Photometric Depth Super-Resolution

Bjoern Haefner 1 Songyou Peng 1 Alok Verma 1 Yvain Quéau 2 Daniel Cremers 1
2 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot variational approach is first put forward, which is effective as long as the target's reflectance is piecewise-constant. It is then shown that this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [104 références]  Voir  Masquer  Télécharger
Contributeur : Yvain Queau <>
Soumis le : lundi 3 juin 2019 - 11:39:50
Dernière modification le : lundi 23 septembre 2019 - 14:40:04


Fichiers produits par l'(les) auteur(s)



Bjoern Haefner, Songyou Peng, Alok Verma, Yvain Quéau, Daniel Cremers. Photometric Depth Super-Resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, In press, ⟨10.1109/TPAMI.2019.2923621⟩. ⟨hal-02145726⟩



Consultations de la notice


Téléchargements de fichiers