R. Palanivelu and D. Preuss, Pollen tube targeting and axon guidance: parallels in tip growth mechanisms, Trends Cell Biol, vol.10, pp.517-541, 2000.

J. Mollet, C. Faugeron, and H. Morvan, Cell adhesion, separation and guidance in compatible plant reproduction, Annual plant reviews, vol.25, pp.69-90, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00698519

S. Okuda, H. Tsutsui, K. Shiina, S. Sprunck, H. Takeuchi et al., Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells, Nature, vol.458, pp.357-61, 2009.

K. Chae and E. M. Lord, Pollen tube growth and guidance: roles of small, secreted proteins, Ann Bot, vol.108, pp.627-663, 2011.

T. Higashiyama and H. Takeuchi, The mechanism and key molecules involved in pollen tube guidance, Annu Rev Plant Biol, vol.66, pp.393-413, 2015.

A. Y. Cheung and H. Wu, Structural and signaling networks for the polar cell growth machinery in pollen tubes, Annu Rev Plant Biol, vol.59, pp.547-72, 2008.

J. A. Feijó, J. Sainhas, T. Holdaway-clarke, M. S. Cordeiro, J. G. Kunkel et al., Cellular oscillations and the regulation of growth: the pollen tube paradigm, BioEssays, vol.23, pp.86-94, 2000.

P. K. Hepler, L. Vidali, and A. Y. Cheung, Polarized cell growth in higher plants, Annu Rev Cell Dev Biol, vol.17, pp.159-87, 2001.

T. L. Holdaway-clarke, J. A. Feijó, G. R. Hackett, J. G. Kunkel, and P. K. Hepler, Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed, Plant Cell, vol.9, pp.1999-2010, 1997.

M. A. Messerli, R. Créton, L. F. Jaffe, and K. R. Robinson, Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth, Dev Biol, vol.222, pp.84-98, 2000.

L. Steinhorst and J. Kudla, Calcium -a central regulator of pollen germination and tube growth, Biochim Biophys Acta BBA -Mol Cell Res, vol.1833, pp.1573-81, 2013.

M. Potocký, M. A. Jones, R. Bezvoda, N. Smirnoff, and V. ?árský, Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth, New Phytol, vol.174, pp.742-51, 2007.

A. Speranza, R. Crinelli, V. Scoccianti, and A. Geitmann, Reactive oxygen species are involved in pollen tube initiation in kiwifruit: ROS and pollen germination, Plant Biol, vol.14, pp.64-76, 2012.

R. Lassig, T. Gutermuth, T. D. Bey, K. R. Konrad, and T. Romeis, Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth, Plant J, vol.78, pp.94-106, 2014.

A. Boisson-dernier, D. S. Lituiev, A. Nestorova, C. M. Franck, S. Thirugnanarajah et al., ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases, PLoS Biol, vol.11, p.1001719, 2013.

Y. Fu, G. Wu, and Z. Yang, Rop GTPase-dependent dynamics of tip-localized Factin controls tip growth in pollen tubes, J Cell Biol, vol.152, pp.1019-1051, 2001.

X. Qu, H. Zhang, Y. Xie, J. Wang, N. Chen et al., Arabidopsis Villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars, Plant Cell, vol.25, pp.1803-1820, 2013.

B. C. Gibbon, D. R. Kovar, and C. J. Staiger, Latrunculin B has different effects on pollen germination and tube growth, Plant Cell, vol.11, pp.2349-63, 1999.

L. Vidali, S. T. Mckenna, and P. K. Hepler, Actin polymerization is essential for pollen tube growth, Mol Biol Cell, vol.12, pp.2534-2579, 2001.

A. Lovy-wheeler, K. L. Wilsen, T. I. Baskin, and P. K. Hepler, Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube, Planta, vol.221, pp.95-104, 2005.

C. J. Staiger, N. S. Poulter, J. L. Henty, V. E. Franklin-tong, and L. Blanchoin, Regulation of actin dynamics by actin-binding proteins in pollen, J Exp Bot, vol.61, pp.1969-86, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00484377

C. M. Rounds, P. K. Hepler, and L. J. Winship, The apical actin fringe contributes to localized cell wall deposition and polarized growth in the Lily pollen tube, Plant Physiol, vol.166, pp.139-51, 2014.

