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The magnetic propagation vector in delafossite CuCrO2 with classical Heisenberg spins is calculated analyti-
cally as a function of exchange interactions up to fourth-nearest neighbors. Exchange interactions are estimated
by a series of density functional theory calculations for several values of lattice distortion. Our calculations
show that the magnetic propagation vector is directly affected by the considered distortions providing different
stable commensurate or incommensurate magnetic conÞgurations. A realistic set of exchange interactions
corresponding to a 0.1% lattice distortion yields the experimental ground state with an incommensurate
propagation vectorq � (0.329, 0.329, 0). We Þnd that a very weak antiferromagnetic interlayer interaction
favors an incommensurate ordering even in the absence of lattice distortion. Moreover, the exchange energy of
a magnetic conÞguration of a Þnite crystal of CuCrO2 with periodic boundary conditions is derived analytically.
Based on that, highly accurate Monte Carlo simulations performed on CuCrO2 conÞrm both the proposed
analytical calculations and the density functional theory estimations, where we obtain excellent convergence
toward the experimental ground state with a magnetic propagation vectorq = (0.3288, 0.3288, 0).

DOI: 10.1103/PhysRevB.99.104415

I. INTRODUCTION

The Heisenberg antiferromagnet on a triangular lattice is
one of the prototype examples of frustrated magnetic sys-
tems which have been studied for several decades [1Ð4].
The topology of these systems imposes high geometric mag-
netic frustration, resulting in several novel phenomena. Most
frustrated systems possess the so-called noncollinear spin
conÞgurations. Such noncollinear spin ordering breaks the
space inversion symmetry, leading to the appearance of new
phases, such as ferroelectric ones, in the magnetically ordered
state. Delafossite oxides [5Ð9] are very good examples of frus-
trated triangular antiferromagnets because they are formed
of triangular layers stacked rhombohedrally in a sequence of
ABCABC· · · type along the vertical direction. Among these
delafossite oxides, CuCrO2 (Rø3mspace group) attracts a lot of
attention due to its strong magnetoelectric coupling observed
in the magnetically ordered state [10Ð12]. Also, an interesting
novel phenomenon derived from geometric magnetic frustra-
tion is the very richH-T phase diagram obtained in CuCrO2

with several magnetic and ferroelectric phases [13Ð16]. At
room temperature, the triangular layers of CuCrO2 are formed
of equilateral triangles stacked in Cr3+ -O2Š -Cu+ -O2Š -Cr3+

layer coordination. Upon a phase transition to a noncollinear
antiferromagnetic state at NŽel temperatureTN = 24Ð26 K
[17Ð20], the equilateral triangular layers undergo a small
in-plane deformation [21,22] due to a spiral magnetic or-
dering. Such a lattice deformation is described as a tiny
distortiond along the [110] direction leading to anisotropic

* ahmed.baalbaky@hotmail.com

Þrst-nearest-neighbor couplingsJ1 �= J�
1 (Fig. 1) as well as

inducing a hard-axis anisotropy along the distorted direction
[23]. As a result, an incommensurate noncollinear magnetic
ordering with a propagation vectorq = (0.329, 0.329, 0)
pointing along the [110] direction is stabilized belowTN [20].
In addition, a spontaneous ferroelectric polarization emerges
below TN along the distorted direction due to the variation
of the hybridization between Cr3+ 3d and O2Š 2p orbitals
caused by the spin-orbit coupling [24]. Recent x-ray diffrac-
tion measurements [21] performed in CuCrO2 predicted that
such a lattice distortion is of the order of 0.01% at 5 K. In our
previous study [23], we have estimated exchange interactions
corresponding tod = 0.01% at 0 K using density functional
theory (DFT) calculations. We found thatJ1/ J�

