Algebraic Osculation and Application to Factorization of Sparse Polynomials

Abstract : We prove a theorem on algebraic osculation and apply our result to the computer algebra problem of polynomial factorization. We consider X a smooth completion of the complex plane C^2 and D an effective divisor with support the boundary ∂X = X \ C^2. Our main result gives explicit conditions that are necessary and sufficient for a given Cartier divisor on the subscheme (|D|, O_D) to extend to X. These osculation criterions are expressed with residues. When applied to the toric setting, our result gives rise to a new algorithm for factoring sparse bivariate polynomials which takes into account the geometry of the Newton polytope.
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal-normandie-univ.archives-ouvertes.fr/hal-02137318
Contributeur : Martin Weimann <>
Soumis le : mercredi 22 mai 2019 - 21:45:04
Dernière modification le : vendredi 28 juin 2019 - 16:38:25

Fichier

Osculation.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Martin Weimann. Algebraic Osculation and Application to Factorization of Sparse Polynomials. Foundations of Computational Mathematics, Springer Verlag, 2012, 12 (2), pp.173-201. ⟨10.1007/s10208-012-9114-z⟩. ⟨hal-02137318⟩

Partager

Métriques

Consultations de la notice

13

Téléchargements de fichiers

34