition 12. Let L be a picture language over Σ. We associate to L a family of
boolean functions (gLm,n)

gLm,n :
n⋃

i=1
Σm,i ×

n⋃
i=1

Σm,i → {0, 1}

(q, r) →
{

1 if qr ∈ L
0 else

Proposition 1. Let L be a recognizable picture language. Then, for any n, it exists a
non-deterministic protocol for gLm,n whose cost is in O(m).

Proof. A non-deterministic protocol for gLm,n in which Alice and Bob share a tiling system

recognizing L is as following. See Figure 3. Alice gets q ∈
n⋃

i=1
Σm,i and Bob gets

r ∈
n⋃

i=1
Σm,i. If the concatenation p = rq is in L, it exists a tiling of p. In that case,

the certificate z is the tiled boundary between the two parts r and q. Indeed Alice and
Bob can respectively check that the certificate z matches their own picture part. On
the other hand, if p is not in L, no tiling for p exists. Hence, Alice and Bob can not
agree whatever z, the tiled boundary between the two parts q and r, is. Thus the cost
of this non-deterministic protocol corresponds to the size of the tiled boundary, that is
in O(m).

1 0 1 0 0 0 0 1 0 1 0 1

1 0 0 0 1 0 0 0 0 1 0 0

1 1 1 0 0 0 0 1 0 1 0 1

0 1 0 1 1 0 1 0 1 0 1 1

1 0 0 1 0 1 1 0 1 1 0 0

1

m

q r

(a) p = qr a picture of L

] ] ] ] ] ] ] ] ] ] ] ] ] ]

] 1 0 11 01 01 01 01 1 0 1 0 1 ]

] 1 0 00 00 10 00 00 0 0 1 0 0 ]

] 1 1 11 01 01 01 01 1 0 1 0 1 ]

] 0 1 00 10 10 00 10 0 1 0 1 1 ]

] 1 0 00 10 00 10 10 0 1 1 0 0 ]

] ] ] ] ] ] ] ] ] ] ] ] ] ]

(b) A tiling of p

1 0 1 0 0 0 0 1 0 1 0 1

1 0 0 0 1 0 0 0 0 1 0 0

1 1 1 0 0 0 0 1 0 1 0 1

0 1 0 1 1 0 1 0 1 0 1 1

1 0 0 1 0 1 1 0 1 1 0 0

1

m

Alice’s data Bob’s data

the boundary

(c)
Alice gets the left part q
Bob gets the right part r

] ] ] ] ] ] ] ] ] ] ] ] ] ]

] 1 0 11 01 01 01 01 1 0 1 0 1 ]

] 1 0 00 00 10 00 00 0 0 1 0 0 ]

] 1 1 11 01 01 01 01 1 0 1 0 1 ]

] 0 1 00 10 10 00 10 0 1 0 1 1 ]

] 1 0 00 10 00 10 10 0 1 1 0 0 ]

] ] ] ] ] ] ] ] ] ] ] ] ] ]

the tiled boundary

(d) The certificate: the tiled boundary

Figure 3: A non-deterministic protocol for gLm,n when L ∈ REC
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Proposition 2. Let L be an unambiguous recognizable picture language. Then, for any
n, it exists an unambiguous protocol for gLm,n whose cost is in O(m).

Proof. Under the additional assumption that it exits a tiling system for L which is
unambiguous, the above protocol turns out to be unambiguous. Indeed, providing there
exists exactly one tiling for every p = rq in L, the certificate z is also unique.

Putting together Lemmas 1 & 2 and Propositions 1 & 2, we find again the results
stated in [3] and [1] that give recognizability conditions through measures of the char-
acteristic matrix:

Theorem 1. (i) If L ∈ REC then, whatever n is, logC1(gLm,n) is in O(m).

(ii) If L ∈ UREC, then, whatever n is, log rank(gLm,n) is in O(m).

Let us notice that the protocols described in the above propositions, consider all
possible vertical cuts of the pictures. In the following, it will be sufficient to adopt a
simplified view with only a single cut taken into account, the one that divides the pictures
in two halves. Incidentally only pictures of even width will be involved. Concretely,
we will consider the subfunctions fLm,n that are the restrictions of gLm,n on the domain
Σm,n × Σm,n

Definition 13. Let L be a picture language over Σ. The family of functions (fLm,n) is
defined by:

fLm,n : Σm,n × Σm,n → {0, 1}

(q, r) →
{

1 if qr ∈ L
0 else

Obviously, the functions gLm,n inherit the lower bounds of the subfunctions fLm,n:

C1(fLm,n) ≤ C1(gLm,n) and rank(fLm,n) ≤ rank(gLm,n). Thus a weak form of Theorem 1 is
as following.

Corollary 1. (i) If L ∈ REC then, whatever n is, logC1(fLm,n) is in O(m).

(ii) If L ∈ UREC, then, whatever n is, log rank(fLm,n) is in O(m).