1 = 0.995 is
not able to reproduce the experimental ground state (GS) in
a Þnite system, and it does not induce a hard-axis anisotropy
along the distorted direction necessary for determining a
unique spiral plane. For that we arbitrarily multipliedd by
a factor of 30 in order to obtain the hard-axis anisotropy
responsible for the description of ferroelectric properties in
CuCrO2. Such an artiÞcial enhancement ofd allowed us to
describe magnetoelectric properties at Þnite temperatures in
pristine CuCrO2 [23] as well as Ga-doped CuCrO2 [25] in
comparison with experimental observations. In this paper,
we focus on the noncollinear magnetic ordering inside the
spiral plane of delafossite CuCrO2 to provide a theoretical
estimate ofd at the GS which leads to theq = (0.329,
0.329, 0) conÞguration within the framework of the classical
Heisenberg model. For this reason, we derive an analytical
expression ofq = (k, k, 0) as a function of the differ-
ent competing interactions in rhombohedrally stacked dis-
torted triangular lattices. Exchange interactions are estimated
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FIG. 1. Distorted triangular lattice (a� < a) of Cr3+ ions with
exchange interactions up to fourth-nearest neighbors (J�

1 > J1) in
CuCrO2.

using DFT calculations for various distortions, and the
inßuence of the next-nearest-neighbor interactions on the GS
is discussed.

The remainder of this paper is organized as follows: Sec.II
presents the derived analytical expression of the propagation
vector as a function of exchange interactions. SectionIII is
devoted to discussions of the obtained results, and Þnally, a
conclusion is given in Sec.IV.

II. ANALYTICAL EXPRESSION OF THE
PROPAGATION VECTOR

Analytical investigations of noncollinear magnetic order-
ing in three-dimensional (3D) systems with competing inter-
actions are still rarely achieved. Thus, in order to characterize
the noncollinear GS conÞguration in rhombohedrally stacked
distorted triangular lattices, we consider the following classi-
cal Heisenberg Hamiltonian:

H = Š
1
2

�

i, j

Ji j Si · Sj , (1)

whereJi j stands for exchange interactions between the inter-
acting spinsSi andSj up to fourth-nearest neighbors (Fig.1).
Based on Eq. (1), the exchange energy per spin of a magnetic
conÞguration of a propagation vectorq = (k, k, 0) in the
distorted inÞnite crystal is written as

E�
ex (k) = Š S2[J�

1cos(4� k) + 2J1cos(2� k)

+ J2 + 2J2cos(6� k) + J3cos(8� k)

+ 2J3cos(4� k) ± J4 ± 2J4cos(2� k)], (2)

where the± sign before theJ4 terms depends on the stable
conÞguration chosen by the system (see Sec.A 1).

Taking a derivative of Eq. (2) with respect tok gives

sin(2� k)[16J3cos3(2� k) + 12J2cos2(2� k)

+ (2J�
1 Š 4J3)cos(2� k) + J1 Š 3J2 ± J4] = 0, (3)

which vanishes when sin(2� k) = 0, i.e., k = 0 or k =
0.5 (2� k � [0, 2� [) or when

16J3cos3(2� k) + 12J2cos2(2� k) + (2J�
1 Š 4J3)cos(2� k)

+ J1 Š 3J2 ± J4 = 0 (4)

of the general form

� x3 + � x2 + � x + � = 0, (5)

with x = cos(2� k), � = 16J3, � = 12J2, � = 2J�
1 Š 4J3, and

� = J1 Š 3J2 ± J4. To solve such a third-degree equation, one
should calculate its discriminant� according to

� =
� 2

1 Š 4� 3
0

Š27� 2
, (6)

where

� 0 = � 2 Š 3�� (7)

and

� 1 = 2� 3 Š 9��� + 27� 2�. (8)

The solutions of Eq. (5) depend on� such that we have three
real solutions if� > 0, given by

x� = 2

�
� 0

9� 2
cos

�
1
3

arcos
�

� 1

Š6�� 0

�
9� 2

� 0

�
Š �

2�
3

�
Š

�
3�

,

(9)

with � = 0, 1, 2; two real solutions if� = 0, such that (i) if
� 0 = 0, then

x1 = x2 = Š
�
3�

(10)

and (ii) if � 0 �= 0, then

x1 =
9�� Š ��

2� 0
(11)

and

x2 =
4��� Š 9� 2� Š � 3

�� 0
; (12)

and a unique real solution if� < 0, given by

x = Š
1

3�

�
� + u +

� 0

u

�
, (13)

with u = 3

	
� 1+

�
Š27� 2�
2 . Therefore, the solutions of Eq. (3),

which minimize the energy of Eq. (2), give the theoretical
values of the propagation vectorq in the inÞnite crystal of
CuCrO2 and similar systems.

