W. O. Abel, W. Knebel, H. U. Koop, J. R. Marienfeld, H. Quader et al., A cytokinin-sensitive mutant of the moss, Physcomitrella patens, defective in chloroplast division, Protoplasma, vol.152, pp.1-13, 1989.

J. M. Abercrombie, B. C. O'meara, A. R. Moffatt, and J. H. Williams, Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns, EvoDevo, vol.2, p.14, 2011.

I. Aloisi, G. Cai, C. Faleri, L. Navazio, D. Serafini-fracassini et al., Spermine regulates pollen tube growth by modulating Ca2+-dependent actin organization and cell wall structure, Front. Plant Sci, vol.8, p.1701, 2017.

, The Amborella genome and the evolution of flowering plants, Amborella Genome Project, vol.342, p.1241089, 2013.

J. R. Anderson, W. S. Barnes, and P. Bedinger, 2,6-Dichlorobenzonitrile, a cellulose biosynthesis inhibitor, affects morphology and structural integrity of petunia and lily pollen tubes, J. Plant Physiol, vol.159, pp.61-67, 2002.

L. Aouar, Y. Chebli, and A. Geitmann, Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes, Sex. Plant Reprod, vol.23, pp.15-27, 2010.

M. A. Atmodjo, Z. Hao, and D. Mohnen, Evolving views of pectin biosynthesis, Annu. Rev. Plant Biol, vol.64, pp.747-779, 2013.

U. Avci, M. J. Peña, and M. A. Neill, Changes in the abundance of cell wall apiogalacturonan and xylogalacturonan and conservation of rhamnogalacturonan II structure during the diversification of the Lemnoideae, Planta, vol.247, pp.953-971, 2018.

J. A. Banks, Gametophyte development in ferns, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.50, pp.163-186, 1999.

J. A. Banks, T. Nishiyama, M. Hasebe, J. L. Bowman, M. Gribskov et al., The Selaginella genome identifies genetic changes associated with the evolution of vascular plants, Science, vol.332, pp.960-963, 2011.

D. Bartels and B. Classen, Structural investigations on arabinogalactan-proteins from a lycophyte and different monilophytes (ferns) in the evolutionary context, Carbohydr. Polym, vol.172, pp.342-351, 2017.

C. S. Bascom, P. K. Hepler, and M. Bezanilla, Interplay between ions, the cytoskeleton, and cell wall properties during tip growth, Plant Physiol, vol.176, pp.28-40, 2018.

T. I. Baskin, Anisotropic expansion of the Plant cell wall, Annu. Rev. Cell Dev. Biol, vol.21, pp.203-222, 2005.

N. Baumberger, B. Doesseger, R. Guyot, A. Diet, R. L. Parsons et al., Whole-genome comparison of leucine-rich repeat extensins in Arabidopsis and rice. A conserved family of cell wall proteins form a vegetative and a reproductive clade, Plant Physiol, vol.131, pp.1313-1326, 2003.

R. Benkert, G. Obermeyer, and F. Bentrup, The turgor pressure of growing lily pollen tubes, Protoplasma, vol.198, pp.1-8, 1997.

A. J. Bernal, C. Yoo, M. Mutwil, J. K. Jensen, G. Hou et al., Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2, and CSLD4 in tip-growing Arabidopsis cells, Plant Physiol, vol.148, pp.1238-1253, 2008.

E. A. Berry, M. L. Tran, C. S. Dimos, M. J. Budziszek, T. R. Scavuzzo-duggan et al., Immuno and affinity cytochemical analysis of cell wall composition in the moss Physcomitrella patens, Front. Plant Sci, vol.7, p.248, 2016.

A. W. Blake, L. Mccartney, J. E. Flint, D. N. Bolam, A. B. Boraston et al., Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes, J. Biol. Chem, vol.281, pp.29321-29329, 2006.

L. C. Boavida and S. Mccormick, Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana, Plant J, vol.52, pp.570-582, 2007.

L. C. Boavida, B. Shuai, H. Yu, G. C. Pagnussat, V. Sundaresan et al., A collection of Ds insertional mutants associated with defects in male gametophyte development and function in Arabidopsis thaliana, Genetics, vol.181, pp.1369-1385, 2009.

M. Bopp, H. Quader, C. Thoni, T. Sawidis, and E. Schnepf, Filament disruption in Funaria Protonemata: formation and disintegration of tmema cells, J. Plant Physiol, vol.137, issue.11, pp.80131-80139, 1991.

M. Bosch, A. Y. Cheung, and P. K. Hepler, Pectin methylesterase, a regulator of pollen tube growth, Plant Physiol, vol.138, pp.1334-1346, 2005.

J. L. Bowman, T. Kohchi, K. T. Yamato, J. Jenkins, S. Shu et al., Insights into land plant evolution garnered from the Marchantia polymorpha genome, Cell, vol.171, pp.287-304, 2017.

S. A. Braybrook, J. , and H. , Shifting foundations: the mechanical cell wall and development, Curr. Opin. Plant Biol, vol.29, 2016.

G. Cai, C. Faleri, C. D. Casino, A. M. Emons, and M. Cresti, Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules, Plant Physiol, vol.155, pp.1169-1190, 2011.

C. Cameron and A. Geitmann, Cell mechanics of pollen tube growth, Curr. Opin. Genet. Dev, vol.51, pp.11-17, 2018.

J. Cao, X. Dai, H. Zou, and Q. Wang, Formation and development of rhizoids of the liverwort Marchantia polymorpha, J. Torrey Bot. Soc, vol.141, pp.126-134, 2014.

A. Carafa, J. G. Duckett, J. P. Knox, and R. Ligrone, Distribution of cell-wall xylans in bryophytes and tracheophytes: new insights into basal interrelationships of land plants, New Phytol, vol.168, pp.231-240, 2005.

N. C. Carpita, J. Ralph, and M. C. Mccann, The cell wall, Biochemistry and Molecular Biology of Plants, pp.45-110, 2015.

A. Carroll and C. D. Specht, Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences, Front. Plant Sci, vol.2, p.5, 2011.

A. J. Castro, C. Surez, K. Zienkiewicz, J. D. Alch, A. Zienkiewicz et al., Electrophoretic profiling and immunocytochemical detection of pectins and arabinogalactan proteins in olive pollen during germination and pollen tube growth, Ann. Bot, vol.112, pp.503-513, 2013.

Y. Chebli and A. Geitmann, FRAP experiments show pectate lyases promote pollen germination and lubricate the path of the pollen tube in Arabidopsis thaliana, Microsc. Microanal, vol.24, pp.1376-1377, 2018.

Y. Chebli, M. Kaneda, R. Zerzour, and A. Geitmann, The cell wall of the Arabidopsis pollen tube -spatial distribution, recycling, and network formation of polysaccharides, Plant Physiol, vol.160, pp.1940-1955, 2012.

K. Chen, G. Wu, Y. Wang, C. Tian, J. Samaj et al., The block of intracellular calcium release affects the pollen tube development of Picea wilsonii by changing the deposition of cell wall components, Protoplasma, vol.233, pp.39-49, 2008.

T. Chen, N. Teng, X. Wu, Y. Wang, W. Tang et al., Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking, Plant Cell Physiol, vol.48, pp.19-30, 2007.

X. Chen and J. Kim, Callose synthesis in higher plants, Plant Signal. Behav, vol.4, pp.489-492, 2009.

P. Choudhary, P. Saha, T. Ray, Y. Tang, D. Yang et al., EXTENSIN18 is required for full male fertility as well as normal vegetative growth in Arabidopsis, Front. Plant Sci, vol.6, p.553, 2015.

M. H. Clausen and R. Madsen, Synthesis of hexasaccharide fragments of pectin, Chem. Eur. J, vol.9, pp.3821-3832, 2003.

S. Coimbra, M. Costa, M. A. Mendes, A. M. Pereira, J. Pinto et al., Early germination of Arabidopsis pollen in a double null mutant for the arabinogalactan protein genes AGP6 and AGP11, Sex. Plant Reprod, vol.23, pp.199-205, 2010.

