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Abstract—In many real-world classification tasks, such as med-
ical diagnosis, it is crucial to take into account misclassification
costs for designing an accurate classification system. Nevertheless,
begin able to reject a sample is also often needed in order to avoid
a very risky prediction error. In that case, a cost-sensitive classi-
fier must embed a rejection mechanism, that takes into account
the rejection costs as well as the misclassification costs. In binary
classification, the ROC space has shown to be very powerful for
designing cost-sensitive classifiers, but it has been poorly exploited
for designing classifiers able to reject. The purpose of this work
is to extend a ROC-based ensemble method recently proposed,
called the ROC Front method, with a cost-sensitive rejection
mechanism. This approach compares favorably to the state-of-
the-art ROC-based rejection rule recently proposed for binary
cost-sensitive classification. It is also more robust as it allows
to design an accurate classifier for all cost-sensitive situations
contrary to the state-of-the-art method that fails in many cases,
as for example with small datasets.

I. INTRODUCTION

Many real-world classification problems naturally exhibit
imbalanced misclassification costs. Medical diagnosis is a
typical example for which predicting a healthy condition for
a patient who actually suffers from a serious pathology is
obviously more dangerous than the opposite situation. For
such cases, a wide variety of classifiers exist that take into
account some predefined costs, associated to each of the
possible classification errors. However, even by focusing on
specific types of error, at the expense of the others, it may
be difficult to completely avoid very costly prediction errors.
In the previous example of medical diagnosis, one single
diagnosis error can imply very serious consequences. In such
a situation, it is desirable to be able not to predict any of
the healthy/pathological classes, instead of taking the risk to
predict ’healthy’ instead of ’pathological’. Consequently, in
addition to cost-sensitivity, classifiers must be able to reject a
sample when the risk of being wrong is critical.

In the cost-sensitive binary classification framework, the
Receiver Operating Characteristic (ROC) space has shown to
be very powerful for dealing with imbalanced misclassification
costs ([1]). The reason is that it allows to describe the
performance of binary classifiers at different operating points,
i.e. considering different cost ratios. However, it has been
poorly exploited for incorporating a reject option in the cost-
sensitive framework. The main reason is that the ROC space

does not naturally allows to consider the reject option as a
third possible outcome of binary classifiers.

Consider a binary classification task, where a classifier
predicts either the positive (P ) or the negative (N ) class.
In a cost-sensitive framework, the misclassification costs are
defined in a matrix, as shown in Table Ia. When adding the
ability to reject, a third column has to be defined for the
cost of rejecting samples from each of the two classes, as
shown in Table Ib. The traditional 2D ROC space allows the

TABLE I: Cost matrices definition. CFN denotes the cost
of predicting negative instead of positive, CFP the cost of
predicting positive instead of negative, CTP and CTN are the
profits associated to correct predictions, and CRP (resp. CRN )
denotes the cost of rejecting a positive (resp. negative) sample.

(a) Traditional Cost Matrix

P̂ N̂

P CTP CFN

N CFP CTN

(b) Cost Matrix with a reject option

P̂ N̂ R̂

P CTP CFN CRP

N CFP CTN CRN

representation of a classifier ability to handle CFP and CFN .
Nevertheless, if one wants to transpose the ROC space in
the Table Ib case, he will have to add 2 more dimensions,
corresponding to CRP and CRN .

As far as we know, very few works have proposed a reject-
based extension of the ROC space ([2], [3]). In both [2] and
[3], a third dimension, related to the rejection performance, is
added to the regular 2D ROC space. In the first work ([2]),
this third dimension represents the ability of an operating point
to reject a sample predicted with a low confidence. However,
it does not allow to take into account cost matrices like the
one in Table Ib, since two more dimensions are needed to
separately consider CRP and CRN , instead of just one.

In the second work ([3]), the third dimension represents
the rates of samples predicted as positive whereas they are
expected to be rejected. This extended ROC space is used
for outlier detection, where samples are classified either as
positive or negative whereas they may actually belong to a
third unseen class. This case would correspond to adding a
new row in the Table Ia, instead of a new column as it is the
case in our context.
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Tortorella proposes in [4] another type of ROC-based re-
jection mechanism. The traditional 2D ROC space is used
to design a reject rule that leans on two decision thresholds
applied on the binary classifier outcomes. It has been shown in
[5] that this method is theoretically equivalent to the optimal
Chow’s reject rule proposed in [6], for binary classification.
However this method is ineffective in two types of situation:
(i) when the Equation 8 is not true (cf. Section II) and (ii)
when the dataset used for the ROC analysis is too small
to correctly estimate the ROC curve. In that case, the two
decision thresholds are most of the times equals and irrelevant.