5 A recognizable and co-recognizable language which is
not unambiguous

In this section we consider the question raised in [14]. Is there a recognizable and
co-recognizable language which is not unambiguous? We will see that the answer is
positive: it exists a language inside (REC∩ co-REC)\ (UREC∪ co-UREC). A candidate must
be a language L easy to compute non-deterministically and co-non-deterministically but
difficult to compute unambiguously. In terms of communication complexity, it means
that the non-deterministic and co-non-deterministic communication complexities of fLm,n

are both in O(m) but the rank of fLm,n is in 2ω(m).
We can find in [11] the list-non equality predicate with a significant gap between

unambiguous and non-deterministic communication complexities. It takes as input: two
lists of length n of words of m bits each and tests whether the two respective j-th words
differ for all j. In short, it simply corresponds to the family of boolean functions (fLNEm,n)
associated to the following picture language LNE.

Example 3 (the language LNE). LNE is the set of all pictures over {0, 1} of size (m, 2n)
such that the j-th and (n+ j)-th columns differ for all j.

LNE =
{
p ∈{0, 1}∗∗ : p is of the size (m, 2n) and

for all j = 1, . . . , n, it exists i such that p(i, j) 6= p(i, j + n)
}
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0 1 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 0 1 0

1 1 0 0 0 0 1 0 1 0

0 0 1 1 0 1 0 0 0 1

(a) A picture in LNE

0 1 0 0 0 0 1 0 1 0

1 0 0 1 0 0 0 0 1 0

1 1 0 0 0 0 1 0 1 0

0 0 1 1 0 1 0 0 0 1

(b) A picture not in LNE

Figure 4: The language LNE

The three following facts present some bounds on the communication complexities of
LNE. They come from [11] and are rephrased to fit our context. On the one hand, upper
bounds on the non-deterministic communication complexities of LNE and its complement
are obtained by describing appropriate protocols.

Fact 2. N 1(f
LNE
m,n) ≤ O(n logm)

Proof. A non-deterministic protocol where Alice and Bob get each an half of the picture
p, is as following. A certificate to convince Alice and Bob that p is in LNE provides
for each column j = 1, · · · , n a row α(j) and a bit v such that p(α(j), j) = v and
p(α(j), n + j) = 1 − v. The certificate contains the list of n couples composed of the
logm bits of the value α(j) and the corresponding bit p(α(j), j). It gives a certificate of
size n(logm+ 1) bits.

Fact 3. N 0(f
LNE
m,n) ≤ O(log n+m)

Proof. A certificate to convince Alice and Bob that p is not in LNE consists of a column
j such that p(i, j) = p(i, n + j) for all i. The certificate contains the log n bits of the
value j and the m bits of the column.

On the other hand, lower bounds on the unambiguous communication complexities
of LNE and its complement are obtained through the rank approach.

Fact 4. UN 1(f
LNE
m,n) ≥ Ω(mn) and UN 0(f

LNE
m,n) ≥ Ω(mn)

Proof. Recall Lemma 2 that provides lower bounds on unambiguous communication
complexities through the rank of the characteristic matrix: UN 1(f

LNE
m,n) ≥ log rank(fLNEm,n)

and UN 0(f
LNE
m,n) ≥ log(rank(fLNEm,n)− 1). Now algebraic techniques will allow to compute

the rank of MfLNEm,n
. First consider the characteristic matrix MfLNEm,1

where n = 1. It is the

complement of the 2m×2m identity matrix and has full rank 2m. Then the characteristic
matrix MfLNEm,n

for fLNEm,n corresponds to the 2mn × 2mn matrix obtained by the Kronecker
product of n matrices MfLNEm,1

. Hence its rank is (2m)n = 2mn.

In light of these facts, we observe that if n is in O(m/ logm) then N 1(f
LNE
m,n) and

N 0(f
LNE
m,n) are upper bounded by O(m). On the other hand, if n is in ω(1) then

UN 1(f
LNE
m,n) and UN 0(f

LNE
m,n) are lower bounded by ω(m). We can now define a sub-

set of LNE, containing pictures of appropriate size, which has low non-deterministic and
co-non-deterministic complexities but high unambiguous complexity.

Example 4 (the language CANDIDATE). It is the intersection of LNE with the set of
pictures of size (m, 2bm/dlogmec).

CANDIDATE =
{
p ∈{0, 1}∗∗ : the size of p is (m, 2n) where n = bm/dlogmec and

for all j = 1, . . . , bm/dlogmec, it exists i s.t. p(i, j) 6= p(i, j + n)
}

The task is now to make sure that CANDIDATE is effectively in REC and co-REC. More
specifically, we have to show that CANDIDATE and its complement can be implemented
by tiling systems. Actually we will see that CANDIDATE needs some adjusting to be tiling
recognizable.
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Facts 2 and 3 specify two non-deterministic protocols for CANDIDATE and its comple-
ment with low communication complexities. But, during the protocols, Alice and Bob
have unlimited power to process the information they own while it is not the case for
tiling systems. In particular the protocol for CANDIDATE requires the most resources: the
tiling system must compute the logm bits of the row index of the pixel selected in each
of the n columns.