B. Kost, E. Lemichez, P. Spielhofer, Y. Hong, K. Tolias et al., Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth, J Cell Biol, vol.145, pp.317-347, 1999.

A. J. Molendijk, Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth, EMBO J, vol.20, pp.2779-88, 2001.

Y. Fu, The ROP2 GTPase controls the formation of cortical fine F-Actin and the early phase of directional cell expansion during Arabidopsis organogenesis, Plant Cell, vol.14, pp.777-94, 2002.

M. A. Jones, J. Shen, Y. Fu, H. Li, Z. Yang et al., The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth, Plant Cell, vol.14, pp.763-76, 2002.

G. M. Burkart, T. I. Baskin, and M. Bezanilla, A family of ROP proteins that suppresses actin dynamics, and is essential for polarized growth and cell adhesion, J Cell Sci, vol.128, pp.2553-64, 2015.

Y. Gu, Y. Fu, P. Dowd, S. Li, V. Vernoud et al., A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes, J Cell Biol, vol.169, pp.127-165, 2005.

Y. Gu, V. Vernoud, Y. Fu, and Z. Yang, ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin, J Exp Bot, vol.54, pp.93-101, 2003.

E. M. Lord and S. D. Russell, The mechanisms of pollination and fertilization in plants, Annu Rev Cell Dev Biol, vol.18, pp.81-105, 2002.

F. Dardelle, A. Lehner, Y. Ramdani, M. Bardor, P. Lerouge et al., Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall, Plant Physiol, vol.153, pp.1563-76, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01805112

Y. Chebli, M. Kaneda, R. Zerzour, and A. Geitmann, The cell wall of the Arabidopsis pollen tube: spatial distribution, recycling, and network formation of polysaccharides, Plant Physiol, vol.160, pp.1940-55, 2012.

E. Lord, Adhesion and cell movement during pollination: cherchez la femme, Trends Plant Sci, vol.5, pp.368-73, 2000.

G. Cai, C. Faleri, D. Casino, C. Emons, A. Cresti et al., Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules, Plant Physiol, vol.155, pp.1169-90, 2011.

N. Mogami, M. Miyamoto, M. Onozuka, and N. Nakamura, Comparison of callose plug structure between dicotyledon and monocotyledon pollen germinated in vitro, Grana, vol.45, pp.249-56, 2006.

P. Qin, D. Ting, A. Shieh, and S. Mccormick, Callose plug deposition patterns vary in pollen tubes of Arabidopsis thaliana ecotypes and tomato species, BMC Plant Biol, vol.12, p.178, 2012.

E. Parre and A. Geitmann, Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense, Planta, vol.220, pp.582-92, 2005.

A. Geitmann and M. Steer, The architecture and properties of the pollen tube cell wall, pp.177-200, 2006.

Y. Qin and Z. Yang, Rapid tip growth: insights from pollen tubes, Semin Cell Dev Biol, vol.22, pp.816-840, 2011.

J. Mollet, C. Leroux, F. Dardelle, and A. Lehner, Cell wall composition, biosynthesis and remodeling during pollen tube growth, Plants, vol.2, pp.107-154, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01805132

R. Malho, Tube growth and reorientation, Plant Cell, vol.7, pp.1173-84, 1995.

E. Parre and G. , More than a leak sealant. The mechanical properties of callose in pollen tubes, Plant Physiol, vol.137, pp.274-86, 2005.

U. Klahre and B. Kost, Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes, Plant Cell, vol.18, pp.3033-3079, 2006.

L. Aouar, Y. Chebli, and A. Geitmann, Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes, Sex Plant Reprod, vol.23, pp.15-27, 2010.

S. Choe, B. P. Dilkes, S. Fujioka, S. Takatsuto, A. Sakurai et al., The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis, Plant Cell, vol.10, pp.231-274, 1998.

T. Asami, Y. K. Min, N. Nagata, K. Yamagishi, S. Takatsuto et al., Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor, Plant Physiol, vol.123, pp.93-100, 2000.

J. I. Armstrong, S. Yuan, J. M. Dale, V. N. Tanner, and A. Theologis, Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis, Proc Natl Acad Sci U S A, vol.101, pp.14978-83, 2004.

