;. From-this-lemma, G. , H. , S. , and T. ?-a, ? 1) ? n with deg(S) < deg(H), deg(T ) < deg(G)

H. , S. , T. , and Y. , withH monic in ? such that: ? v(F ?GH) > v(F ) + 2 n, with v(G ? G) ? n + v(G) and v(H ? H) ? n + v(H), ? v(SG +TH ? 1) > 2 n ; deg(T ) < deg(G), deg(S) < deg(H)

F. , G. , H. , S. , and T. ). , Algorithm: HenselStep

?. ,

Q. and R. Quorem,

. 3g-?-g-+-?-t-+-q-g,

. 4h-?-h-+-r,

?. Sg-+-th,

A. and B. Quorem,

. 7s-?-s-?-b,

. 8t-?-t-?-?-t-?-ag,

G. Returnh and S. ,

S. S. Abhyankar, Irreducibility criterion for germs of analytic functions of two complex variables, Adv. Mathematics, vol.35, pp.190-257, 1989.

J. Bauch, E. Nart, and H. Stainsby, Complexity of the OM factorizations of polynomials over local fields, LMS Journal of Computation and Mathematics, vol.16, pp.139-171, 2013.

X. Caruso, D. Roe, and T. Vaccon, Division and slope factorization of p-adic polynomials, Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '16, pp.159-166, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01266537

E. Casas-alvero, Plane curve singularities, LMS Lecture Notes, vol.276, 2000.

V. Cossart and G. Moreno-socías, Irreducibility criterion: a geometric point of view, Fields Inst. Commun, vol.33, pp.27-42, 2003.

J. D. Dora, C. Dicrescenzo, and D. Duval, About a new method for computing in algebraic number fields, EUROCAL 85. Springer-Verlag LNCS 204, 1985.

D. Duval, Rational Puiseux expansions, Compositio Math, vol.70, issue.2, pp.119-154, 1989.

E. R. Garciá and . Barroso, Invariants des singularités de courbes planes et courbure des fibres de milnor, 1995.

E. R. Barroso and J. Gwo?dziewicz, Characterization of jacobian newton polygons of plane branches and new criteria of irreducibility, Ann. Institut Fourier, vol.60, issue.2, pp.683-709, 2010.

E. R. Barroso and J. Gwo?dziewicz, A discriminant criterion of irreducibility, Kodai Math. J, vol.35, pp.403-414, 2012.

J. V. Gathen and J. Gerhard, Modern Computer Algebra, 2013.

I. Gelfand, M. Kapranov, and A. Zelevinsky, Discriminants, resultants, and multidimensional determinants, 1994.

J. Guàrdia, J. Montes, and E. Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields, J. Théor. Nombres Bordx, vol.23, issue.3, pp.667-696, 2011.

J. Guàrdia, J. Montes, and E. Nart, Newton polygons of higher order in algebraic number theory, vol.364, pp.361-416, 2012.

E. Kaltofen, Greatest common divisors of polynomials given by straight-line programs, J. ACM, vol.35, issue.1, pp.231-264, 1988.

S. M. Lane, A construction for prime ideals as absolute values of an algebraic field, Duke Math. J, vol.2, issue.3, pp.492-510, 1936.

S. Maclane, A construction for absolute values in polynomial rings, Trans. Amer. Math. Soc, vol.40, issue.3, pp.363-395, 1936.

M. Merle, Invariants polaires des courbes planes, Inventiones Math, vol.41, pp.103-111, 1977.

J. M. , Polígonos de newton de orden superior y aplicaciones aritméticas, 1999.

P. Popescu-pampu, Approximate roots. Fields Institute Communiations, vol.33, pp.1-37, 2002.

A. Poteaux, Calcul de développements de Puiseux et application au calcul de groupe de monodromie d'une courbe algébrique plane, 2008.

A. Poteaux and M. Rybowicz, Complexity bounds for the rational newton-puiseux algorithm over finite fields, vol.22, pp.187-217, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00601438

A. Poteaux and M. Rybowicz, Good reduction of puiseux series and applications, Journal of Symbolic Computation, vol.47, issue.1, pp.32-63, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00825850

A. Poteaux and M. Rybowicz, Improving complexity bounds for the computation of puiseux series over finite fields, Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '15, pp.299-306, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01253216

A. Poteaux and M. Weimann, Computing Puiseux series: a fast divide and conquer algorithm, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578214

J. Rüth, Models of curves and valuations, 2014.

J. Teitelbaum, The computational complexity of the resolution of plane curve singularities, Math. Comp, vol.54, pp.797-837, 1990.

J. Van-der-hoeven, Relax, but don't be too lazy, JSC, vol.34, pp.479-542, 2002.

J. Van-der-hoeven and G. Lecerf, Accelerated tower arithmetic, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01788403

J. Van-der-hoeven and G. Lecerf, Directed evaluation, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01966428

M. Van-hoeij, An algorithm for computing an integral basis in an algebraic function field, J. Symb. Comp, vol.18, pp.353-363, 1994.

C. Wall, Singular Points of Plane Curves, 2004.

P. G. Walsh, A polynomial-time complexity bound for the computation of the singular part of an algebraic function, Math. of Comp, vol.69, pp.1167-1182, 2000.

M. Weimann, Bivariate factorization using a critical fiber, Journal of Foundations of Computational Mathematics, pp.1-45, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01645143

O. Zariski, Studies in equisingularity i, American J. Math, vol.87, pp.507-535, 1965.

O. Zariski, Le problème des modules pour les branches planes, 1973.