Thus, comparing the obtained values ofq with that of neu-
tron diffraction experiments allows proposing a realistic set
of competing exchange interactions that leads to noncollinear
magnetic ordering in frustrated systems.

III. RESULTS AND DISCUSSION

A. DFT calculations

To extract the various competing interactions that lead
to the experimental propagation vectorq = (0.329, 0.329,
0), we perform DFT+ U [26,27] calculations in the distorted
crystal structure of CuCrO2. Exchange interactions up to
fourth-nearest neighbors are considered (Fig.1). Since non-
collinear DFT+ U calculations for the actual GS would be
extremely hard and computationally demanding, exchange
interactions are extracted from the collinear ferromagnetic
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TABLE I. Estimated DFT values of the exchange interactions
(in meV) for different choices ofU and JH in the undistorted
structure (d = 0, i.e.,J1 = J�

1) of CuCrO2.

U (eV) JH (eV) J1 J2 J3 J4

2.3 0.96 Š2.407 0.012 Š0.266 Š0.060
2.3 0.88 Š2.237 0.012 Š0.266 Š0.060
3.0 0.96 Š1.681 0.012 Š0.242 Š0.048
3.0 0.88 Š1.536 0.018 Š0.230 Š0.048

state. We have previously shown that the extracted values of
exchange interactions are relatively robust and do not depend
on the considered reference state [23]. Using constraint DFT
calculations, Mazin estimated the values of HubbardU =
2.3 eV and HundÕs exchangeJH = 0.96 eV for a similar
system, LiCrO2 [28]. In order to know which values ofU
andJH are the best for estimating the exchange interactions
in CuCrO2, we test the estimates from Ref. [28] and other
values ofU andJH . For simplicity, we extract the exchange
interactions in the undistorted structure (d = 0, i.e.,J1 = J�

1)
as reported in TableI.

As one can see,J1 is the most sensitive interaction relative
to the others, and it is inversely proportional to the value ofU,
as can be expected for a superexchange coupling in dielectric
systems. The interactions with more distant neighbors turn
out to be extremely robust. On a qualitative level, the sign
of exchange interactions remains the same regardless of the
considered values ofU andJH . Interestingly, we Þnd thatU =
2.3 eV givesJ1 in quite good agreement with experimental
estimates [22,29]. Thus, the values ofU andJH are adopted
from the work of Mazin [28] in further calculations.

Now, in the distorted crystal, several values of lattice
distortiond = (a Š a�)/ a� are examined. Thea parameter is
set to the experimental lattice constant (2.9746 •) and is
kept Þxed in the calculations, whilea� is varied in such a
way that it remains smaller thana. J�

1 corresponds to the
shorter distance to the neighboring spins (Fig.1). The details
of these calculations are the same as in our previous study
[23]. Table II gives the estimated values of the exchange
interactions for each value ofd. It is worth noting that the
magnitude ofJ3 is much larger than that ofJ2. This is a
very nice effect, which can be explained by inspecting the
corresponding exchange paths involving different Crd states.
As one can see in Fig.2, even though the distance between
the spins is smaller for theJ2 coupling compared to that
of J3, the exchange path is more indirect since it involves
a virtual transition from one Crd orbital to another on the

TABLE II. DFT estimates of exchange interactions (in meV) for
various distortions in CuCrO2.