M. Costa, M. S. Nobre, J. D. Becker, S. Masiero, M. I. Amorim et al., Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes, BMC Plant Biol, vol.13, p.7, 2013.

W. J. Crotty, Rhizoid cell differentiation in the fern gametophyte of Pteris vittata, J. Bot, vol.54, pp.105-117, 1967.

F. Dardelle, F. Le-mauff, A. Lehner, C. Loutelier-bourhis, M. Bardor et al., Pollen tube cell walls of wild and domesticated tomatoes contain arabinosylated and fucosylated xyloglucan, Ann. Bot, vol.115, pp.55-66, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01805149

F. Dardelle, A. Lehner, Y. Ramdani, M. Bardor, P. Lerouge et al., Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall, Plant Physiol, vol.153, pp.1563-1576, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01805112

F. Delmas, M. Sveno, J. G. Northey, M. Hernould, P. Lerouge et al., The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation, J. Exp. Bot, vol.59, pp.2639-2647, 2008.

Y. Deng, W. Wang, W. Li, C. Xia, H. Liao et al., MALE GAMETOPHYTE DEFECTIVE 2, encoding a sialyltransferase-like protein, is required for normal pollen germination and pollen tube growth in Arabidopsis, J. Integr. Plant Biol, vol.52, pp.829-843, 2010.

J. Derksen, G. Janssen, M. Wolters-arts, I. Lichtscheidl, W. Adlassnig et al., Wall architecture with high porosity is established at the tip and maintained in growing pollen tubes of Nicotiana tabacum, Plant J, vol.68, pp.495-506, 2011.

J. Derksen, B. Knuiman, K. Hoedemaekers, A. Guyon, S. Bonhomme et al., Growth and cellular organization of Arabidopsis pollen tubes in vitro, Sex. Plant Reprod, vol.15, pp.133-139, 2002.

J. Derksen, Y. Q. Li, B. Knuiman, and H. Geurts, The wall of Pinus sylvestris L. pollen tubes, Protoplasma, vol.208, pp.26-36, 1999.

M. S. Doblin, L. D. Melis, E. Newbigin, A. Bacic, and S. M. Read, Pollen tubes of Nicotiana alata express two genes from different beta-glucan synthase families, Plant Physiol, vol.125, pp.2040-2052, 2001.

J. Dong, S. T. Kim, and E. M. Lord, Plantacyanin plays a role in reproduction in Arabidopsis, Plant Physiol, vol.138, pp.778-789, 2005.

G. Drakakaki, O. Zabotina, I. Delgado, S. Robert, K. Keegstra et al., Arabidopsis reversibly glycosylated polypeptides 1 and 2 are essential for pollen development, Plant Physiol, vol.142, pp.1480-1492, 2006.
DOI : 10.1104/pp.106.086363

URL : http://www.plantphysiol.org/content/142/4/1480.full.pdf

L. Z. Drbkov and D. Honys, Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development, PLoS ONE, vol.12, p.187331, 2017.

M. Dumont, A. Lehner, S. Bouton, M. C. Kiefer-meyer, A. Voxeur et al., The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein, Ann. Bot, vol.114, pp.1177-1188, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01805177

M. Dumont, A. Lehner, B. Vauzeilles, J. Malassis, A. Marchant et al., Plant cell wall imaging by metabolic click-mediated labelling of rhamnogalacturonan II using azido 3-deoxy-d-manno-oct-2-ulosonic acid, Plant J, vol.85, pp.437-447, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01838000

S. Eeckhout, O. Leroux, W. G. Willats, Z. A. Popper, and R. L. Viane, Comparative glycan profiling of Ceratopteris richardii C-Fern gametophytes and sporophytes links cell-wall composition to functional specialization, Ann. Bot, vol.114, pp.1295-1307, 2014.

M. Ellis, J. Egelund, C. J. Schultz, and A. Bacic, Arabinogalactanproteins: key regulators at the cell surface?, Plant Physiol, vol.153, pp.403-419, 2010.

T. N. Fabrice, H. Vogler, C. Draeger, G. Munglani, S. Gupta et al., LRX proteins play a crucial role in pollen grain and pollen tube cell wall development, Plant Physiol, vol.176, 1981.

H. Fan, H. Dong, C. Xu, J. Liu, B. Hu et al., Pectin methylesterases contribute the pathogenic differences between races 1 and 4 of Fusarium oxysporum f, sp. cubense. Sci. Rep, vol.7, p.13140, 2017.

K. Fang, S. Gao, W. Zhang, Y. Xing, Q. Cao et al., Addition of phenylboronic acid to Malus domestica pollen tubes alters calcium dynamics, disrupts actin filaments and affects cell wall architecture, PLoS ONE, vol.11, 2016.

K. Fang, W. Zhang, Y. Xing, Q. Zhang, L. Yang et al., Boron toxicity causes multiple effects on Malus domestica pollen tube growth, Front. Plant Sci, vol.7, p.208, 2016.
DOI : 10.3389/fpls.2016.00208

URL : https://www.frontiersin.org/articles/10.3389/fpls.2016.00208/pdf

J. U. Fangel, P. Ulvskov, J. P. Knox, M. D. Mikkelsen, J. Harholt et al., Cell wall evolution and diversity, Front. Plant Sci, vol.3, p.152, 2012.

N. Farrokhi, R. A. Burton, L. Brownfield, M. Hrmova, S. M. Wilson et al., Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes, Plant Biotechnol. J, vol.4, pp.145-167, 2006.

C. Ferguson, T. T. Teeri, M. Siika-aho, S. M. Read, and A. Bacic, Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum, Planta, vol.206, pp.452-460, 1998.

D. D. Fernando, Characterization of pollen tube development in Pinus strobus (Eastern white pine) through proteomic analysis of differentially expressed proteins, Proteomics, vol.5, pp.4917-4926, 2005.

D. D. Fernando, C. R. Quinn, E. D. Brenner, and J. N. Owens, Male gametophyte development and evolution in extant gymnosperms, Int. J. Plant Sci, vol.4, pp.47-63, 2010.

S. C. Fry, B. H. Nesselrode, J. G. Miller, and B. R. Mewburn, Mixed-linkage (1->3, 1->4)-[beta]-D-glucan is a major hemicellulose of Equisetum (horsetail) cell walls, New Phytol, vol.179, pp.104-115, 2008.

S. C. Fry, W. S. York, P. Albersheim, A. Darvill, T. Hayashi et al., An unambiguous nomenclature for xyloglucan-derived oligosaccharides, Physiol. Plant, vol.89, pp.1-3, 1993.

H. Fu, M. P. Yadav, and E. A. Nothnagel, Physcomitrella patens arabinogalactan proteins contain abundant terminal 3-O-methyl-Lrhamnosyl residues not found in angiosperms, Planta, vol.226, pp.1511-1524, 2007.

A. Geitmann, How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry, Sex. Plant Reprod, vol.23, pp.63-71, 2010.

A. Geitmann and M. Steer, The architecture and properties of the pollen tube cell wall, The Pollen Tube, number 3 in Plant Cell Monographs, pp.177-200, 2006.

V. Gloaguen, V. Brudieux, B. Closs, A. Barbat, P. Krausz et al., Structural characterization and cytotoxic properties of an apiose-rich pectic polysaccharide obtained from the cell wall of the marine phanerogam Zostera marina, J. Nat. Prod, vol.73, pp.1087-1092, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00641637

M. Golovkin and A. S. Reddy, A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.10558-10563, 2003.

C. A. Goss, D. J. Brockmann, J. T. Bushoven, and A. W. Roberts, A cellulose synthase (CESA) gene essential for gametophore morphogenesis in the moss Physcomitrella patens, Planta, vol.235, pp.1355-1367, 2012.

J. Gou, L. M. Miller, G. Hou, X. Yu, X. Chen et al., Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction, Plant Cell, vol.24, pp.50-65, 2012.