In a recent paper ([7]), we have shown that, for cost-
sensitive classification, it can be more efficient to exploit the
ROC space for learning a pool of classifiers, instead of only
focusing on the decision thresholds proposed in the ROC curve
of a single classifier. The purpose of the present work is to
extend the method in [7] with a rejection mechanism that
is able to jointly take into account the misclassification and
rejection costs as defined in the Table Ib. The proposed method
shows a significant improvement over the Tortorella’s method,
and allows to give an accurate cost-sensitive solution in all
cases, in particular when the dataset is small.

The rest of the paper is organized as follows: the next sec-
tion explains the Tortorella’s method for designing a reject rule
thanks to a ROC analysis; Section III presents the proposed
approach; and Section IV details the experimental comparison
between both methods, i.e. Tortorella’s reject rule and our
approach.

II. ROC-BASED REJECT RULE (TORTORELLA’S METHOD)

A natural way to make any binary classifier cost-sensitive is
to optimize a decision threshold on its outcome, according to a
given cost matrix. This allows to train the classifier regardless
the costs, and to find the decision threshold that best suits
to the misclassification costs afterwards. To do so, the ROC
space is often used, since it allows to represent any binary
classification system via its ability to recognize both classes:
the first class through the True Positive Rate (TPR) and the
second class through the False Positive Rate (FPR). Such a
classification system, that gives a prediction ŷ for any instance
x, will be represented in the ROC space by a 2D point, as
illustrated in Figure 1.

Consider now that a classifier gives an output score h(x) on
any instance x. For having a prediction ŷ, a threshold t has to
be set on h(x), such that ŷ = P if h(x) > t, ŷ = N else. A
typical way to represent the performance of such a classifier
in the ROC space is to consider all the possible thresholds,
and to draw the corresponding ROC curve, as illustrated on
Figure 2. In that way, it is easy to find the operating point of
this curve (and thus the corresponding threshold t) that best
suits to given misclassification costs. This is usually achieved
using iso-performance lines ([8]) defined by a slope given by

m =
p(N)CFP

p(P )CFN
(1)

Fig. 1: Representation of a classifier system in the ROC space.
FPR, TPR, FNR and TNR respectively denotes the false
positive, true positive, false negative and true negatives rates.

Fig. 2: ROC curves and iso-performance lines

where, p(P ) and p(N) are the prior probabilities of the
positive and the negative classes. The best threshold is given
by the operating point for which the iso-performance line is
tangent to the ROC curve, as illustrated in Figure 2.

The idea behind the method proposed in [4], denoted RBR
hereafter, is to extend the iso-performance line principle for
finding two decision thresholds, t1 and t2, in such a way that
the final prediction ŷ is defined by:

ŷ =


P if h(x) > t1

R if t2 < h(x) < t1

N else

(2)

These thresholds t1 and t2 can be find using two iso-
performance lines, the slopes of which are:

m1 = −p(N)C ′TN

p(P )C ′FN

and m2 = −p(N)C ′FP

p(P )C ′TP

(3)

where C ′TN , C ′FN , C ′FP and C ′TP are modified costs, as:

C ′TN = CTN − CRN (4)
C ′FP = CFP − CRN (5)
C ′FN = CFN − CRP (6)
C ′TP = CTP − CRP (7)

The threshold t1 (resp. t2) is found with the m1 (resp. m2)
iso-performance line.
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Note that there are cases for which it is not possible to find
two consistent thresholds t1 and t2. When determining both
values, three different situations can be encountered:

1) t1 < t2
2) t1 = t2
3) t1 > t2

In the second and third situations, the prediction function
of Equation 2 can not be applied. In that case, Tortorella
suggests in [4] not to perform any rejection, and to use instead
the regular method with only one threshold. Two types of
situations can led to these situations: (i) when Equation 8 is
not true and (ii) when the dataset is too small. For further
explanations, please see [4].