d J�
1 J1 J2 J3 J4

0 Š2.407 Š2.407 0.012 Š0.266 Š0.060
0.0001 Š2.419 Š2.407 0.012 Š0.266 Š0.060
0.001 Š2.516 Š2.395 0.012 Š0.266 Š0.060
0.002 Š2.612 Š2.395 0.012 Š0.266 Š0.060
0.003 Š2.709 Š2.383 0.012 Š0.266 Š0.060

FIG. 2. Schematic representation of the exchange paths corre-
sponding to theJ2 andJ3 interactions.

bridging Cr site. This can be viewed as a particular example
of a 90� superexchange, which is always small [30]. At the
same time,J3 coupling can be formed by hybridizing three Cr
d orbitals on the nearest-neighbor sites (directly or via Op
states), which should provide a more efÞcient and substantial
exchange, which is exactly what we see in our calculations.

B. Theoretical values of the propagation vector

The variation ofE�
ex [Eq. (2)] versusk in the 3D inÞnite

crystal is plotted in Fig.3 for d = 0.001, 0.002, and 0.003.
It can be seen that eachE�

ex (k) curve possesses a single
minimum corresponding to the unique real solution given by
Eq. (13) (the case of� < 0) and two maxima atk = 0 and 0.5,
corresponding to the solution of Eq. (3) for sin(2� k) = 0. The
theoretical values ofk corresponding to each minimum in the
E�

ex (k) curves are reported in TableIII for various distortions.
From a Þrst observation, it can be seen that both an interlayer
coupling and a lattice distortion slightly decrease the value
of k. Starting with the undistorted two-dimensional (2D)
inÞnite crystal (J4 = 0), we can clearly see that the GS conÞg-
uration is a perfect 120� (k = 1/ 3). However, a tiny distortion
d = 0.0001 destabilizes the perfect 120� conÞguration, lead-
ing to either an incommensurate or a commensurate magnetic

FIG. 3. Variation ofE�
ex versusk for various distortions in the 3D

inÞnite crystal of CuCrO2.
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TABLE III. Theoretical values ofq = (k, k, 0) in the inÞnite 2D
(J4 = 0) and 3D (J4 �= 0) crystals calculated for various values of
lattice distortion in CuCrO2.

d

0 0.0001 0.001 0.002 0.003

k, 2D 0.3333 0.3330 0.3303 0.3279 0.3254
k, 3D 0.3318 0.3314 0.3287 0.3264 0.3238

conÞguration. In the undistorted 3D inÞnite crystal (J4 �= 0),
the 120� GS conÞguration does not exist (k < 1/ 3), indicating
that a very weak interlayer coupling can destabilize this per-
fect 120� state. Considering the experimental distortiond =
0.0001 estimated atT = 5 K [21], it can clearly be seen that
the theoretical value ofk in the inÞnite crystal is slightly larger
than that reported experimentally (k = 0.329). Thus, we can
say that, within the framework of the classical Heisenberg
model,d = 0.0001 cannot describe the experimental GS even
in the inÞnite crystal. Interestingly, a 0.1% lattice distortion
yields q � (0.329, 0.329, 0) in the 3D inÞnite crystal of
CuCrO2. The dominant exchange parameters corresponding
to d = 0.1% are very comparable to those obtained from the
inelastic neutron scattering experiment, as shown in TableIV.
The main difference between our DFT estimates and inelastic
neutron scattering ones is seen mainly in the next-nearest-
neighborJ2, concerning both its nature and magnitude.

C. Effects of the nature and magnitudes
of next-nearest-neighbor interactions on the ground

state of CuCrO2

It is clear that the Þrst-nearest-neighbor interactionsJ1 and
J�

1 are antiferromagnetic (AFM) in this crystal. Their order of
magnitude is found to be similar in various theoretical [23,31]
and experimental [22,29,32] studies, ranging betweenŠ2.97
andŠ2.30 meV. However, a lack of precision covers the next-
nearest-neighbor interactionsJ2, J3, andJ4, concerning their
nature due to their small magnitudes. The case ofJ3 is less
confused. This work and previous studies [23,31,32] suggest
that J3 is an AFM coupling varying betweenŠ0.27 and
Š0.08 meV. However, contradictory results are reported for
J2 andJ4. This work and previous DFT calculations [23,31]
show thatJ2 is ferromagnetic (FM), while neutron scattering
measurements [29,32] Þnd an AFMJ2 coupling. The reverse
scenario is reported forJ4.