E. Kombrink and M. Kaiser, Editorial: when chemistry meets biology -generating innovative concepts, methods and tools for scientific discovery in the plant sciences, Front Plant Sci, vol.7, p.76, 2016.

C. Knoth, M. S. Salus, T. Girke, and T. Eulgem, The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis, Plant Physiol, vol.150, pp.333-380, 2009.

Y. Noutoshi, M. Okazaki, T. Kida, Y. Nishina, Y. Morishita et al., Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis, Plant Cell, vol.24, pp.3795-804, 2012.

S. Robert, S. N. Chary, G. Drakakaki, S. Li, Z. Yang et al., Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1, Proc Natl Acad Sci, vol.105, pp.8464-8473, 2008.

R. Chuprov-netochin, Y. Neskorodov, E. Marusich, Y. Mishutkina, P. Volynchuk et al., Novel small molecule modulators of plant growth and development identified by high-content screening with plant pollen, BMC Plant Biol, vol.16, p.192, 2016.

N. Ung, M. Q. Brown, G. R. Hicks, and N. V. Raikhel, An approach to quantify endomembrane dynamics in pollen utilizing bioactive chemicals, Mol Plant, vol.6, pp.1202-1215, 2013.

C. Y. Botté, M. Deligny, A. Roccia, A. Bonneau, N. Saïdani et al., Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana, Nat Chem Biol, vol.7, pp.834-876, 2011.

H. Zhang, X. Qu, C. Bao, P. Khurana, Q. Wang et al., Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth, Plant Cell, vol.22, pp.2749-67, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00525708

H. Qu, Z. Shang, S. Zhang, L. Liu, and J. Wu, Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia, New Phytol, vol.174, pp.524-560, 2007.

S. C. Tiwari and V. S. Polito, Spatial and temporal organization of actin during hydration, activation, and germination of pollen inPyrus communis L.: a population study, Protoplasma, vol.147, pp.5-15, 1988.

S. G. Thomas, S. Huang, S. Li, C. J. Staiger, and F. Ve, Actin depolymerization is sufficient to induce programmed cell death in selfincompatible pollen, J Cell Biol, vol.174, pp.221-230, 2006.

K. L. Wilsen, A. Lovy-wheeler, B. Voigt, D. Menzel, J. G. Kunkel et al., Imaging the actin cytoskeleton in growing pollen tubes, Sex Plant Reprod, vol.19, pp.51-62, 2006.

A. Chaidee, I. Foissner, and W. Pfeiffer, Cell-specific association of heat shockinduced proton flux with actin ring formation in Chenopodium cells: comparison of auto-and heterotroph cultures, Protoplasma, vol.234, p.33, 2008.

J. Papuga, C. Hoffmann, M. Dieterle, D. Moes, F. Moreau et al., Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation, Plant Cell, vol.22, pp.3034-52, 2010.

A. P. Smertenko, M. J. Deeks, and P. J. Hussey, Strategies of actin reorganisation in plant cells, J Cell Sci, vol.123, pp.3019-3047, 2010.

H. S. Van-der-honing, L. S. Van-bezouwen, A. Emons, and T. Ketelaar, High expression of Lifeact in Arabidopsis thaliana reduces dynamic reorganization of actin filaments but does not affect plant development, Cytoskeleton, vol.68, pp.578-87, 2011.

F. Vogler and S. Sprunck, F-actin forms mobile and unwinding ring-shaped structures in germinating Arabidopsis pollen expressing Lifeact, Plant Signal Behav, vol.10, p.1075684, 2015.
DOI : 10.1080/15592324.2015.1075684

URL : http://europepmc.org/articles/pmc4883927?pdf=render

K. Kobayashi, K. Awai, K. Takamiya, and H. Ohta, Arabidopsis type B Monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation, Plant Physiol, vol.134, pp.640-648, 2004.
DOI : 10.1104/pp.103.032656

URL : http://www.plantphysiol.org/content/134/2/640.full.pdf

N. S. Poulter, C. J. Staiger, J. Z. Rappoport, and F. Ve, Actin-binding proteins implicated in the formation of the punctate actin foci stimulated by the self-incompatibility response in Papaver, Plant Physiol, vol.152, pp.1274-83, 2010.