A. Gribaa, F. Dardelle, A. Lehner, C. Rihouey, C. Burel et al., Effect of water deficit on the cell wall of the date palm (Phoenix dactylifera Deglet nour, Arecales) fruit during development, Plant Cell Env, vol.36, pp.1056-1070, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01805124

F. Gu, M. Bringmann, J. R. Combs, J. Yang, D. C. Bergmann et al., Arabidopsis CSLD5 functions in cell plate formation in a cell cycle-dependent manner, Plant Cell, vol.28, pp.1722-1737, 2016.

D. Hackenberg and D. Twell, The evolution and patterning of male gametophyte development, Curr. Top. Dev. Biol, vol.131, pp.257-298, 2019.

H. Hao, T. Chen, L. Fan, R. Li, W. et al., 2,6-Dichlorobenzonitrile causes multiple effects on pollen tube growth beyond altering cellulose synthesis in Pinus bungeana Zucc, PLoS ONE, vol.8, p.76660, 2013.

J. Harholt, I. Sørensen, J. Fangel, A. Roberts, W. G. Willats et al., The glycosyltransferase repertoire of the spikemoss Selaginella moellendorffii and a comparative study of its cell wall, PLoS ONE, vol.7, p.35846, 2012.

T. Higashiyama, H. Kuroiwa, and T. Kuroiwa, Pollen-tube guidance: beacons from the female gametophyte, Curr. Opin. Plant Biol, vol.6, pp.36-41, 2003.

L. Hocq, F. Sénéchal, V. Lefebvre, A. Lehner, J. Domon et al., Combined experimental and computational approaches reveal distinct pH dependence of pectin methylesterase inhibitors, Plant Physiol, vol.173, pp.1075-1093, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01777664

M. Hoffman, Z. Jia, M. J. Peña, M. Cash, A. Harper et al., Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae, Carbohydr. Res, vol.340, pp.1826-1840, 2005.

S. Honkanen, V. A. Jones, G. Morieri, C. Champion, A. J. Hetherington et al., The mechanism forming the cell surface of tipgrowing rooting cells is conserved among land plants, Curr. Biol, vol.27, p.3224, 2016.

Y. S. Hsieh and P. J. Harris, Structures of xyloglucans in primary cell walls of gymnosperms, monilophytes (ferns sensu lato) and lycophytes, Phytochemistry, vol.79, pp.87-101, 2012.

, The map-based sequence of the rice genome, Nature, vol.436, pp.793-800, 2005.

M. C. Jarvis, Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture, Philos. Trans. A. Math. Phys. Eng. Sci, vol.376, p.2112, 2018.

G. Y. Jauh and E. M. Lord, Localization of pectins and arabinogalactanproteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination, Planta, vol.199, pp.251-261, 1996.

J. K. Jensen, S. O. Sørensen, J. Harholt, N. Geshi, Y. Sakuragi et al., Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis, Plant Cell, vol.20, pp.1289-1302, 2008.

L. Jiang, S. Yang, L. Xie, C. S. Puah, X. Zhang et al., VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract, Plant Cell, vol.17, pp.584-596, 2005.

K. L. Johnson, A. M. Cassin, A. Lonsdale, A. Bacic, M. S. Doblin et al., Pipeline to identify hydroxyproline-rich glycoproteins, Plant Physiol, vol.174, pp.886-903, 2017.

K. L. Johnson, A. M. Cassin, A. Lonsdale, G. K. Wong, .. Soltis et al., Insights into the evolution of hydroxyproline-rich glycoproteins from 1000 plant transcriptomes, Plant Physiol, vol.174, pp.904-921, 2017.

L. Jones, J. L. Milne, D. Ashford, and S. J. Mcqueen-mason, Cell wall arabinan is essential for guard cell function, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.11783-11788, 2003.

L. Jones, G. B. Seymour, and J. P. Knox, Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1-4)-[beta]-Dgalactan, Plant Physiol, vol.113, pp.1405-1412, 1997.

V. A. Jones and L. Dolan, The evolution of root hairs and rhizoids, Ann. Bot, vol.110, pp.205-212, 2012.

S. Kaur, K. S. Dhugga, R. Beech, and J. Singh, Genome-wide analysis of the cellulose synthase-like (Csl) gene family in bread wheat (Triticum aestivum L.), BMC Plant Biol, vol.17, p.193, 2017.

M. J. Kieliszewski and D. T. Lamport, Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny, Plant J, vol.5, pp.157-172, 1994.

K. Kitazawa, T. Tryfona, Y. Yoshimi, Y. Hayashi, S. Kawauchi et al., beta-galactosyl Yariv reagent binds to the beta-1,3-galactan of arabinogalactan proteins, Plant Physiol, vol.161, pp.1117-1126, 2013.

M. Kobayashi, N. Kouzu, A. Inami, K. Toyooka, Y. Konishi et al., Characterization of Arabidopsis CTP:3-deoxy-D-manno-2-octulosonate cytidylyltransferase (CMP-KDO synthetase), the enzyme that activates KDO during rhamnogalacturonan II biosynthesis, Plant Cell Physiol, vol.52, pp.1832-1843, 2011.

Y. Kong, G. Zhou, Y. Yin, Y. Xu, S. Pattathil et al., Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases, Plant Physiol, vol.155, pp.1791-1805, 2011.

C. Kremer, F. Pettolino, A. Bacic, and A. Drinnan, Distribution of cell wall components in Sphagnum hyaline cells and in liverwort and hornwort elaters, Planta, vol.219, pp.1023-1035, 2004.

J. H. Kroeger, R. Zerzour, and A. Geitmann, Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth, PLoS ONE, vol.6, p.18549, 2011.

K. Kudlicka and R. M. Brown, Cellulose and callose biosynthesis in higher plants (I. Solubilization and separation of (1->3) and (1->4)-[beta]-glucan synthase activities from mung bean), Plant Physiol, vol.115, pp.643-656, 1997.

A. R. Kulkarni, M. J. Peña, U. Avci, K. Mazumder, B. R. Urbanowicz et al., The ability of land plants to synthesize glucuronoxylans predates the evolution of tracheophytes, Glycobiology, vol.22, pp.439-451, 2012.

S. Kumar, G. Stecher, M. Suleski, and S. B. Hedges, TimeTree: a resource for timelines, timetrees, and divergence times, Mol. Biol. Evol, vol.34, pp.1812-1819, 2017.

E. Lalanne, D. Honys, A. Johnson, G. H. Borner, K. S. Lilley et al., SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis, Plant Cell, vol.16, pp.229-240, 2004.

D. T. Lamport, L. Tan, M. A. Held, and M. J. Kieliszewski, Pollen tube growth and guidance: occam's razor sharpened on a molecular arabinogalactan glycoprotein Rosetta Stone, New Phytol, vol.217, pp.491-500, 2018.

D. T. Lamport, P. Varnai, and C. E. Seal, Back to the future with the AGP-Ca2+ flux capacitor, Ann. Bot, vol.114, pp.1069-1085, 2014.

E. R. Lampugnani, Y. Y. Ho, I. E. Moller, P. Koh, J. F. Golz et al., A glycosyltransferase from Nicotiana alata pollen mediates synthesis of a linear (1,5)-L-arabinan when expressed in Arabidopsis, Plant Physiol, vol.170, pp.1962-1974, 2016.

E. R. Lampugnani, I. E. Moller, A. Cassin, D. F. Jones, P. L. Koh et al., In vitro grown pollen tubes of Nicotiana alata actively synthesise a fucosylated xyloglucan, PLoS ONE, vol.8, p.77140, 2013.

E. R. Larson, M. L. Tierney, B. Tinaz, and D. S. Domozych, Using monoclonal antibodies to label living root hairs: a novel tool for studying cell wall microarchitecture and dynamics in Arabidopsis, Plant Methods, vol.10, p.30, 2014.

M. D. Lazzaro, J. M. Donohue, and F. M. Soodavar, Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes, Protoplasma, vol.220, pp.201-207, 2003.

