S. Raimondeau, D. Norton, D. Vlachos, and R. Masel, Modeling of high-temperature microburners, Proc. Combust. Inst, vol.29, issue.1, pp.901-907, 2002.

N. I. Kim and K. Maruta, A numerical study on propagation of premixed flames in small tubes, Combust. Flame, vol.146, issue.1, pp.283-301, 2006.

J. Li, S. K. Chou, W. M. Yang, and Z. W. Li, A numerical study on premixed micro-combustion of CH 4-air mixture: effects of combustor size, geometry and boundary conditions on flame temperature, Chem. Eng. J, vol.150, issue.1, pp.213-222, 2009.

Z. Xie, Z. Yang, L. Zhang, and C. Liu, Effects of non-catalytic surface reactions on the CH 4-air premixed flame within micro-channels, RSC Advances, vol.5, issue.43, pp.34272-34280, 2015.

Y. Ju and B. Xu, Studies of the effects of radical quenching and flame stretch on mesoscale combustion, 44th AIAA Aerospace Sciences Meeting and Exhibit, p.1351, 2006.

M. Short and D. A. Kessler, Asymptotic and numerical study of variable-density premixed flame propagation in a narrow channel, Journal of Fluid Mechanics, vol.638, pp.305-337, 2009.

P. D. Ronney, Analysis of non-adiabatic heat-recirculating combustors, Combust. Flame, vol.135, issue.4, pp.421-439, 2003.

G. P. Gauthier, G. M. Watson, and J. M. Bergthorson, An evaluation of numerical models for temperature-stabilized CH4/air flames in a small channel, Combust. Sci. Tech, vol.184, issue.6, pp.850-868, 2012.

G. P. Gauthier and J. M. Bergthorson, Effect of external heat loss on the propagation and quenching of flames in small heat-recirculating tubes, Combust. Flame, vol.173, pp.27-38, 2016.

D. G. Norton and D. G. Vlachos, A CFD study of propane/air microflame stability, Combust. Flame, vol.138, issue.1-2, pp.97-107, 2004.

D. G. Norton and D. G. Vlachos, Combustion characteristics and flame stability at the microscale: A CFD study of premixed methane/air mixtures, Chem. Eng. Sci, vol.58, issue.21, pp.4871-4882, 2003.

Y. Kizaki, H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta, Effect of radical quenching on CH 4/air flames in a micro flow reactor with a controlled temperature profile, Proc. Combust. Inst, vol.35, issue.3, pp.3389-3396, 2015.

C. H. Tsai, The asymmetric behavior of steady laminar flame propagation in ducts, Combust. Sci. Tech, vol.180, issue.3, pp.533-545, 2008.

G. Pizza, C. E. Frouzakis, J. Mantzaras, A. G. Tomboulides, and K. Boulouchos, Threedimensional simulations of premixed hydrogen/air flames in microtubes, J. Fluid Mech, vol.658, pp.463-491, 2010.

V. N. Kurdyumov, Lewis number effect on the propagation of premixed flames in narrow adiabatic channels: Symmetric and non-symmetric flames and their linear stability analysis, Combust. Flame, vol.158, issue.7, pp.1307-1317, 2011.

C. Jiménez, D. Fernández-galisteo, and V. N. Kurdyumov, DNS study of the propagation and flashback conditions of lean hydrogen-air flames in narrow channels: symmetric and nonsymmetric solutions, Int. J. Hydrog. Energy, vol.40, issue.36, pp.12541-12549, 2015.

V. Zamashchikov, Some features of gas-flame propagation in narrow tubes, Combust. Explos. Shock Waves, vol.40, issue.5, pp.545-552, 2004.

Y. Ju and B. Xu, Effects of channel width and Lewis number on the multiple flame regimes and propagation limits in mesoscale, Combust. Sci. Technol, vol.178, pp.1723-1753, 2006.

G. Darrieus, Propagation d'un front de flamme, La Technique Moderne, vol.30, p.18, 1938.

L. Landau, On the theory of slow combustion, Acta Phys, vol.19, pp.77-85, 1944.

P. G. Saffman and F. S. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Dynamics of Curved Fronts, pp.155-174, 1988.

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.237, issue.641, pp.37-72, 1952.

G. Sivashinsky, Diffusional-thermal theory of cellular flames, Combust. Sci. Technol, vol.15, issue.3-4, pp.137-145, 1977.

M. Matalon, The Darrieus-Landau instability of premixed flames, Fluid Dynamics Research, vol.50, issue.5

S. Kang, S. Baek, and H. Im, Effects of heat and momentum losses on the stability of premixed flames in a narrow channel, Combust. Theor. Model, vol.10, issue.4, pp.659-681, 2006.

G. Joulin and G. Sivashinsky, Influence of momentum and heat losses on the large-scale stability of quasi-2d premixed flames, Combust. Sci. Technol, vol.98, issue.1-3, pp.11-23, 1994.

M. Sánchez-sanz, Premixed flame extinction in narrow channels with and without heat recirculation, Combust. Flame, vol.159, issue.10, pp.3158-3167, 2012.