Therefore, we investigate here the stable magnetic conÞgu-
ration taking into account both possible signs (FM and AFM)
of J2, J3, andJ4 using the derived analytical expression ofq
(SecII ). Based on that, we determine the nature and order

TABLE IV. Comparison of our DFT estimates of exchange in-
teractions (in meV) ford = 0.1% with those obtained from inelastic
neutron scattering measurements in CuCrO2.

Study J�
1 J1 J2 J3 J4

This work Š 2.516 Š 2.395 0.012 Š 0.266 Š 0.060
Ref. [29] Š 2.53 Š 2.3 Š 0.12

FIG. 4. Variation of the theoretical value ofk versusJ2/ |J1| for
J1, J�

1, J3, andJ4 corresponding tod = 0.001.

of magnitudes of the next-nearest-neighbor interactions which
stabilize the experimental noncollinearq = (0.329, 0.329, 0)
magnetic conÞguration in CuCrO2.

1. Effect of J2 (Š1 � J2/ |J1| � 1)

Here we examine the effect of having FM or AFMJ2 on
the magnetic ordering in CuCrO2. For that we calculateq =
(k, k, 0) for each value ofJ2/ |J1| in the interval [Š1, 1]. The
dependence ofk on J2/ |J1| is plotted in Fig.4. It can be seen
that the noncollinear state is stabilized for every FMJ2 with
0.329� k � 0.332. However, for AFMJ2, the noncollinear
state exists only forŠ0.299� J2/ |J1| � 0, while it becomes
a collinear state forJ2/ |J1| � Š0.3. Interestingly, theq =
(0.329, 0.329, 0) conÞguration is stabilized only ifJ2/ |J1| �
[Š0.007, 0.053], where our DFT estimate ofJ2 lies.

2. Effect of J3 (Š1 � J3/ |J1| � 1)

Following the same investigation as forJ2, the dependence
of k on J3/ |J1| � [Š1, 1] is given in Fig.5. It is clear that an
AFM J3 is favorable for AFM noncollinear magnetic ordering
in CuCrO2. FM J3 favors AFM collinear magnetic ordering
with k = 0.5 starting fromJ3/ |J1| = 0.14 and above. Inter-
estingly, theq = (0.329, 0.329, 0) conÞguration is preserved
whenJ3/ |J1| � [Š0.186, Š0.091], where our DFT estimate of
J3 satisÞes this condition.

3. Effect of J4 (Š1 � J4/ |J1| � 1)

A different scenario is observed forJ4. Noncollinear mag-
netic ordering exists for any value ofJ4/ |J1| � [Š1, 1], as
shown in Fig.6. Whatever the sign ofJ4 is, k decreases when
|J4| increases. The same value ofk is obtained for a given
magnitude ofJ4 whetherJ4 is FM or AFM. However, the
q = (0.329, 0.329, 0) conÞguration is stabilized for AFM
interlayer coupling whenJ4/ |J1| � [Š0.029, Š0.014], where
our DFT estimate ofJ4 lies, or FM interlayer coupling when
J4/ |J1| � [0.014, 0.029].
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FIG. 5. Variation of the theoretical value ofk versusJ3/ |J1| for
J1, J�

1, J2, andJ4 corresponding tod = 0.001.