L. Gall, H. Philippe, F. Domon, J. Gillet, F. Pelloux et al., Cell wall metabolism in response to abiotic stress, Plants, vol.4, pp.112-166, 2015.

K. J. Lee, Y. Sakata, S. Mau, F. Pettolino, A. Bacic et al., Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens, Plant Cell, vol.17, pp.3051-3065, 2005.

K. A. Lennon and E. M. Lord, In vivo pollen tube cell of Arabidopsis thaliana I. Tube cell cytoplasm and wall, Protoplasma, vol.214, pp.45-56, 2000.

K. A. Lennon, S. Roy, P. K. Hepler, and E. M. Lord, The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth, Sex. Plant Reprod, vol.11, pp.49-59, 1998.

C. Leroux, S. Bouton, M. Kiefer-meyer, T. N. Fabrice, A. Mareck et al., PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination, Plant Physiol, vol.167, pp.367-380, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01838053

O. Leroux, S. Eeckhout, R. L. Viane, and Z. A. Popper, Ceratopteris richardii (C-fern): a model for investigating adaptive modification of vascular plant cell walls, Front. Plant Sci, vol.4, p.367, 2013.

A. Leszczuk, A. Kozio, E. Szczuka, and A. Zdunek, Analysis of AGP contribution to the dynamic assembly and mechanical properties of cell wall during pollen tube growth, Plant Sci, vol.281, pp.9-18, 2019.

B. Levitin, D. Richter, I. Markovich, and M. Zik, Arabinogalactan proteins 6 and 11 are required for stamen and pollen function in Arabidopsis, Plant J, vol.56, pp.351-363, 2008.

J. Li, R. A. Burton, A. J. Harvey, M. Hrmova, A. Z. Wardak et al., Biochemical evidence linking a putative callose synthase gene with (1-3)-beta-D-glucan biosynthesis in barley, Plant Mol. Biol, vol.53, pp.213-225, 2003.

J. Li, H. Hsu, J. D. Mountz, A. , and J. G. , Unmasking fucosylation: from cell adhesion to immune system regulation and diseases, Cell Chem. Biol, vol.25, pp.499-512, 2018.

Y. Q. Li, L. Bruun, E. S. Pierson, and M. Cresti, Periodic deposition of arabinogalactan epitopes in the cell wall of pollen tubes of Nicotiana tabacum L, Planta, vol.188, pp.532-538, 1992.

Y. Q. Li, F. Chen, H. F. Linskens, and M. Cresti, Distribution of unesterified and esterified pectins in cell walls of pollen tubes of flowering plants, Sex. Plant Reprod, vol.7, pp.145-152, 1994.

A. H. Liepman, C. J. Nairn, W. G. Willats, I. Sørensen, A. W. Roberts et al., Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants, Plant Physiol, vol.143, pp.1881-1893, 2007.

A. H. Liepman, R. Wightman, N. Geshi, S. R. Turner, and H. V. Scheller, Arabidopsis a powerful model system for plant cell wall research, Plant J, vol.61, pp.1107-1121, 2010.

A. H. Liepman, C. G. Wilkerson, and K. Keegstra, Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.2221-2226, 2005.

A. Little, J. G. Schwerdt, N. J. Shirley, S. F. Khor, K. Neumann et al., Revised phylogeny of the cellulose synthase gene superfamily: insights into cell wall evolution, Plant Physiol, vol.177, pp.1124-1141, 2018.

X. Liu, R. Wolfe, L. R. Welch, D. S. Domozych, Z. A. Popper et al., Bioinformatic identification and analysis of extensins in the plant kingdom, PLoS ONE, vol.11, 2016.

X. Liu, L. Liu, Q. Niu, C. Xia, K. Yang et al., Male gametophyte defective 4 encodes a rhamnogalacturonan II xylosyltransferase and is important for growth of pollen tubes and roots in Arabidopsis, Plant J, vol.65, pp.647-660, 2011.

R. A. Lopez and K. S. Renzaglia, Multiflagellated sperm cells of Ceratopteris richardii are bathed in arabinogalactan proteins throughout development, Am. J. Bot, vol.101, pp.2052-2061, 2014.

R. A. Lopez and K. S. Renzaglia, The Ceratopteris (fern) developing motile gamete walls contain diverse polysaccharides, but not pectin, Planta, vol.247, pp.393-404, 2018.

J. Lora, J. I. Hormaza, and M. Herrero, The diversity of the pollen tube pathway in plants: toward an increasing control by the sporophyte, Front. Plant Sci, vol.7, p.107, 2016.

E. Lord, Adhesion and cell movement during pollination: cherchez la femme, Trends Plant Sci, vol.5, pp.368-373, 2000.

J. M. Losada, J. I. Hormaza, L. , and J. , Pollen-pistil interaction in pawpaw (Asimina triloba), the northernmost species of the mainly tropical family Annonaceae, Am. J. Bot, vol.104, pp.1891-1903, 2017.

M. Lyu, Y. Yu, J. Jiang, L. Song, Y. Liang et al., BcMF26a and BcMF26b are duplicated polygalacturonase genes with divergent expression patterns and functions in pollen development and pollen tube formation in Brassica campestris, PLoS ONE, vol.10, 2015.

H. Ma and J. Zhao, Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.), J. Exp. Bot, vol.61, pp.2647-2668, 2010.

Y. Ma, C. Yan, H. Li, W. Wu, Y. Liu et al., Bioinformatics prediction and evolution analysis of arabinogalactan proteins in the plant kingdom, Front. Plant Sci, vol.8, p.66, 2017.

C. A. Macalister, C. Ortiz-ramírez, J. D. Becker, J. A. Feijó, and Z. B. Lippman, Hydroxyproline O-arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens, Plant J, vol.85, pp.193-208, 2016.

S. E. Marcus, Y. Verhertbruggen, C. Hervé, J. J. Ordaz-ortiz, V. Farkas et al., Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls, BMC Plant Biol, vol.8, p.60, 2008.

E. Marzol, C. Borassi, M. Bringas, A. Sede, D. G. Rodriguez et al., Filling the gaps to solve the extensin puzzle, Mol. Plant, vol.11, pp.645-658, 2018.

T. Matoh, M. Takasaki, K. Takabe, and M. Kobayashi, , 1998.

, Immunocytochemistry of rhamnogalacturonan II in cell walls of higher plants, Plant Cell Physiol, vol.39, pp.483-491

T. Matsunaga, T. Ishii, S. Matsumoto, M. Higuchi, A. Darvill et al., Occurrence of the primary cell wall polysaccharide Rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. implications for the evolution of vascular plants, Plant Physiol, vol.134, pp.339-351, 2004.

T. W. Mccarthy, J. P. Der, L. A. Honaas, C. W. Depamphilis, A. et al., Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls, BMC Plant Biol, vol.14, p.79, 2014.

L. Mccartney, S. E. Marcus, and J. P. Knox, Monoclonal antibodies to plant cell wall xylans and arabinoxylans, J. Histochem. Cytochem, vol.53, pp.543-546, 2005.

J. T. Mcnamara, J. L. Morgan, and J. Zimmer, A molecular description of cellulose biosynthesis, Annu. Rev. Biochem, vol.84, pp.895-921, 2015.

M. A. Mecchia, G. Santos-fernandez, N. N. Duss, S. C. Somoza, A. Boissondernier et al., RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis, Science, vol.358, pp.1600-1603, 2017.

P. J. Meikle, I. Bonig, N. J. Hoogenraad, A. E. Clarke, and B. A. Stone, The location of (1-3)-beta-glucans in the walls of pollen tubes of Nicotiana alata using a (1-3)-beta-glucan-specific monoclonal antibody, Planta, vol.185, pp.1-8, 1991.

P. J. Meikle, N. J. Hoogenraad, I. Bonig, A. E. Clarke, and B. A. Stone, A (1-3,1-4)-beta-glucan-specific monoclonal antibody and its use in the quantitation and immunocytochemical location of (1-3,1-4)-glucans, Plant J, vol.5, pp.1-9, 1994.