C ′TN

C ′FN

>
C ′FP

C ′TP

(8)

III. REJECTING WITH ROC-BASED COST-SENSITIVE
CLASSIFIERS

In [9], [7], we have proposed an ensemble method for cost-
sensitive classification, called the ROC Front method. The
rationale behind this method is to replace the traditional de-
cision parameter optimization by a model selection approach,
based on an ensemble of cost-sensitive classifiers optimized
in the ROC space. This approach has shown to significantly
improve the cost-sensitive results over the decision parameter
optimization approach. The goal of the method proposed in
this paper is to extend this ROC-based model selection with
a rejection mechanism.

What is called ROC Front is an ensemble of diverse cost-
sensitive classifiers, that proposes a variety of solutions that
suit to different cost-sensitive scenarios. When a cost matrix is
considered, the most suitable classifier is selected accordingly
in this ensemble. For adding a reject option, a second stage is
added, composed with the following steps:

1) All pairs of classifiers from the ROC front are generated.
Each pair of classifiers Hij = (hi, hj) is used as a
combining classifier such that the prediction is obtained
following the decision function:

ŷ =


P if hi(x) = P and hj(x) = P

N if hi(x) = N and hj(x) = N

R else

(9)

2) These Hij classifiers are projected in a 4D ROC space,
where the dimensions correspond to the TPR, FPR,
RPR and RNR, where RPR and RNR stand for the
rejected positive rates and rejected negative rates. In
that extended ROC Space, the point Po of coordinates
(1, 0, 0, 0) corresponds to a classifier that always predicts
the correct class for any new instance, and that never
reject. Any other points of this space is a particular
cost-sensitive classifier, represented by its 4 rates (TPR,
FPR, RPR, RNR). The closer to Po, the more accu-
rate this classifier will be. However, as for the ROC
Front method, the goal here is to obtain a diverse pool
of classifiers, well spread all across the 4D ROC space.

Dataset Instances Positive Negative features
Pima 768 268 500 8
Heart 270 120 150 13
Australian 690 383 307 14
Diabetes 768 268 500 8
a1a 1605 395 1210 123
a2a 2265 572 1693 123
Sonar 208 97 111 60
Splice 1000 517 483 60
Seismic-bumps 2584 2414 170 19
Spectf 349 254 95 44
Spambase 4601 1813 2788 57
German 1000 300 700 24

TABLE II: Datasets

3) Among all the Hij classifiers, a new 4D ROC Front
is built with the non-dominated solutions, in the sense
of Pareto-domination as defined in the multiobjective
optimization literature (please see [10] for a formal
definition of Pareto-domination). In practice, this means
that the Hij classifiers that can never be considered to be
the best solution for at least one cost-sensitive scenario,
are discarded from the 4D ROC Front.

This ROC Front variant, with reject option, is denoted RFR
in the following.

Finally, when a given cost matrix is considered, the model
selection process is applied in the same way it is done in [9],
[7], that is to say by minimizing the loss function defined by:

L(Hij , D) = p(P )

 ∑
j=1..3

C1jR1j

+p(N)

 ∑
j=1..3

C2jR2j


(10)

where D is a dataset, C1j (resp. C2j) corresponds to the costs
in the first (resp. second) row of the Table Ib matrix, and R1j

(resp. R2j) are the corresponding rates, estimated on D. For
example, C11 is CTP in Table Ib, and R11 is the true positive
rate of Hij , estimated on D.

IV. EXPERIMENTS

A. Experimental protocol

For evaluating both the RBR and RFR methods, SVM
classifiers with a Radial Basis Function (RBF) Kernel have
been used as base classifiers. The reason of this choice
is that these classifiers are naturally cost-sensitive through
their 3 hyperparameters: γ, C+ and C− (please see [7] for
additional explanations on these hyperparameters). By tuning
these values, in particular C+ and C−, one can make such
an SVM classifier suits to given misclassification costs. As a
consequence, the ROC front is made up with an ensemble of
SVM classifiers, all trained with different triplets of hyperpa-
rameters (γ,C+, C−). In the whole experiments, all the SVM
has been implemented via the LibSVM software ([11]).