D. Monte Carlo simulations

In order to validate the GS predicted by our analytical
calculation ofk in the 3D inÞnite crystal withd = 0.001, we
perform a simulated annealing using the Monte Carlo (MC)
method [33]. A Þnite 3D crystal of CuCrO2 of sizeL × L × Lz
is built with only the magnetic Cr3+ (S = 3/ 2) ions. However,
simulating noncollinear magnetic conÞgurations derived from
high geometric magnetic frustration is not straightforward.
Indeed, noncollinear magnetic ordering (GS and phase transi-
tion) in Þnite systems is affected by size and boundary effects,
where the stable magnetic conÞguration can be different from
that of the inÞnite system. Two different cases should be
distinguished: (i) The GS is commensurate, and then it is
possible to Þnd a sizeL such that (L + 1) is a multiple of
the magnetic period and hence periodic boundary conditions
(PBCs) are suitable for simulating the GS. (ii) The GS is
incommensurate; that is, it is not periodic, and thus, PBCs (as
well as free boundary conditions) will signiÞcantly perturb

FIG. 6. Variation of the theoretical value ofk versusJ4/ |J1| for
J1, J�

1, J2, andJ3 corresponding tod = 0.001.

the simulated GS if the system sizeL is wrongly chosen.
Therefore, to Þnd the system sizes that are able to reproduce
the true incommensurate GS magnetic conÞgurations, we
calculate analytically the exchange energy per spin of a Þnite
magnetic conÞguration with a propagation vectorq = (k, k, 0)
on a rhombohedrally stacked distorted triangular lattice, using
PBCs, as a function ofk, L, andLz. Based on Eq. (1), we Þnd

E1(k, L) = Š
1
2

S2 1
L2

{4J1L(L Š 1)cos[2� k]

+ 2(L Š 1)2J�
1cos[4� k] + 4LJ1cos[2� k(L Š 1)]

+ 4(L Š 1)J�
1cos[2� k(L Š 2)]

+ 2J�
1cos[4� k(L Š 1)]}, (14)

E2(k, L) = Š
1
2

J2S2 1
L2

{2L2 Š 4L + 23+ cos[2� k]

+ 4(L2 Š 3L + 8)cos[6� k]

+ cos[4� k(L Š 1)] + 3cos[2� k(L + 1)]

+ 2(L Š 3)cos[2� k(L Š 1)]

+ (4L Š 5)cos[2� kL] + 5cos[2� k(2L Š 3)]

+ 2cos[2� k(L Š 2)] + 2cos[2� k(L + 2)]

+ 10(L Š 2)cos[2� k(L Š 3)]

+ 3cos[2� k(L + 3)]}, (15)

E3(k, L) = Š
1
2

J3S2 1
L2

{4L(L Š 2)cos[4� k]

+ 2(L Š 2)2cos[8� k] + 8Lcos[2� k(L Š 2)]

+ 8(L Š 2)cos[2� k(L Š 4)]

+ 8cos[4� k(L Š 2)]}, (16)

E4(k, L, Lz) = ±
1
2

J4S2 1
3L2Lz

{6LzL2 + (Š4L2 + 12LzL2

+ 2L Š 9LzL Š 1)cos[2� k]

+ (4L2 Š L)cos[2� k(3Lz Š 1)]

+ (6LzL + 6Lz Š 4)cos[2� k(L Š 1)]

+ (L + 2)cos[2� k(L Š 1)(3Lz Š 1)]}, (17)

and hence

Eex(k, L, Lz) = E1(k, L) + E2(k, L)

+ E3(k, L) + E4(k, L, Lz). (18)

Note that Eq. (18) leads to Eq. (2) when L and Lz tend to
inÞnity. Figure7 shows the variation of the exchange energy
per spin [Eq. (18)] of a magnetic conÞguration withk 	 0.329
versusL for a given Lz. A strong L dependence of the
exchange energy is seen. For example,Eex = Š 8.927 meV
for L = 72 is higher than that of the inÞnite systemE�

ex =
Š9.208 meV because the magnetic conÞguration ofk =
0.329 does not match the box size well. However, forL = 73,
Eex = Š 9.208 meV coincides withE�

ex , meaning that the
magnetic conÞguration withk = 0.329 does match with this
box size well. Thus, only sizes that haveEex(k, L, Lz) very
close to that of the inÞnite crystal should be considered in
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FIG. 7. L dependence of the exchange energy per spin of a
conÞguration withq � (0.329, 0.329, 0) calculated with the set of
exchange interactions corresponding tod = 0.001.