B. Menand, G. Calder, and L. Dolan, Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens, J. Exp. Bot, vol.58, pp.1843-1849, 2007.

F. Micheli, Pectin methylesterases: cell wall enzymes with important roles in plant physiology, Trends Plant Sci, vol.6, pp.414-419, 2001.

N. Mogami, M. Miyamoto, M. Onozuka, and N. Nakamura, Comparison of callose plug structure between dicotyledon and monocotyledon pollen germinated in vitro, Grana, vol.45, pp.249-256, 2006.

I. Moller, S. E. Marcus, A. Haeger, Y. Verhertbruggen, R. Verhoef et al., High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles, Glycoconj. J, vol.25, pp.37-48, 2008.

I. Moller, I. Sørensen, A. J. Bernal, C. Blaukopf, K. Lee et al., High-throughput mapping of cell-wall polymers within and between plants using novel microarrays, Plant J, vol.50, pp.1118-1128, 2007.

J. Mollet, S. Kim, G. Jauh, and E. M. Lord, Arabinogalactan proteins, pollen tube growth, and the reversible effects of Yariv phenylglycoside, Protoplasma, vol.219, pp.89-98, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02121608

J. Mollet, C. Leroux, F. Dardelle, and A. Lehner, Cell wall composition, biosynthesis and remodeling during pollen tube growth, vol.2, pp.107-147, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01805132

J. P. Moore, J. M. Farrant, and A. Driouich, A role for pectin-associated arabinans in maintaining the flexibility of the plant cell wall during water deficit stress, Plant Signal. Behav, vol.3, pp.102-104, 2008.

J. P. Moore, N. T. Le, W. F. Brandt, A. Driouich, and J. M. Farrant, Towards a systems-based understanding of plant desiccation tolerance, Trends Plant Sci, vol.14, pp.110-117, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02128706

L. R. Moreira and E. X. Filho, An overview of mannan structure and mannan-degrading enzyme systems, Appl. Microbiol. Biotechnol, vol.79, pp.165-178, 2008.

L. Mounet-gilbert, M. Dumont, C. Ferrand, C. Bournonville, A. Monier et al., Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development, J. Exp. Bot, vol.67, pp.4767-4777, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01775273

N. Nakamura, M. Mori, and H. Suzuki, Chemical characterization of the callose plug isolated from Camellia japonica pollen tube, Plant Cell Physiol, vol.25, pp.233-238, 1984.

N. Nakamura, K. Yoshida, and H. Suzuki, Hemicellulose of the pollen tube wall of Camellia japonica, Plant Cell Physiol, vol.21, pp.1383-1390, 1980.

D. Ndeh, A. Rogowski, A. Cartmell, A. S. Luis, A. Baslé et al., Complex pectin metabolism by gut bacteria reveals novel catalytic functions, Nature, vol.544, pp.65-70, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595600

E. Nguema-ona, S. Coimbra, M. Vicré-gibouin, J. Mollet, and A. Driouich, Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects, Ann. Bot, vol.110, pp.383-404, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01844523

E. Nguema-ona, M. Vicré-gibouin, M. Gotté, B. Plancot, P. Lerouge et al., Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function, Front. Plant Sci, vol.5, p.499, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01842174

K. J. Niklas and U. Kutschera, The evolution of the land plant life cycle, New Phytol, vol.185, pp.27-41, 2010.

S. Nishikawa, G. M. Zinkl, R. J. Swanson, D. Maruyama, and D. Preuss, , 2005.

, Callose (beta-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth, BMC Plant Biol, vol.5, p.22

B. T. Nixon, K. Mansouri, A. Singh, J. Du, J. K. Davis et al., Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex, Sci. Rep, vol.6, p.28696, 2016.

D. R. Nobles, D. K. Romanovicz, and R. M. Brown, Cellulose in cyanobacteria. origin of vascular plant cellulose synthase?, Plant Physiol, vol.127, pp.529-542, 2001.

J. H. Norris, X. Li, S. Huang, A. M. Meene, M. L. Tran et al., Functional specialization of cellulose synthase isoforms in a moss shows parallels with seed plants, Plant Physiol, vol.175, pp.210-222, 2017.

A. L. Nothnagel and E. A. Nothnagel, Primary cell wall structure in the evolution of land plants, J. Integr. Plant Biol, vol.49, pp.1271-1278, 2007.

E. A. Nothnagel, Proteoglycans and related components in plant cells, Int. Rev. Cytol, vol.174, pp.195-291, 1997.

D. P. Oehme, M. T. Downton, M. S. Doblin, J. Wagner, M. J. Gidley et al., Unique aspects of the structure and dynamics of elementary I cellulose microfibrils revealed by computational simulations, Plant Physiol, vol.168, pp.3-17, 2015.

M. Ogawa-ohnishi, W. Matsushita, and Y. Matsubayashi, Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana, Nat. Chem. Biol, vol.9, 2013.

M. A. O'neill, T. Ishii, P. Albersheim, and A. G. Darvill, Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide, Annu. Rev. Plant Biol, vol.55, pp.109-139, 2004.

M. A. O'neill and W. S. York, The compostion and structure of plant primary cell walls, The Plant Cell Wall. Annual Plant Reviews, vol.8, pp.1-44, 2003.

M. Pabst, R. M. Fischl, L. Brecker, W. Morelle, A. Fauland et al., RhamnogalacturonanII structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species, Plant J, vol.76, pp.61-72, 2013.

E. Pacini, G. G. Franchi, and M. Ripaccioli, Ripe pollen structure and histochemistry of some gymnosperms, Pl. Syst. Evol, vol.217, pp.81-99, 1999.

Y. B. Park and D. J. Cosgrove, Xyloglucan and its interactions with other components of the growing cell wall, Plant Cell Physiol, vol.56, pp.180-194, 2015.

E. Parre and A. Geitmann, More than a leak sealant. The mechanical properties of callose in pollen tubes, Plant Physiol, vol.137, pp.274-286, 2005.

E. Parre and A. Geitmann, Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense, Planta, vol.220, pp.582-592, 2005.

R. M. Parton, S. Fischer-parton, A. J. Trewavas, and M. K. Watahiki, Pollen tubes exhibit regular periodic membrane trafficking events in the absence of apical extension, J. Cell Sci, vol.116, pp.2707-2719, 2003.

S. Pattathil, U. Avci, D. Baldwin, A. G. Swennes, J. A. Mcgill et al., A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies, Plant Physiol, vol.153, pp.514-525, 2010.

F. Paynel, C. Leroux, O. Surcouf, A. Schaumann, J. Pelloux et al., Kiwi fruit PMEI inhibits PME activity, modulates root elongation and induces pollen tube burst in Arabidopsis thaliana, Plant Growth Regul, vol.74, pp.285-297, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01838209

A. Peaucelle, S. Braybrook, and H. Hfte, Cell wall mechanics and growth control in plants: the role of pectins revisited, Front. Plant Sci, vol.3, p.121, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01203961

H. L. Pedersen, J. U. Fangel, B. Mccleary, C. Ruzanski, M. G. Rydahl et al., Versatile high-resolution oligosaccharide microarrays for plant glycobiology and cell wall research, J. Biol. Chem, vol.287, pp.39429-39438, 2012.

J. Pelloux, C. Rustérucci, and E. J. Mellerowicz, New insights into pectin methylesterase structure and function, Trends Plant Sci, vol.12, pp.267-277, 2007.

M. J. Peña, A. G. Darvill, S. Eberhard, W. S. York, and M. A. Neill, Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants, Glycobiology, vol.18, pp.891-904, 2008.

M. J. Peña, Y. Kong, W. S. York, and M. A. Neill, A galacturonic acidcontaining xyloglucan is involved in Arabidopsis root hair tip growth, Plant Cell, vol.24, pp.4511-4524, 2012.

R. I. Pennell, L. Janniche, P. Kjellbom, G. N. Scofield, J. M. Peart et al., Developmental regulation of a plasma membrane arabinogalactan protein epitope in oilseed rape flowers, Plant Cell, vol.3, pp.1317-1326, 1991.