N. S. Poulter, M. Bosch, and F. Ve, Proteins implicated in mediating self-incompatibility-induced alterations to the actin cytoskeleton of Papaver pollen, Ann Bot, vol.108, pp.659-75, 2011.

H. Li, Control of pollen tube tip growth by a Rop GTPase dependent pathway that leads to tip-localized calcium influx, Plant Cell, vol.11, pp.1731-1773, 1999.

A. Y. Cheung, S. Niroomand, Y. Zou, and H. Wu, A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes, Proc Natl Acad Sci, vol.107, pp.16390-16395, 2010.

A. A. Snow and T. P. Spira, Differential pollen-tube growth rates and nonrandom fertilization in Hibiscus moscheutos (Malvaceae), Am J Bot USA, vol.78, pp.1419-1445, 1991.
DOI : 10.1002/j.1537-2197.1991.tb12608.x

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/141504/1/ajb212608.pdf

T. Chen, N. Teng, X. Wu, Y. Wang, W. Tang et al., Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking, Plant Cell Physiol, vol.48, pp.19-30, 2007.

D. P. Delmer, Cellulose biosynthesis, Annu Rev Plant Physiol, vol.38, pp.259-90, 1987.

C. Somerville, Cellulose synthesis in higher plants, Annu Rev Cell Dev Biol, vol.22, pp.53-78, 2006.
DOI : 10.1146/annurev.cellbio.22.022206.160206

J. Mollet, S. Kim, G. Jauh, and E. M. Lord, Arabinogalactan proteins, pollen tube growth, and the reversible effects of Yariv phenylglycoside, Protoplasma, vol.219, pp.89-98, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02121608

E. Nguema-ona, S. Coimbra, M. Vicre-gibouin, J. Mollet, and A. Driouich, Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects, Ann Bot, vol.110, pp.383-404, 2012.
DOI : 10.1093/aob/mcs143

URL : https://hal.archives-ouvertes.fr/hal-01844523

A. Geitmann, The rheological properties of the pollen tube cell wall, pp.283-302, 1999.

L. P. Taylor and P. K. Hepler, Pollen germination and tube growth, Annu Rev Plant Biol, vol.48, pp.461-91, 1997.

M. A. O'neill, T. Ishii, P. Albersheim, and A. G. Darvill, Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide, Annu Rev Plant Biol, vol.55, pp.109-148, 2004.

M. Stepka, F. Ciampolini, M. Charzy?ska, and M. Cresti, Localization of pectins in the pollen tube wall of Ornithogalum virens L. does the pattern of pectin distribution depend on the growth rate of the pollen tube?, Planta, vol.210, pp.630-635, 2000.

L. Vidali, G. M. Burkart, R. C. Augustine, E. Kerdavid, E. Tüzel et al., Myosin XI is essential for tip growth in Physcomitrella patens, Plant Cell, vol.22, pp.1868-82, 2010.
DOI : 10.1105/tpc.109.073288

URL : http://www.plantcell.org/content/22/6/1868.full.pdf

E. R. Rojas, S. Hotton, and J. Dumais, Chemically mediated mechanical expansion of the pollen tube cell wall, Biophys J, vol.101, pp.1844-53, 2011.

J. P. Bibeau, J. L. Kingsley, F. Furt, E. Tuzel, and L. Vidali, F-Actin meditated focusing of vesicles at the cell tip is essential for polarized growth, Plant Physiol, 2017.

S. Roy, G. Y. Jauh, P. K. Hepler, and E. M. Lord, Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube, Planta, vol.204, pp.450-458, 1998.

C. H. Foyer and G. Noctor, Oxidant and antioxidant signalling in plants: a reevaluation of the concept of oxidative stress in a physiological context, Plant Cell Environ, vol.28, pp.1056-71, 2005.

R. Mittler, S. Vanderauwera, N. Suzuki, G. Miller, V. B. Tognetti et al., ROS signaling: the new wave?, Trends Plant Sci, vol.16, pp.300-309, 2011.

M. Wrzaczek, M. Brosché, and J. Kangasjärvi, ROS signaling loops -production, perception, regulation, Curr Opin Plant Biol, vol.16, pp.575-82, 2013.

