Bacterial persistence in biofilms: transcriptional analysis in a model of Pseudomonas catheter-assosciated urinary tract infections

Anaïs Soares, Elise Fiaux, Martine Pestel-Caron, François Caron, Manuel Etienne

To cite this version:

Anaïs Soares, Elise Fiaux, Martine Pestel-Caron, François Caron, Manuel Etienne. Bacterial persistence in biofilms: transcriptional analysis in a model of Pseudomonas catheter-assosciated urinary tract infections. IRIB, Jun 2015, Rouen, France. hal-02129794

HAL Id: hal-02129794
https://hal-normandie-univ.archives-ouvertes.fr/hal-02129794
Submitted on 15 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Bacterial persistence in biofilms: transcriptional analysis in a model of *Pseudomonas* catheter-associated urinary tract infections

Soares A.1,2, Fiaux E.1,3, Pestel-Caron M.1,2, Caron F.1,3, Etienne M.1,3
1 GRAM EA2656 ; 2 Bacteriology ; 3 Infectious Diseases, Rouen University Hospital, Rouen, France

Background

Biofilm (BF) is the main cause of antibiotic (ATB) failure during device-related infections. ATB failure might be related to persister (P) cells, a subset of bacteria able to survive to high ATB concentrations in BF, though tested fully susceptible (S) with usual minimum inhibitory concentration (MIC) tests in planktonic cultures. The aim was to develop in vitro a model of bacterial persistence to investigate the transcriptional adaptation induced by antibiotic stress.

Methods

Catheter-associated urinary tract infection (CAUTI) model in vitro
- A 4 days *Pseudomonas aeruginosa* (PA14) BF formed on urinary catheters (UC)
- 1h, 6h or 24h ciprofloxacin (CIP) exposure at different concentrations (from 1 to 2048xMIC)
- Surviving S and resistant (R) PA14 numbered on MH2 and MH2+CIP (1xMIC)

Results

Impact of CIP exposure (Figure 1):

- **Before CIP exposure:** 9 log_{10} CFU/ml including 6.6 log_{10} CFU/ml R cells, resistance mutation frequency = 5.10^{-3};
- **Biphasic curve after CIP exposure:**
 - initial and rapid 2 log_{10} CFU/ml drop of S and R cells in the same proportion plateau of bacterial populations despite increasing CIP concentrations;
- **Lower ATB doses to eradicate R cells than S cells** (768 to 1024xMIC vs 2048xMIC);
- **UC Sterilization at ATB concentrations > 1024xMIC** whatever the length of CIP exposure

Surviving S cells highly tolerant to ATB = Persister cells

Selection window of pure P population (Figure 2):

<table>
<thead>
<tr>
<th>CIP concentration (xMIC)</th>
<th>S cells</th>
<th>R cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>768xMIC (6h & 24h)</td>
<td>[10^9]</td>
<td>[10^4]</td>
</tr>
<tr>
<td>1024xMIC</td>
<td>[10^6]</td>
<td>[10^2]</td>
</tr>
</tbody>
</table>

Transcriptomic analysis (Table 1):

In the conditions of CIP exposure associated with mixed R + P cells:
- no overexpression whatever CIP exposure

In the conditions of CIP exposure associated with P selection (as compared to untreated UC):
- *early (1h) intense upregulation for spoT, relA, rpoN and lasI (x10 to 35)*
- *fading upregulation over time (1h vs 24h) though more intense (x3 to 6) at higher CIP concentrations*

Discussion

- A catheter-associated urinary tract infection model in vitro for persister selection at very high CIP concentrations; ATB failure not related to R cells, but to P cells;
- Low RNA amounts extracted limiting the number of genes quantified;
- Early and intense activation of lasI potentially for BF consolidation, of relA and spoT for shutdown of cellular process, tolerance towards CIP and increased survival → multiple dynamic process of gene expression regulation leading to persister phénotype
- Overexpression of spoT controversial role → synthase or hydrolase activity to be determined

Conclusion

In this ATB-treated BF model of *Pseudomonas* infection, the transcriptional adaptation induced is highly dynamic and varies along the ATB exposure and according to BF environment. Eradication failure at high CIP doses was related to persister phenotype and associated with early intense upregulation of stringent response genes.