numerical simulations. To elucidate boundary and Þnite-size
effects on the propagation vector, we study thek dependence
of Eex for both sizesL = 72 andL = 73 in comparison with
that in the inÞnite crystal, as shown in Fig.8. It can be
seen that Þnite-size effects (oscillations) exist in both cases.
However, the choice ofL (and thus boundary effects) can
completely change the magnetic ordering of the system. It
can be seen that the minimum ofEex for L = 73 coincides
with that of the inÞnite crystal atk = 0.3287, preserving the
incommensurate nature of the magnetic conÞguration. How-
ever, forL = 72, the stable magnetic conÞguration is close to
the perfect 120� with k = 0.3334 because PBCs impose this
ordering.

Note that for a givenL that hasEex(k, L, Lz) very close to
that of the inÞnite crystal, the dependence ofEex(k, L, Lz) on
Lz is much less pronounced (not shown here) due to the small
value ofJ4.

FIG. 8. Thek dependence of the exchange energy per spin in
Þnite crystals compared to that in the inÞnite crystal calculated with
the set of exchange interactions corresponding tod = 0.001.

FIG. 9. Simulated ground-state magnetic conÞguration withq =
(0.3288, 0.3288, 0) in CuCrO2.

Based on the previous analyses, we simulate a Þnite crystal
of size 73× 73× 2 using PBCs to validate the predicted GS
based on the Heisenberg Hamiltonian given in Eq. (1). The
set of exchange interactions corresponding tod = 0.001 is
considered (TableII ).

Our MC simulations are performed using the standard
Metropolis algorithm [34]. We start our simulations from
random spin conÞgurations at a high enough temperature
Ti = 35.01 K above the transition temperature of the system.
We then cool the system down to a Þnal temperatureTf =
0.01 K according toTi+ 1 = Ti Š � T. At each temperature,
we perform 55× 103 MC steps, where the Þrst 5× 103 MC
steps are discarded for thermal equilibration.

We Þnd that the magnetic system undergoes a phase tran-
sition from a paramagnetic state into an antiferromagnetic
noncollinear state at NŽel temperatureTN = 27.5 ± 0.5 K,
which agrees well with the ones reported experimentally. This
would suggest the ability of our DFT estimates of exchange
interactions to describe the various magnetic properties of
CuCrO2.

At Tf , we Þnd that the simulated energyEsim
ex 


Š9.203 meV is in excellent agreement with that calculated
analytically, Eex(k = 0.329) 
 Š 9.202 meV [Eq. (18) for
L = 73 andLz = 2], indicating that the simulated GS is not
perturbed by size or boundary effects.

Figure9 shows the simulated GS magnetic conÞguration,
where we can clearly see the various sublattices. For a precise
characterization of this GS, we calculate the magnetic propa-
gation vectorq = (k, k, 0) according to

k =
1

2�
arcos

�
Si · Sj

S2

�
, (19)

where the scalar productSi · Sj is calculated for the spins
along the [100] or [010] direction. Our simulations give
a magnetic propagation vectorq = (0.3288, 0.3288, 0),
which reßects an incommensurate GS conÞguration (2� k =
118.37� ) consistent with those calculated analytically and
measured experimentally.

Furthermore, it is well known that spin chirality plays an
essential role in quantifying magnetic ordering in frustrated
systems. Thus, we consider the vector chirality per plane as
an order parameter deÞned as

� =
1

Np

1
S2

2

3
�

3

�

p

(S1 × S2 + S2 × S3 + S3 × S1), (20)
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FIG. 10. Possible magnetic conÞgurations with FM (J4 > 0) and
AFM (J4 < 0) interlayer couplings in CuCrO2.

whereNp is the number of up plaquettes in each triangular
layer; S1, S2, andS3 are the spins located at the corners of
each elementary up plaquette (dashed plaquette in Fig.1);

FIG. 11. E�
ex (in meV) vsk plot for the six possible conÞgura-

tions with AFM (J4 < 0) interlayer couplings in CuCrO2.