S. Persson, A. Paredez, A. Carroll, H. Palsdottir, M. Doblin et al., Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.15566-15571, 2007.

F. A. Pettolino, N. J. Hoogenraad, C. Ferguson, A. Bacic, E. Johnson et al., A (1-4)-beta-mannan-specific monoclonal antibody and its use in the immunocytochemical location of galactomannans, Planta, vol.214, pp.235-242, 2001.

M. Pi?manová and B. L. Møller, Apiose one of nature's witty games, Glycobiology, vol.26, pp.430-442, 2016.

W. Pilnik and F. M. Rombouts, Pectic enzymes, Enzymes and Food Processing, pp.105-128, 1981.

B. Plancot, B. Gugi, J. Mollet, C. Loutelier-bourhis, S. Ramasandra-govind et al., Desiccation tolerance in plants: structural characterization of the cell wall hemicellulosic polysaccharides in three Selaginella species, Carbohydr. Polym, vol.208, pp.180-190, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01967459

Z. A. Popper, Evolution and diversity of green plant cell walls, Curr. Opin. Plant Biol, vol.11, pp.286-292, 2008.

Z. A. Popper, G. Michel, C. Hervé, D. S. Domozych, W. G. Willats et al., Evolution and diversity of plant cell walls: from algae to flowering plants, Annu. Rev. Plant Biol, vol.62, pp.567-590, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01117618

J. Puhlmann, E. Bucheli, M. J. Swain, N. Dunning, P. Albersheim et al., Generation of monoclonal antibodies against plant cellwall polysaccharides (characterization of a monoclonal Antibody to a terminal alpha-(1-2)-linked fucosyl-containing epitope, Plant Physiol, vol.104, pp.699-710, 1994.

M. N. Puttick, J. L. Morris, T. A. Williams, C. J. Cox, D. Edwards et al., The interrelationships of land plants and the nature of the ancestral embryophyte, Curr. Biol, vol.28, pp.733-745, 2018.

P. Qin, D. Ting, A. Shieh, and S. Mccormick, Callose plug deposition patterns vary in pollen tubes of Arabidopsis thaliana ecotypes and tomato species, BMC Plant Biol, vol.12, p.178, 2012.

Y. Qin, A. R. Leydon, A. Manziello, R. Pandey, D. Mount et al., Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil, PLoS Genet, vol.5, p.1000621, 2009.

H. D. Reiss, E. Schnepf, and W. Herth, The plasma membrane of the Funaria caulonema tip cell: morphology and distribution of particle rosettes, and the kinetics of cellulose synthesis, Planta, vol.160, pp.428-435, 1984.

S. A. Rensing, D. Lang, A. D. Zimmer, A. Terry, A. Salamov et al., The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants, Science, vol.319, pp.64-69, 2008.

T. A. Richmond and C. R. Somerville, The cellulose synthase superfamily, Plant Physiol, vol.124, pp.495-498, 2000.

T. A. Richmond and C. R. Somerville, Integrative approaches to determining Csl function, Plant Mol. Biol, vol.47, pp.131-143, 2001.
DOI : 10.1007/978-94-010-0668-2_8

C. Ringli, Monitoring the outside: cell wall-sensing mechanisms, Plant Physiol, vol.153, pp.1445-1452, 2010.

A. W. Roberts and J. T. Bushoven, The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens, Plant Mol. Biol, vol.63, pp.207-219, 2007.

A. W. Roberts, J. Lahnstein, Y. S. Hsieh, X. Xing, K. Yap et al., Functional characterization of a glycosyltransferase from the moss Physcomitrella patens involved in the biosynthesis of a novel cell wall arabinoglucan, Plant Cell, vol.30, pp.1293-1308, 2018.

A. W. Roberts, E. M. Roberts, and C. H. Haigler, Moss cell walls: structure and biosynthesis, Front. Plant Sci, vol.3, p.166, 2012.
DOI : 10.3389/fpls.2012.00166

URL : https://www.frontiersin.org/articles/10.3389/fpls.2012.00166/pdf

N. Röckel, S. Wolf, B. Kost, T. Rausch, and S. Greiner, Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins, Plant J, vol.53, pp.133-143, 2008.

M. D. Rodríguez-gacio, R. Iglesias-fernández, P. Carbonero, and A. J. Matilla, Softening-up mannan-rich cell walls, J. Exp. Bot, vol.63, pp.3976-3988, 2012.

C. M. Rounds and M. Bezanilla, Growth mechanisms in tip-growing plant cells, Annu. Rev. Plant Biol, vol.64, pp.243-265, 2013.
DOI : 10.1146/annurev-arplant-050312-120150

C. M. Rounds, E. Lubeck, P. K. Hepler, and L. J. Winship, Propidium iodide competes with Ca2+ to label pectin in pollen tubes and Arabidopsis root hairs, Plant Physiol, vol.157, pp.175-187, 2011.
DOI : 10.1104/pp.111.182196

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165868

S. Roy, K. J. Eckard, S. Lancelle, P. K. Hepler, and E. M. Lord, Highpressure freezing improves the ultrastructural preservation of in vivo grown lily pollen tubes, Protoplasma, vol.200, pp.87-98, 1997.

S. Roy, G. Y. Jauh, P. K. Hepler, and E. M. Lord, Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube, Planta, vol.204, pp.450-458, 1998.

A. L. Rubinstein, J. Marquez, M. Suarez-cervera, and P. A. Bedinger, , 1995.

, Extensin-like glycoproteins in the maize pollen tube wall, Plant Cell, vol.7, pp.2211-2225

U. Rudolph, H. Gross, and E. Schnepf, Investigations of the turnover of the putative cellulose-synthesizing particle "rosettes" within the plasma membrane of Funaria hygrometrica protonema cells, Protoplasma, vol.148, pp.57-69, 1989.

U. Rudolph and E. Schnepf, Investigations of the turnover of the putative Cellulose-synthesizing particle "rosettes" within the plasma membrane of Funaria hygrometrica protonema cells, Protoplasma, vol.143, pp.63-73, 1988.

A. A. Salmeán, D. Duffieux, J. Harholt, F. Qin, G. Michel et al., Insoluble (1->3), (1->4)-[beta]-D-glucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues, Sci. Rep, vol.7, p.2880, 2017.

M. M. Sassen, Fine structure of petunia pollen grain and pollen tube, Acta Bot. Neerl, vol.13, pp.175-181, 1964.

I. M. Saxena and R. M. Brown, Cellulose biosynthesis: current views and evolving concepts, Ann. Bot, vol.96, pp.9-21, 2005.

H. V. Scheller and P. Ulvskov, Hemicelluloses, Annu. Rev. Plant Biol, vol.61, pp.263-289, 2010.

P. Scherp, R. Grotha, and U. Kutschera, Occurrence and phylogenetic significance of cytokinesis-related callose in green algae, bryophytes, ferns and seed plants, Plant Cell Rep, vol.20, pp.143-149, 2001.

H. Schlupmann, A. Bacic, and S. M. Read, Uridine diphosphate glucose metabolism and callose synthesis in cultured pollen tubes of Nicotiana alata Link et Otto, Plant Physiol, vol.105, pp.659-670, 1994.

S. Schuette, A. J. Wood, M. Geisler, J. Geisler-lee, R. Ligrone et al., Novel localization of callose in the spores of Physcomitrella patens and phylogenomics of the callose synthase gene family, Ann. Bot, vol.103, pp.749-756, 2009.

