S. Birchfield and C. Tomasi, A pixel dissimilarity measure that is insensitive to image sampling, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.4, pp.401-406, 1998.

M. Bleyer and M. Gelautz, Simple but effective tree structures for dynamic programming-based stereo matching, International Conference on Computer Vision Theory and Applications (VISAPP), pp.415-422, 2008.

F. Pedro, . Felzenszwalb, P. Daniel, and . Huttenlocher, Efficient belief propagation for early vision, International journal of computer vision, vol.70, issue.1, pp.41-54, 2006.

A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? the kitti vision benchmark suite, Computer Vision and Pattern Recognition (CVPR), 2012.

H. Hirschmuller, Stereo processing by semiglobal matching and mutual information, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.2, pp.328-341, 2008.

H. Hirschmüller, J. Peter-r-innocent, and . Garibaldi, Realtime correlation-based stereo vision with reduced border errors, International Journal of Computer Vision, vol.47, issue.1-3, pp.229-246, 2002.

H. Hirschmuller and D. Scharstein, Evaluation of cost functions for stereo matching, IEEE Computer Vision and Pattern Recognition (CVPR), pp.1-8, 2007.

H. Hirschmuller and D. Scharstein, Evaluation of stereo matching costs on images with radiometric differences, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.9, pp.1582-1599, 2009.

A. Klaus, M. Sormann, and K. Karner, Segmentbased stereo matching using belief propagation and a selfadapting dissimilarity measure, IEEE International Conference on Pattern Recognition, vol.3, pp.15-18, 2006.

V. Kolmogorov and C. Rother, Comparison of energy minimization algorithms for highly connected graphs, ECCV, pp.1-15, 2006.

V. Kolmogorov and R. Zabih, Computing visual correspondence with occlusions using graph cuts, IEEE International Conference on Computer Vision, vol.2, pp.508-515, 2001.

L. Ladick, `. Ladick`y, P. Sturgess, C. Russell, S. Sengupta et al., Joint optimization for object class segmentation and dense stereo reconstruction, International Journal of Computer Vision, pp.1-12, 2012.

J. Lu, G. Lafruit, and F. Catthoor, Anisotropic local high-confidence voting for accurate stereo correspondence, Proc. SPIE-IS&T Electronic Imaging, vol.6812, pp.605822-605823, 2008.

X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang et al., On building an accurate stereo matching system on graphics hardware, IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp.467-474, 2011.

S. Meister, B. Jähne, and D. Kondermann, Outdoor stereo camera system for the generation of real-world benchmark data sets, Optical Engineering, vol.51, issue.02, p.21107, 2012.

A. Miron, . Ainouz, A. Rogozan, and . Bensrhair, Crosscomparison census for colour stereo matching applied to intelligent vehicle, Electronics Letters, vol.48, issue.24, pp.1530-1532, 2012.

S. Morales and R. Klette, Ground truth evaluation of stereo algorithms for real world applications, Computer Vision-ACCV 2010 Workshops, pp.152-162, 2011.

A. Saxena, J. Schulte, and A. Ng, Depth estimation using monocular and stereo cues, IJCAI, 2007.

D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, International journal of computer vision, vol.47, issue.1, pp.7-42, 2002.

C. Stentoumis, . Grammatikopoulos, . Kalisperakis, G. Petsa, and . Karras, A local adaptive approach for dense stereo matching in architectural scene reconstruction, 2013.

R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov et al., A comparative study of energy minimization methods for markov random fields with smoothness-based priors, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.6, pp.1068-1080, 2008.

W. Van, D. Mark, M. Dariu, and . Gavrila, Real-time dense stereo for intelligent vehicles, IEEE Transactions on Intelligent Transportation Systems, vol.7, issue.1, pp.38-50, 2006.

R. Zabih and J. Woodfill, Non-parametric local transforms for computing visual correspondence, pp.151-158, 1994.

K. Zhang, J. Lu, and G. Lafruit, Cross-based local stereo matching using orthogonal integral images, IEEE Transactions on Circuits and Systems for Video Technology, vol.19, pp.1073-1079, 2009.

, Ground truth for image a1)

, Visible left image nr. 2 (d1) Groud truth for image c1)

, CZA : C ADCensus : 8.81% (b5) GC : C ADCensus : 9.20% (c5) CZA : C ADCensus : 11.27% (d5) GC : C ADCensus, p.20

, CZA : C klaus : 11.99% (b6) GC : C klaus : 22.09% (c6) CZA : C klaus : 14.96% (d6) GC : C klaus, p.82

, CZA : C Dif f CCC : 8.65% (b7) GC : C Dif f CCC : 7.22% (c7) CZA : C Dif

, CZA : C Dif f CT : 7.89% (b8) GC : C Dif f CT : 8.05% (c8) CZA : C Dif f CT : 11.56% (d8) GC : C Dif f CT : 14.22%

, On the following lines are the output disparity maps corresponding to different functions: on the first ( a2-a10) and third column ( b2-b10) the output obtained with the cross zone aggregation (CZA) algorithm, while on columns two (b2-b10) and fourth (d2-d10) the output of the graph cuts algorithm, Comparison between cost functions. On first row there are presented two left visible images ( a1 and c1) from the KITTI dataset with the corresponding ground truth disparity images ( b1 and d1 ), vol.4