M. Sánchez-sanz, D. Fernández-galisteo, and V. N. Kurdyumov, Effect of the equivalence ratio, Damköhler number, Lewis number and heat release on the stability of laminar premixed flames in microchannels, Combust. Flame, vol.161, issue.5, pp.1282-1293, 2014.

P. Clavin, P. Pelcé, and L. He, One-dimensional vibratory instability of planar flames propagating in tubes, J. Fluid Mech, vol.216, pp.299-322, 1990.

V. N. Kurdyumov and C. Jiménez, Propagation of symmetric and non-symmetric premixed flames in narrow channels: Influence of conductive heat-losses, Combust. Flame, vol.161, issue.4, pp.927-936, 2014.

C. M. Vagelopoulas, F. N. Egolgopoulos, and C. K. Law, Further considerations on the determination of laminar flame speed with the counterflow twin-flame technique, Symposium (International) on Combustion, vol.25, issue.1, pp.1341-1347, 1994.

T. Saitoh, T. Sajiki, and K. Maruhara, Bench mark solutions to natural convection heat transfer problem around a horizontal circular cylinder, Int. J. Heat Mass Transf, vol.36, issue.5, pp.1251-1259, 1993.

S. Acharya and S. K. Dash, Natural Convection Heat Transfer From a Short or Long, Solid or Hollow Horizontal Cylinder Suspended in Air or Placed on Ground, J. Heat Transfer, vol.139, issue.7, p.72501, 2017.

P. Wang, R. Kahawita, and D. L. Nguyen, Transient laminar natural convection from horizontal cylinders, Int. J. Heat Mass Transf, vol.34, issue.6, pp.1429-1442, 1991.

K. A. Kazakov, Analytical study in the mechanism of flame movement in horizontal tubes, Phys. Fluids, vol.24, issue.2, p.22108, 2012.

J. Daou and M. Matalon, Influence of conductive heat-losses on the propagation of premixed flames in channels, Combust. Flame, vol.128, issue.4, pp.321-339, 2002.

K. Bioche, L. Vervisch, and G. Ribert, Premixed flame-wall interaction in a narrow channel: Impact of wall thermal conductivity and heat losses, J. Fluid Mech, vol.856, pp.5-35, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01917308

P. M. Momentive, Thermal Properties of Fused Quartz URL

P. Domingo, L. Vervisch, and D. Veynante, Large-Eddy Simulation of a lifted methane-air jet flame in a vitiated coflow, Combust. Flame, vol.152, issue.3, pp.415-432, 2008.

P. Domingo and L. Vervisch, DNS and approximate deconvolution as a tool to analyse onedimensional filtered flame sub-grid scale modeling, Combust. Flame, vol.177, pp.109-122, 2017.

L. Bouheraoua, P. Domingo, and G. Ribert, Large-eddy simulation of a supersonic lifted jet flame: Analysis of the turbulent flame base, Combust. Flame, vol.179, pp.199-218, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611149

B. Duboc, G. Ribert, and P. Domingo, Evaluation of chemistry models on methane/air edge flame simulation, Proc. Comb. Inst
URL : https://hal.archives-ouvertes.fr/hal-02007802

F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq et al., Large-eddy simulation of the shock/turbulence interaction, J. Comput. Phys, vol.152, issue.2, pp.517-549, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00910343

T. J. Poinsot and S. K. Lele, Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys, vol.101, issue.1, pp.104-129, 1992.

C. F. Curtiss and J. O. Hirschfelder, Transport properties of multicomponent gas mixtures, J. Chem. Phys, vol.17, issue.6, pp.550-555, 1949.

F. Duchaine, A. Corpron, L. Pons, V. Moureau, F. Nicoud et al., Development and assessment of a coupled strategy for conjugate heat transfer with large eddy simulation: application to a cooled turbine blade, Int. J. Heat Fluid Flow, vol.30, issue.6, pp.1129-1141, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00803384

J. Douglas and J. , On the Numerical Integration of ??2u?x?2+??2u?y?2=?u?t by Implicit Methods, J. Soc. Ind. App. Math, vol.3, issue.1, pp.42-65, 1955.

C. Koren, Modélisation des transferts de chaleur couplés pour la simulation multi-physique des chambres de combustion, 2016.

G. Ruetsch, L. Vervisch, and A. Liñán, Effects of heat release on triple flame, Phys. Fluids, vol.6, issue.7, pp.1447-1454, 1995.

M. Frenklach, H. Wang, C. Yu, M. Goldenberg, C. T. Bowman et al.,

E. J. Davidson, G. P. Chang, D. M. Smith, W. C. Golden, V. Gardiner et al., GRI-Mech-An optimized detailed chemical reaction mechanism for methane combustion, Tech. Rep, 1995.

N. Jaouen, L. Vervisch, P. Domingo, and G. Ribert, Automatic reduction and optimisation of chemistry for turbulent combustion modelling: Impact of the canonical problem, Combust. Flame, vol.175, pp.60-79, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611160

C. W. Choi and I. Puri, Response of flame speed to positively and negatively curved premixed flames, Combust. Theor. Model, vol.7, pp.205-220, 2003.

P. Clavin and G. Searby, Combustion Waves and Fronts in Flows, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01334263