and the sum runs over all up plaquettes in each layer. Note
that |� | = 1 in the perfect 120� conÞguration, whereas|� | is
slightly smaller than 1 fork close to 1/ 3. At Tf , we Þnd that
|� | = 0.999 within each triangular layer, which is in excellent
agreement with its theoretical value calculated fork = 0.329
according to

|� |theo =
2

3
�

3

�
2 sin(2� k) Š sin(4� k)

�
= 0.999, (21)

conÞrming the simulated value ofq at the GS. Such good
convergence of our MC simulations toward the true GS in a
3D inÞnite crystal would conÞrm the validity of our derived
analytical expressions ofk and those of the exchange energy
in 3D Þnite crystals [Eqs. (14)Ð(17)], which serves as an
important presimulation step to warrant the convergence of
simulations toward theory.

IV. CONCLUSIONS

In conclusion, a compact analytical model that calculates
the magnetic propagation vector as a function of exchange
interactions up to fourth-nearest neighbors in rhombohedrally
stacked distorted triangular lattices was proposed. The ingre-
dients of this model are calculated from Þrst principles using
DFT+ U calculations. Within our model, we found that the
set of exchange interactions resulting from a 0.1% lattice
distortion reproduces the experimental ground state with a
propagation vectorq � (0.329, 0.329, 0) in the distorted
inÞnite crystal of CuCrO2. Also, our results suggested that
a ferromagnetic next-nearest-neighbor interactionJ2 and a
very weak antiferromagnetic interlayer interactionJ4 are fa-
vorable for stabilizing theq = (0.329, 0.329, 0) conÞguration
in CuCrO2. Finally, Monte Carlo simulations performed in
CuCrO2 converge well toward the experimental ground state,
validating our analytical and DFT+ U calculations.
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J4 > 0 Conf. 1 Conf. 2
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APPENDIX

1. Minimal-energy conÞguration with interlayer couplings

In the presence ofJ4, six magnetic conÞgurations, shown
in Fig. 10, are possible at the GS. Their energies areE4 =
ŠJ4S2[1 + 2cos(2� k)] for conÞguration 1,E4 = + J4S2[1 +
2cos(2� k)] for conÞguration 2,E4 = Š J4S2[1 + cos(2� k) +
cos(4� k)] for conÞgurations 3 and 5, andE4 = + J4S2

[1 + cos(2� k) + cos(4� k)] for conÞgurations 4 and 6. Gen-
erally, the stable conÞguration is determined by both the
nature ofJ4 (FM or AFM) and the value ofk. For example, if
J4 < 0, conÞguration 2 is stable fork < 1/ 3, while conÞgura-
tion 1 becomes more stable whenk > 1/ 3, as seen in Fig.11.

TABLE VI. DFT estimates of the single-ion anisotropy constants
(in meV) in CuCrO2.

d 0 0.0001 0.001 0.002 0.003

Dx 0 0 Š 0.0004 Š 0.0007 Š 0.001
Dz 0.033 0.033 0.033 0.033 0.033

However, forJ4 > 0, the case is the opposite, as summarized
in TableV.

2. Anisotropy

It is important to note that the magnetocrystalline
anisotropy is calculated in this work for each value of the
considered distortions. The DFT estimates of the single-ion
anisotropy constantsDx and Dz corresponding to hard and
easy axes along the [110] and [001] directions, respectively,
are listed in TableVI . As can be noticed, lattice distortion
induces the hard-axis anisotropy in CuCrO2, resulting in an
easy-plane anisotropy, theyzplane.

Nonetheless, magnetocrystalline anisotropy was not intro-
duced in the previous analytical calculations ofq because
it does not affect the magnetic ordering in the system [35].
For validity, the same previous MC simulations were repeated
with the corresponding values ofDx and Dz, where we ob-
tained the same magnetic propagation vectorq = (0.3288,
0.3288, 0) without any noticeable effect on the magnetic
ordering of the system.
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