Apprentissage multiclasse en environnement incertain
Abstract
Dans cet article, nous abordons le problème de la classification multiclasses dans le contexte particulier où les coûts de mauvaise classification sont déséquilibrés en fonction des classes et sont inconnus lors de l’apprentissage mais disponibles en prédiction. La méthode proposée s’appuie sur des ensembles de classifieurs, chacun spécialisé à des contextes de coûts particuliers. Pour cela,elle combine une procédure d’optimisation multi-objectifs avec une décomposition par paires de classes, afin de réduire la complexité computationnelle. Les prédictions sont ensuite obtenues via la sélection du classifieur le plus adapté aux coûts, une fois que ceux-ci sont connus. Les premiers résultats obtenus montrent que cette méthode est efficace et qu’elle permet de traiter des problèmes avec un grand nombre de classes.
Origin : Files produced by the author(s)
Loading...