A. Schultink, L. Liu, L. Zhu, P. , and M. , Structural diversity and function of xyloglucan sidechain substituents, Plants, vol.3, pp.526-542, 2014.
DOI : 10.3390/plants3040526

URL : http://www.mdpi.com/2223-7747/3/4/526/pdf

A. R. Sede, C. Borassi, D. L. Wengier, M. A. Mecchia, J. M. Estevez et al., Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth, FEBS Lett, vol.592, pp.233-243, 2018.
DOI : 10.1002/1873-3468.12947

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1002/1873-3468.12947

G. J. Seifert and K. Roberts, The biology of arabinogalactan proteins, Annu. Rev. Plant Biol, vol.58, pp.137-161, 2007.

F. Sénéchal, C. Wattier, C. Rustérucci, and J. Pelloux, Homogalacturonan-modifying enzymes: structure, expression, and roles in plants, J. Exp. Bot, vol.65, pp.5125-5160, 2014.

X. Sheng, Z. Hu, L. , H. Wang, X. Baluska et al., Roles of the ubiquitin/proteasome pathway in pollen tube growth with emphasis on MG132-induced alterations in ultrastructure, cytoskeleton, and cell wall components, Plant Physiol, vol.141, pp.1578-1590, 2006.

T. Shibaya, Y. Kaneko, and Y. Sugawara, Involvement of arabinogalactan proteins in protonemata development from cultured cells of Marchantia polymorpha, Physiol. Plant, vol.124, pp.504-514, 2005.

S. Shin, M. Golovkin, and A. S. Reddy, A pollen-specific calmodulinbinding protein, NPG1, interacts with putative pectate lyases, 2014.
DOI : 10.1038/srep05263

URL : https://www.nature.com/articles/srep05263.pdf

A. M. Showalter, Arabinogalactan-proteins: structure, expression and function, Cell. Mol. Life Sci, vol.58, pp.1399-1417, 2001.
DOI : 10.1007/pl00000784

URL : http://www.ohio.edu/plantbio/staff/showalte/showalter-lab/nShowalter 2001 AGPs.pdf

A. M. Showalter and D. Basu, Extensin and arabinogalactan-protein biosynthesis: glycosyltransferases, research challenges, and biosensors, Front. Plant Sci, vol.7, p.814, 2016.
DOI : 10.3389/fpls.2016.00814

URL : https://www.frontiersin.org/articles/10.3389/fpls.2016.00814/pdf

A. M. Showalter, B. Keppler, J. Lichtenberg, D. Gu, and L. R. Welch, A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins, Plant Physiol, vol.153, pp.485-513, 2010.

M. Smallwood, A. Beven, N. Donovan, S. J. Neill, J. Peart et al., Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex, Plant J, vol.5, pp.237-246, 1994.

M. Smallwood, H. Martin, and J. P. Knox, An epitope of rice threonine-and hydroxyproline-rich glycoprotein is common to cell wall and hydrophobic plasma-membrane glycoproteins, Planta, vol.196, pp.510-522, 1995.

B. G. Smith and P. J. Harris, The polysaccharide composition of Poales cell walls: poaceae cell walls are not unique, Biochem. Syst. Ecol, vol.27, pp.33-53, 1999.

J. Smith, Y. Yang, S. Levy, O. O. Adelusi, M. G. Hahn et al., Functional characterization of UDP-apiose synthases from bryophytes and green algae provides insight into the appearance of apiosecontaining glycans during plant evolution, J. Biol. Chem, vol.291, pp.21434-21447, 2016.

K. M. Smyth and A. Marchant, Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria, Carbohydr. Res, vol.380, pp.70-75, 2013.

I. Sørensen, F. A. Pettolino, A. Bacic, J. Ralph, F. Lu et al., The charophycean green algae provide insights into the early origins of plant cell walls, Plant J, vol.68, pp.201-211, 2011.

I. Sørensen, F. A. Pettolino, S. M. Wilson, M. S. Doblin, B. Johansen et al., Mixed-linkage (1->3), (1->4)-[beta]-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls, Plant J, vol.54, pp.510-521, 2008.

J. P. Stafstrom and L. A. Staehelin, Cross-linking patterns in saltextractable extensin from carrot cell walls, Plant Physiol, vol.81, pp.234-241, 1986.

L. Steinhorst and J. Kudla, Calcium -a central regulator of pollen germination and tube growth, Biochim. Biophys. Acta, vol.1833, pp.1573-1581, 2013.

J. D. Sterling, M. A. Atmodjo, S. E. Inwood, V. S. Kumar-kolli, H. F. Quigley et al., Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.5236-5241, 2006.

B. A. Stone, C. , and A. E. , Chemistry and biology of 1,3-beta-Glucans, 1992.

S. Stratford, W. Barne, D. L. Hohorst, J. G. Sagert, R. Cotter et al., A leucine-rich repeat region is conserved in pollen extensinlike (Pex) proteins in monocots and dicots, Plant Mol. Biol, vol.46, pp.43-56, 2001.

D. F. Suen and A. H. Huang, Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction, J. Biol. Chem, vol.282, pp.625-636, 2007.

J. Svetek, M. P. Yadav, and E. A. Nothnagel, Presence of a glycosylphosphatidylinositol lipid anchor on ose arabinogalactan proteins, J. Biol. Chem, vol.274, pp.14724-14733, 1999.

H. Takeda, T. Yoshikawa, X. Liu, N. Nakagawa, Y. Li et al., Molecular cloning of two exo-beta-glucanases and their in vivo substrates in the cell walls of lily pollen tubes, Plant Cell Physiol, vol.45, pp.436-444, 2004.

L. Tan, A. M. Showalter, J. Egelund, A. Hernandez-sanchez, M. S. Doblin et al., Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans, Front. Plant Sci, vol.3, p.140, 2012.

L. Tan, P. Varnai, D. T. Lamport, C. Yuan, J. Xu et al., Plant O-hydroxyproline arabinogalactans are composed of repeating trigalactosyl subunits with short bifurcated side chains, J. Biol. Chem, vol.285, pp.24575-24583, 2010.

C. C. Tang, The Wound Response in Arabidopsis thaliana and Physcomitrella patens, 2007.

A. R. Taylor, N. Manison, C. Fernandez, J. Wood, and C. Brownlee, Spatial organization of calcium signaling involved in cell volume control in the fucus rhizoid, Plant Cell, vol.8, 1996.

L. P. Taylor and P. K. Hepler, Pollen germination and tube growth, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.48, pp.461-491, 1997.

R. Tenhaken, Cell wall remodeling under abiotic stress, Front. Plant Sci, vol.5, p.771, 2015.

P. The-angiosperm, . Group, M. W. Chase, M. J. Christenhusz, M. F. Fay et al., An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV, Bot. J. Linn. Soc, vol.181, pp.1-20, 2016.

, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, The Arabidopsis Genome Initiative, vol.408, pp.796-815, 2000.

G. Tian, M. Chen, A. Zaltsman, and V. Citovsky, Pollen-specific pectin methylesterase involved in pollen tube growth, Dev. Biol, vol.294, pp.83-91, 2006.

M. L. Tran, T. W. Mccarthy, H. Sun, S. Wu, J. H. Norris et al., Direct observation of the effects of cellulose synthesis inhibitors using live cell imaging of Cellulose Synthase (CESA) in Physcomitrella patens, Sci. Rep, vol.8, p.735, 2018.

M. L. Tran and A. W. Roberts, Cellulose synthase gene expression profiling of Physcomitrella patens, Plant Biol, vol.18, pp.362-368, 2016.

I. Tsekos, The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes, J. Phycol, vol.35, pp.635-655, 1999.

M. R. Tucker, H. Lou, M. K. Aubert, L. G. Wilkinson, A. Little et al., Exploring the role of cell wall-related genes and polysaccharides during plant development, Plants, vol.7, p.42, 2018.

V. G. Vandavasi, D. K. Putnam, Q. Zhang, L. Petridis, W. T. Heller et al., A structural study of CESA1 catalytic domain of Arabidopsis cellulose synthesis complex: evidence for CESA trimers, Plant Physiol, vol.170, pp.123-135, 2016.

M. Van-hemelryck, R. Bernal, E. Rojas, J. Dumais, and J. H. Kroeger, A fresh look at growth oscillations in pollen tubes: kinematic and mechanistic descriptions, Pollen Tip Growth: From Biophysical Aspects to Systems Biology, pp.369-389, 2017.