As for the experimental protocol, it has been inspired by
the protocol used in [4]. First, 12 datasets have been selected
from the UCI repository ([12]), and are described in Table II.
For both methods, an independent validation set is required for
finding the t1 and t2 in RBR, and for evaluating and selecting
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CTP/N CFN CRP CFP CRN

CM1 U(-10,0) U(0,50) 1 U(0,50) 1
CM2 U(-10,0) U(0,50) 1 U(0,100) 1
CM3 U(-10,0) U(0,100) 1 U(0,50) 1
CM4 U(-10,0) U(0,50) U(0,30) U(0,50) U(0,30)
CM5 U(-10,0) U(50,100) U(0,50) U(50,100) U(0,50)
CM6 U(-10,0) U(50,100) U(0,50) U(25,75) U(0,50)
CM7 U(-10,0) U(25,75) U(0,50) U(50,100) U(0,50)
CM8 U(-10,0) U(25,75) U(0,50) U(25,75) U(0,50)

TABLE III: Cost Models. U denotes a uniform random selec-
tion in the corresponding interval of values. CM1 to CM4 are
excerpt from [4]. In these first 4 CM, CRP is always equal
to CRN , while in CM5 to CM8, different values of CRP and
CRN can be obtained.

the pairs of classifiers in RFR. For that reason, each datasets
have been divided into 3 distinct subsets, with 60% of the
instances in the training set Dr, 20% in the validation set
Dv , and the remaining 20% in the test set Ds. For reliability
concerns, 10 random partitions of each dataset have been
considered in the whole experiments.

Second, several cost matrices have been generated. For that
purpose, eight types of cost matrices, called cost models (CM),
have been considered. Each of these CM represents a typical
imbalanced costs scenario. The first four CM are excerpt from
the experimental protocol proposed in [4]. The last four CM
are additional CM we propose to extend the analysis: none
of the CM proposed in [4] correspond to situations where
the reject costs are potentially imbalanced. However, it is an
important feature in our context, since it may be important
to focus on the rejection of one class of instances, rather
than the other. Thus, it is desirable not to reject too much
instances from the healthy class. As a consequence, the four
additional CM propose situations where CRP and CRN are
potentially imbalanced. In addition to this, these CM present
a wider variety of imbalanced costs situations, with (i) both
misclassification costs always higher than reject costs (CM5),
(ii) one misclassification always higher than reject costs (CM6
and CM7) and (iii) potentially balanced misclassification costs
(CM8). Table III summarizes the definition of these 8 cost
models.

Each of these CM have been used to generate 1000 random
cost matrices, leading to a total of 8 × 1000 = 8000 cost
matrices. For each of them, results are averaged over the
10 random partitions described above. Consequently, both
methods have been evaluated over 10 × 8000 = 80000 runs
for each dataset.

Concerning the RBR method, a single SVM classifier has
been trained on Dr, for which the hyperparameters have been
chosen according to a classical grid search procedure, as
proposed in the LibSVM ([11]). Then, the thresholds t1 and t2
have been selected with the validation set Dv . And finally, the
resulting classifier has been evaluated on Ds, by computing
the cost-sensitive loss defined in Equation 10.

As for the RFR method, the ROC Front has been built
on Dr, as explained in [9], [7]. The pool of classifier

combinations, made up with the pairs of classifiers from
this ROC front, is then evaluated on Dv , through a 5-fold
cross-validation (CV) procedure. As a result, each combi-
nation is represented in the extended 4D ROC space by a
(TPR,FPR,RPR,RNR) point, each of these coordinates
being averaged over the 5 folds of the CV procedure. Details
are given by the Algorithm 1.

This algorithm takes as input a ROC Front, represented by
an ensemble of hyperparameter vectors (γ,C+, C−), each of
which corresponding to one particular SVM classifier. Firstly,
the 5-fold cross-validation is prepared, by recording the pre-
dictions of all the classifiers from the ROC Front, on all the 5
folds (line 1 to 7). Secondly, all the possible pairs of classifiers
from the ROC Front are generated (line 8). Thirdly, for all
these pairs of classifiers, new predictions are given for each
folds of the CV procedure, applying the decision rule given in
Equation 9 (line 9 to 23). These predictions are used to build
a mean confusion matrix, averaged over the rates obtained on
the 5 folds. The projection of any combining classifier of the
RFR method in the extended 4D ROC space, is excerpt from
this mean confusion matrix. Finally, the algorithm outputs the
”best” combining classifiers in this ROC space, in the sense
of Pareto-domination, as explain in Section III (line 24).

