F. Auger and P. Flandrin, Improving the readability of time-frequency and time-scale representations by the reassignment method, IEEE Transactions on Signal Processing, vol.43, issue.5, pp.1068-1089, 1995.

D. Jones and R. Baraniuk, An adaptive optimal-kernel time-frequency representation, IEEE Transactions on Signal Processing, vol.43, issue.10, pp.2361-2371, 1995.

J. Gosme, C. Richard, and P. Gonçalvès, Adaptive diffusion of timefrequency and time-scale representations: a review, IEEE Transactions on Signal Processing, vol.53, issue.11, pp.4136-4146, 2005.

P. Flandrin, A time-frequency formulation of optimum detection, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.36, issue.9, pp.1377-1384, 1988.

A. Sayeed and D. Jones, Optimal detection using bilinear time-frequency and time-scale representations, IEEE Transactions on Signal Processing, vol.43, issue.12, pp.2872-2883, 1995.

N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society, vol.68, pp.337-404, 1950.

B. Boser, I. Guyon, and V. Vapnik, A training algorithm for optimal margin classifiers, Proc. Fifth Annual Workshop on Computational Learning Theory, pp.144-152, 1992.

B. Schölkopf, A. Smola, and K. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, vol.10, issue.5, pp.1299-1319, 1998.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. Müller, Fisher discriminant analysis with kernels, Advances in neural networks for signal processing, pp.41-48, 1999.

G. Baudat and F. Anouar, Generalized discriminant analysis using a kernel approach, Neural Computation, vol.12, issue.10, pp.2385-2404, 2000.

V. N. Vapnik, The Nature of Statistical Learning Theory, 1995.

F. Cucker and S. Smale, On the mathematical foundations of learning, Bulletin of the American Mathematical Society, vol.39, issue.1, pp.1-49, 2001.

M. Davy, A. Gretton, A. Doucet, and P. Rayner, Optimised support vector machines for nonstationary signal classification, IEEE Signal Processing Letters, vol.9, issue.12, pp.442-445, 2002.

A. Rakotomamonjy, X. Mary, and S. Canu, Non-parametric regression with wavelet kernels, Applied Stochastic Models in Business and Industry, vol.21, issue.2, pp.153-163, 2005.

G. Kimeldorf and G. Wahba, Some results on Tchebycheffian spline functions, Journal of Mathematical Analysis and Applications, vol.33, pp.82-95, 1971.

B. Schölkopf, R. Herbrich, and R. Williamson, A generalized representer theorem, 2000.

B. Boashash and E. , Time-frequency signal analysis and applications, 2003.

P. Flandrin, Time-Frequency/Time-Scale Analysis, 1998.

N. Marinovitch, The singular value decomposition of the wigner distribution and its applications, The Wigner distribution: theory and applications in signal processing, 1997.

E. Bernat, W. Williams, and W. Gehring, Decomposing ERP timefrequency energy using PCA, Clinical Neurophysiology, vol.116, pp.1314-1334, 2005.
DOI : 10.1016/j.clinph.2005.01.019

Z. H. Mamar, P. Chainais, and A. Aussem, Probabilistic classifiers and time-scale representations: application to the monitoring of a tramway guiding system, Proc. European Symposium on Artificial Neural Networks, 2006.

C. Richard and R. Lengellé, Joint recursive implementation of timefrequency representations and their modified version by the reassignment method, Signal Processing, vol.60, issue.2, pp.163-179, 1997.

E. Chassande-mottin and A. Pai, Discrete time and frequency WignerVille distribution: Moyal's formula and aliasing, IEEE Signal Processing Letters, vol.12, issue.7, pp.508-511, 2005.
DOI : 10.1109/lsp.2005.849493

F. Abdallah, C. Richard, and R. Lengellé, An improved training algorithm for nonlinear kernel discriminants, IEEE Transactions on Signal Processing, vol.52, issue.10, pp.2798-2806, 2004.
DOI : 10.1109/tsp.2004.834346

B. Schölkopf, R. Williamson, A. Smola, J. Shawe-taylor, and J. Platt, Support vector method for novelty detection, Proc. Advances in Neural Information Processing Systems, pp.582-588, 2000.

J. Vert, K. Tsuda, and B. Schölkopf, A primer on kernel methods, Kernel Methods in Computational Biology, pp.35-70, 2004.

F. Bach and M. Jordan, Kernel independent component analysis, Journal of Machine Learning Research, vol.3, pp.1-48, 2002.

Y. Engel, S. Mannor, and R. Meir, Kernel recursive least squares, IEEE Transactions on Signal Processing, vol.52, issue.8, pp.2275-2285, 2004.

P. Honeiné, C. Richard, P. Flandrin, and J. Pothin, Optimal selection of time-frequency representations for signal classification: a kerneltarget alignment approach, Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2006.