A. Varki, R. D. Cummings, M. Aebi, N. H. Packer, P. H. Seeberger et al., Symbol nomenclature for graphical representations of glycans, Glycobiology, vol.25, pp.1323-1324, 2015.

S. M. Velasquez, E. Marzol, C. Borassi, L. Pol-fachin, M. M. Ricardi et al., Low sugar is not always good: impact of specific Oglycan defects on tip growth in Arabidopsis, Plant Physiol, vol.168, pp.808-813, 2015.

Y. Verhertbruggen, S. E. Marcus, J. Chen, and J. P. Knox, Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress, Plant. Cell Physiol, vol.54, pp.1278-1288, 2013.

Y. Verhertbruggen, S. E. Marcus, A. Haeger, J. J. Ordaz-ortiz, and J. P. Knox, An extended set of monoclonal antibodies to pectic homogalacturonan, Carbohydr. Res, vol.344, pp.1858-1862, 2009.

D. P. Verma and Z. Hong, Plant callose synthase complexes, Plant Mol. Biol, vol.47, pp.693-701, 2001.

H. Vogler, C. Draeger, A. Weber, D. Felekis, C. Eichenberger et al., The pollen tube: a soft shell with a hard core, Plant J, vol.73, pp.617-627, 2013.

C. Voiniciuc, M. Pauly, and B. Usadel, Monitoring polysaccharide dynamics in the plant cell wall, Plant Physiol, vol.176, pp.2590-2600, 2018.

S. Wallace and J. H. Williams, Evolutionary origins of pectin methylesterase genes associated with novel aspects of angiosperm pollen tube walls, Biochem. Biophys. Res. Commun, vol.487, pp.509-516, 2017.

L. Wang, K. Guo, Y. Li, Y. Tu, H. Hu et al., Expression profiling and integrative analysis of the CESA/CSL superfamily in rice, BMC Plant Biol, vol.10, p.282, 2010.

L. Wang, W. Wang, Y. Wang, Y. Liu, J. Wang et al., Arabidopsis galacturonosyltransferase GAUT13 and GAUT14 have redundant functions in pollen tube growth, Mol. Plant, vol.6, pp.1131-1148, 2013.

W. Wang, L. Wang, C. Chen, G. Xiong, X. Tan et al., Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes, J. Exp. Bot, vol.62, pp.5161-5177, 2011.

X. Wang, K. Wang, G. Yin, X. Liu, M. Liu et al., Pollenexpressed leucine-rich repeat extensins are essential for pollen germination and growth, Plant Physiol, vol.176, 1993.

W. G. Willats, S. E. Marcus, and J. P. Knox, Generation of a monoclonal antibody specific to (1,5)-alpha-L-arabinan, Carbohydr. Res, vol.308, pp.149-152, 1998.

W. G. Willats, L. Mccartney, C. G. Steele-king, S. E. Marcus, A. Mort et al., A xylogalacturonan epitope is specifically associated with plant cell detachment, Planta, vol.218, pp.673-681, 2004.

J. H. Williams, Novelties of the flowering plant pollen tube underlie diversification of a key life history stage, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.11259-11263, 2008.

J. H. Williams, Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase, Am. J. Bot, vol.96, pp.144-165, 2009.

J. H. Williams, Pollen tube growth rates and the diversification of flowering plant reproductive cycles, Int. J. Plant Sci, vol.173, pp.649-661, 2012.

J. H. Williams, J. A. Edwards, and A. J. Ramsey, Economy, efficiency, and the evolution of pollen tube growth rates, Am. J. Bot, vol.103, pp.471-483, 2016.

J. H. Williams and S. J. Mazer, Pollen -tiny and ephemeral but not forgotten: new ideas on their ecology and evolution, Am. J. Bot, vol.103, pp.365-374, 2016.
DOI : 10.3732/ajb.1600074

URL : https://onlinelibrary.wiley.com/doi/pdf/10.3732/ajb.1600074

J. H. Williams, R. , and J. B. , Evolution of development of pollen performance, Curr. Top. Dev. Biol, vol.131, pp.299-336, 2019.

L. J. Winship, G. Obermeyer, A. Geitmann, and P. K. Hepler, Under pressure, cell walls set the pace, Trends Plant Sci, vol.15, pp.363-369, 2010.
DOI : 10.1016/j.tplants.2010.04.005

URL : http://europepmc.org/articles/pmc2999822?pdf=render

H. Z. Wise, I. M. Saxena, and R. M. Brown, Isolation and characterization of the cellulose synthase genes PpCesA6 and PpCesA7 in Physcomitrella patens, Cellulose, vol.18, pp.371-384, 2011.

S. Wolf, K. Hmaty, and H. Höfte, Growth control and cell wall signaling in plants, Annu. Rev. Plant Biol, vol.63, pp.381-407, 2012.
DOI : 10.1146/annurev-arplant-042811-105449

URL : https://hal.archives-ouvertes.fr/hal-01053127

H. Wu, V. P. Bulgakov, and T. Jinn, Pectin methylesterases: cell wall remodeling proteins are required for plant response to heat stress, Front. Plant Sci, vol.9, p.1612, 2018.
DOI : 10.3389/fpls.2018.01612

URL : https://www.frontiersin.org/articles/10.3389/fpls.2018.01612/pdf

H. D. Wyatt, N. W. Ashton, and T. E. Dahms, Cell wall architecture of Physcomitrella patens is revealed by atomic force microscopy, Botany, vol.86, pp.385-397, 2008.

B. Xie, X. Wang, and Z. Hong, Precocious pollen germination in Arabidopsis plants with altered callose deposition during microsporogenesis, Planta, vol.231, pp.809-823, 2010.

N. Yanagisawa, N. Sugimoto, H. Arata, T. Higashiyama, and Y. Sato, Capability of tip-growing plant cells to penetrate into extremely narrow gaps, Sci. Rep, vol.7, p.1403, 2017.

Z. Yang, H. Liu, X. Wang, and Q. Zeng, Molecular evolution and expression divergence of the Populus polygalacturonase supergene family shed light on the evolution of increasingly complex organs in plants, New Phytol, vol.197, pp.1353-1365, 2013.

J. Yariv, H. Lis, and E. Katchalski, Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes, Biochem. J, vol.105, pp.1-2, 1967.

E. A. Yates and J. P. Knox, Investigations into the occurrence of plant cell surface epitopes in exudate gums, Carbohydr. Polym, vol.24, pp.281-286, 1994.

E. A. Yates, J. Valdor, S. M. Haslam, H. R. Morris, A. Dell et al., Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies, Glycobiology, vol.6, pp.131-139, 1996.

R. Yatomi, S. Nakamura, and N. Nakamura, Immunochemical and cytochemical detection of wall components of germinated pollen of gymnosperms, Grana, vol.41, pp.21-28, 2002.

Y. Yin, J. Huang, and Y. Xu, The cellulose synthase superfamily in fully sequenced plants and algae, BMC Plant Biol, vol.9, p.99, 2009.
DOI : 10.1186/1471-2229-9-99

URL : https://bmcplantbiol.biomedcentral.com/track/pdf/10.1186/1471-2229-9-99

Y. Yin, M. A. Johns, H. Cao, and M. Rupani, A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily, BMC Genomics, vol.15, p.260, 2014.

J. J. Youl, A. Bacic, and D. Oxley, Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidylinositol membrane anchors, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.7921-7926, 1998.
DOI : 10.1073/pnas.95.14.7921

URL : http://www.pnas.org/content/95/14/7921.full.pdf

X. Yue, S. Lin, Y. Yu, L. Huang, and J. Cao, The putative pectin methylesterase gene, BcMF23a, is required for microspore development and pollen tube growth in Brassica campestris, Plant Cell Rep, vol.37, pp.1003-1009, 2018.

Z. Zhang, B. Zhang, Z. Chen, D. Zhang, H. Zhang et al., A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility, Nat. Commun, vol.9, p.3678, 2018.