A. Baxter, R. Mittler, and N. Suzuki, ROS as key players in plant stress signalling, J Exp Bot, vol.65, pp.1229-1269, 2014.

S. C. Fry, Oxidative scission of plant cell wall polysaccharides by ascorbateinduced hydroxyl radicals, Biochem J, vol.332, p.507, 1998.

A. M. Prado, Nitric oxide is involved in growth regulation and re-orientation of pollen tubes, Development, vol.131, pp.2707-2721, 2004.

K. A. Wilkins, J. Bancroft, M. Bosch, J. Ings, N. Smirnoff et al., Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of Papaver, Plant Physiol, vol.156, pp.404-420, 2011.

K. Müller, A. Linkies, R. Vreeburg, S. C. Fry, A. Krieger-liszkay et al., In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth, Plant Physiol, vol.150, pp.1855-65, 2009.

I. Aloisi, G. Cai, V. Tumiatti, A. Minarini, D. Duca et al., Natural polyamines and synthetic analogs modify the growth and the morphology of Pyrus communis pollen tubes affecting ROS levels and causing cell death, Plant Sci, vol.239, pp.92-105, 2015.

H. Sugiyama, M. Yoshida, K. Mori, T. Kawamoto, S. Sogabe et al., Synthesis and structure activity relationship studies of benzothieno [3,2-b] furan derivatives as a novel class of IKK? inhibitors, Chem Pharm Bull, vol.55, pp.613-637, 2007.

B. D. Wright, C. Simpson, M. Stashko, D. Kireev, E. A. Hull-ryde et al., Development of a high-throughput screening assay to identify inhibitors of the lipid kinase PIP5K1C, J Biomol Screen, vol.20, pp.655-62, 2015.

M. Foti, A. Audhya, and S. D. Emr, Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool ofphosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology, Mol Biol Cell, vol.12, pp.2396-411, 2001.

W. Zhang, L. E. Guo, Y. , Y. Wan, Z. Ma et al., Arabidopsis VAC14 is critical for pollen development through mediating vacuolar organization, Plant Physiol, vol.177, p.1529, 2018.

T. Ischebeck, I. Stenzel, F. Hempel, J. X. Mosblech, A. Heilmann et al., Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum, Plant J Cell Mol Biol, vol.65, pp.453-68, 2011.

Y. Guan, J. Guo, H. Li, and Z. Yang, Signaling in pollen tube growth: crosstalk, feedback, and missing links, Mol Plant, vol.6, pp.1053-64, 2013.

L. Vidali, C. M. Rounds, P. K. Hepler, and M. Bezanilla, Lifeact-mEGFP reveals a dynamic apical F-Actin network in tip growing plant cells, PLoS One, vol.4, p.5744, 2009.

D. Rong, N. Luo, J. C. Mollet, X. Liu, and Z. Yang, Salicylic acid regulates pollen tip growth through an NPR3/NPR4-independent pathway, Mol Plant, vol.9, pp.1478-91, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01837969

L. C. Boavida, S. Mccormick, . Technical, and . Advance, Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana: temperature effect on Arabidopsis pollen germination, Plant J, vol.52, pp.570-82, 2007.

S. A. Johnson-brousseau and S. Mccormick, A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically-expressed genes, Plant J, vol.39, pp.761-75, 2004.

J. L. Brewbaker and B. H. Kwack, The essential role of calcium ion in pollen germination and pollen tube growth, Am J Bot, vol.50, p.859, 1963.

Y. Verhertbruggen, S. E. Marcus, A. Haeger, J. J. Ordaz-ortiz, and J. P. Knox, An extended set of monoclonal antibodies to pectic homogalacturonan, Carbohydr Res, vol.344, pp.1858-62, 2009.

E. A. Yates, J. F. Valdor, S. M. Haslam, H. R. Morris, A. Dell et al., Characterization of carbohydrate structural features recognized by antiarabinogalactan-protein monoclonal antibodies, Glycobiology, vol.6, pp.131-140, 1996.

M. D. Abràmoff, P. J. Magalhães, and S. J. Ram, Image processing with ImageJ, Biophoton Int, vol.11, pp.36-42, 2004.

R. Development-core and . Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2008.