Cofinality of normal ideals on [λ]<κ I - Archive ouverte HAL Access content directly
Journal Articles Archive for Mathematical Logic Year : 2016

Cofinality of normal ideals on [λ]<κ I

(1) , (2) , (3)
1
2
3

Abstract

An ideal J on \([\lambda ]^{<\kappa }\) is said to be \([\delta ]^{<\theta }\)-normal, where \(\delta \) is an ordinal less than or equal to \(\lambda \), and \(\theta \) a cardinal less than or equal to \(\kappa \), if given \(B_e \in J\) for \(e \in [\delta ]^{<\theta }\), the set of all \(a \in [\lambda ]^{<\kappa }\) such that \(a \in B_e\) for some \(e \in [a \cap \delta ]^{< \vert a \cap \theta \vert }\) lies in J. We give necessary and sufficient conditions for the existence of such ideals and describe the smallest one, denoted by \(NS_{\kappa ,\lambda }^{[\delta ]^{<\theta }}\). We compute the cofinality of \(NS_{\kappa ,\lambda }^{[\delta ]^{<\theta }}\).
Not file

Dates and versions

hal-02145582 , version 1 (03-06-2019)

Identifiers

Cite

Pierre Matet, Cédric Péan, Saharon Shelah. Cofinality of normal ideals on [λ]<κ I. Archive for Mathematical Logic, 2016, 55 (5-6), pp.799-834. ⟨10.1007/s00153-016-0496-5⟩. ⟨hal-02145582⟩
34 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More