When the cost matrix is then considered, the most suitable
pairs is selected by minimizing the loss function of Equation
10, also estimated on Dv . Finally, the resulting combining
classifier has been evaluated on Ds, as for the RBR method.

B. Results

In order to assess the significance of the results, the
Wilcoxon signed ranks test has been applied on each cost
matrix evaluation, as in [4] and as recommended in [13] for
comparison of two classifiers. Consequently, each CM, applied
on each dataset, have led to 1000 significant win/loss results,
obtained over the 10 random partitions. These results are
gathered in Table IV. Each cell of Table IV contains 3 values:
from the top to the bottom, the significant win counts for the
RFR method, the significant loss counts and the number of
cost matrices for which both methods do not give loss results
significantly different. For exhaustiveness, we also report in
the last column, the total counts of win/loss/tie counts, over
the 8000 matrices.

The first observation made from this table is that RFR and
RBR do not give statistically different results in a majority
of cases, i.e. 80.9% (71216 of the 88000 comparisons). Then,
RFR significantly outperforms RBR for 17.78% of the cases
(15642 over 88000), while RBR rarely outperforms RFR, i.e.
for 1.3% of the cases only (1142 over 88000). To sum it up,
the proposed approach is at least as accurate as the Tortorella’s
approach, and gives a significant improvement for more than 1
out of 6 cases, and so for a wide variety of imbalanced costs.

A strong advantage of the RFR method is that it never
fails to give a suitable cost-sensitive solutions, whatever the
priors and the costs. On the contrary, as explained at the end of
Section II, it is sometimes impossible for the RBR approach
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Files CM1 CM2 CM3 CM4 CM5 CM6 CM7 CM8 Total
36 26 26 333 0 0 227 260 908

Heart 11 8 68 1 0 1 0 0 89
953 966 906 666 1000 999 773 740 7003
84 51 53 418 1 26 253 262 1148

Australian 0 0 0 0 0 0 0 0 0
916 949 947 582 999 974 747 738 6852
98 53 63 473 0 104 255 262 1308

Diabetes 4 5 6 1 6 1 2 1 26
898 942 931 526 994 895 743 737 6666
86 61 48 399 0 6 258 263 1121

German 1 0 2 0 5 0 0 0 8
913 939 950 601 995 994 742 737 6871

0 0 0 0 0 0 0 0 0
Pima 0 0 0 0 0 0 0 0 0

1000 1000 1000 1000 1000 1000 1000 1000 8000
31 20 28 327 0 1 221 253 881

Sonar 6 11 5 4 7 0 12 14 59
963 969 967 669 993 999 767 733 7060
394 184 558 867 628 850 575 930 4986

Spectf 0 0 0 0 0 0 0 0 0
606 816 442 133 372 150 425 70 3014
126 130 81 402 7 7 263 263 1279

Spambase 0 0 1 0 0 0 0 0 1
874 870 918 598 993 993 737 737 6720
65 51 45 361 0 0 254 261 1037

Splice 209 262 212 36 68 72 23 11 893
726 687 743 603 932 928 723 728 6070
120 88 68 549 8 206 308 280 1627

A1a 0 0 0 0 0 0 0 0 0
880 912 932 451 992 794 692 720 6373
112 67 63 476 0 88 279 262 1347

A2a 4 5 2 5 10 6 1 33 66
884 928 935 519 990 906 720 705 6587

TABLE IV: Results of the comparison as win/loss/tie counts over the 8× 11 = 88000 cost matrices

Files CM1 CM2 CM3 CM4 CM5 CM6 CM7 CM8
Heart 22 16 22 25 0 0 0 0
Australian 58 23 38 108 0 25 0 0
Diabetes 75 30 52 163 0 104 1 0
German 52 22 31 86 0 5 5 1
Pima 0 0 0 0 0 0 0 0
Sonar 15 10 23 22 5 1 13 13
Spectf 240 114 155 541 577 776 323 653
Spambase 63 41 37 84 0 7 0 0
Splice 50 32 35 55 3 11 0 0
A1a 96 52 56 238 8 206 54 18
A2a 89 45 53 171 8 94 26 33