For one specific pixel, a tiling system can set up a
binary counter which starts from the location of the
pixel and counts up to the top of the picture. The bi-
nary value reached is therefore its row index. But the
binary counter spreads over several columns, possibly
up to O(logm) for a picture of height m. And, with
a binary counter for each column, the bug is that the
counters overlap.

] ] ] ] ] ] ]

1 1 0 0 1

2 0r 0r 0r 1

3 1 1 1

4 0r 1 1

5 1 0 1

6 0r 0r 1

7 1 1

8 0r 1

9 1

logm

m

To patch that, we simply reshape the language CANDIDATE: we enlarge the picture
in inserting vertical stripes of width logm between each column. In this way, the tilling
system will have enough space to implement the counters. In the same time, it does not
change the height of the picture that is the size of our bottleneck.

m

logm

2bm/dlogmec

logm logm logm logm

2bm/dlogmec × dlogme

Figure 5: Reshaping CANDIDATE into PROPER

Example 5 (the language PROPER).

PROPER =
{
p ∈ {0, 1}∗∗ : the size (m, 2n) of p is such that n = bm/dlogmec dlogme

and for all j = 0, . . . , bm/dlogmec − 1, it exists i such that

p(i, 1 + jdlogme) 6= p(i, 1 + jdlogme+ n)
}

Once everything has been done to make it work well, let us verify that PROPER is
tiling recognizable.

Proposition 3. PROPER is in REC.

Proof. The recognition of PROPER can be split in two conditions:

1. The condition on the size (m,n) of the picture: n must be 2bm/dlogmec dlogme.

2. The requirement inherited from LNE: the k-th and (n+ k)-th columns must differ
for all k = 1 + rdlogme when r ranges from 0 to bm/dlogmec − 1.
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To check the first condition, the tiling
system makes use of a binary counter
to evaluate dlogme and cuts the pic-
ture in squares of side length dlogme.
In this way, it can verify that n is a
multiple of dlogme and n/dlogme =
2× bm/dlogmec. b

in
a
ry

co
u
n
te
r

slope=
1/2

m

dlogme

To check the second condition, ob-
serve first that the above tiling sys-
tem allows to identify every column
k = 1 + rdlogme with 0 ≤ r <
2bm/dlogmec. Then the tiling sys-
tem guesses one pixel in each of the
identified column, computes the bi-
nary value of its row index and also
transmits the pixel value to the bot-
tom. Finally the tiling system veri-
fies that the two picture halves hold
the same sequence for the row in-
dexes and two complement sequences
for the bit values.

1

1
0
0

0

0

0

0
1
1

1

1

1 11 11 11 11 10 01 11 10 00 0

m

Next let us check that the complement of PROPER is also in REC

Proposition 4. PROPER is in co-REC.

Proof. A picture of size (m,n) in PROPER either verifies that n 6= 2bm/dlogmec dlogme
or holds two identical columns of indexes 1 + rdlogme and n+ 1 + rdlogme for some r <
bm/dlogmec. As seen in the previous proposition, a tiling system can determine whether
the picture size (m,n) satisfies n = 2bm/dlogmec dlogme, or not. Then, we can easily
adapt the tiling system depicted in Example 1 to check whether there exists two identical
columns of indexes 1 + rdlogme and n+ 1 + rdlogme for some r < bm/dlogmec.

It remains to ascertain that PROPER is neither in UREC nor in co-UREC.

Proposition 5. PROPER is not in UREC∪ co-UREC

Proof. The communication complexities of PROPER are essentially those of LNE. Indeed,
adding columns to a picture modifies its width but leaves its height unchanged. So the
amount of information that must be exchanged between the two halves of a LNE picture
instance or its PROPER counterpart is the same. In particular, UN 1(f

PROPER
m,bm/dlogmec dlogme)

= UN 1(f
LNE
m,m/dlogmec). From Fact 4, it follows that UN 1(f

PROPER
m,bm/dlogmec dlogme) is in

Ω(m2/ logm). In the same way, UN 0(f
PROPER
m,bm/dlogmec dlogme) is in Ω(m2/ logm). This,

according to Corollary 1.ii, implies that neither PROPER nor PROPER is in UREC.

The above propositions are summarized in

Theorem 2. PROPER ∈ (REC∩ co-REC) \ (UREC∪ co-UREC)

6 Conclusion

The communication complexity framework is a simple and well-defined formalism for
proving lower bounds. We have seen how it applies naturally for tiling systems and allows
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us to obtain new proofs of known limits. We could also use other types of protocols to
further investigate the different subclasses of REC. For instance, one-round deterministic
protocol seems well suited for deterministic variants of REC.

Another benefit is the existence of a large body of results on communication com-
plexity. Thanks to these results, we were able to define a witness language PROPER

that differentiates REC∩ co-REC and UREC∪ co-UREC, by calibrating its communication
complexities.

Now, is there any similar strategy for the difficult question whether UREC is closed
under complement or not? It seems less easy because the ranks of a matrix and its
complement are of same order. So the rank lower bound approach can not be simply
applied.
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