TABLE V: Counts of cost matrices for which a 0-reject classifier has been used in replacement of the RBR method

to find consistent thresholds such that t1 < t2. Every time
such a situation has been encountered in our experiments, a
0-reject classifier has been used instead, with only one decision
threshold t used, and found by minimizing the loss function.
The number of cases for which the RFR method is compared
to the 0-reject classifier in replacement of the RBR method are
summarized in Table V. These counts confirm the conclusion
of Tortorella in [4]: it is more likely with the cost model CM4
than with the cost models CM1 to CM3, that the condition for
finding the thresholds t1 and t2, expressed by Equation 8, are
not met.

Another interesting observation made from this table is that
RBR often fails to find a consistent pair of threshold (t1, t2)
for the Spectf dataset. From our point of view, it highlights
another drawback of the method: when there is only few

validation instances available, which is the case of the Spectf
dataset due to the low number of negative instances, the ROC
curve does not contain a sufficient number of operating points
to propose enough different cost-sensitive solutions. This is
well illustrated in Figure 3, which represents the ROC curve
of the classifier used in the RBR method for the Spectf dataset
(the blue points). The potentially selected operating points
for any cost-sensitive scenarios are the points lying on the
red curve, called the convex hull. One can see that only 4
points are available here. In that case, it is likely that the
same operating point will be selected for both thresholds. This
pathological case is also discussed in [4]. On the opposite, the
corresponding ROC Front used in RFR, made up with several
cost-sensitive classifiers (the red points), proposes a lot more
diverse ensemble of solutions. The reason is that the number of
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Algorithm 1 ROC Front with reject option (RFR)
Require: Dv : a Dataset
Require: F : the number of folds for the cross-validation (CV)

procedure
Require: Θ = {θi, i = 1..K} : a pool of K triplets of hyperparam-

eters, composing the ROC Front, where θi = (C+
i , C

−
i , γi)

Data Ω = {(θi, θj), i, j = 1..K, i ≥ j} : a pool of K(K + 1)/2
pairs of classifiers from Θ

Data Tn : the nth fold of CV procedure applied on Dv , with n =
1..F

Data Pn,i,j : the prediction of the ith classifier, on the jth instance
of the nth fold

Data Confn,i : the confusion matrix of the ith classifier, obtained
on the nth fold

Function PartitionForCV (Dv, F ) : outputs F distincts folds
following a classical CV procedure.

Function Train(θ, T ) : outputs a classifier trained on the dataset
T , with the θ hyperparameter values.

Function Predict(θ, T ) : outputs the prediction of a given SVM
classifier θ for all the instances in T

Function bestCombiningClassif(Conf,Ω) : outputs the subset
of Ω that represent the best solutions in the multiobjective
optimization sense (Pareto optimality).

Ensure: Γ = {(θi, θj), θi, θj ∈ Ω} : the ensemble of pairs of SVM
classifiers, composing the RFR ensemble.

1: Tn=1..F ← PartitionForCV (Dv, F )
2: for i from 1 to K do
3: for n from 1 to F do
4: ϑ← Train(θi,∪F

s=1,s6=nTs)
5: Pn,i,. ← Predict(ϑ, Tn)
6: end for
7: end for
8: Ω← {(θi, θj), θi, θj ∈ Θ, i, j = 1..K, i ≥ j}
9: for i=1..K do

10: for j=i..K do
11: for n from 1 to F do
12: for p from 1 to |Tn| do
13: if Pn,i,p 6= Pn,j,p then
14: Prejectp ← Rejection
15: else
16: Prejectp ← Pn,j,p

17: end if
18: end for
19: Confn,. ← ConfusionMatrix(Tn, P reject)
20: end for
21: Conft ← mean(Confn,.)
22: end for
23: end for
24: Γ← bestCombiningClassif(Conf.,Ω)

these classifiers does not depend on the number of validation
instances available. This explains the particularly good results
of RFR on the Spectf dataset, as shown in Table IV.

V. CONCLUSION

In this paper, a ROC-based ensemble method has been
proposed for cost-sensitive classification with rejection. This
method relies on a pool of cost-sensitive classifiers, called the
ROC Front. Pairs of classifiers from the ROC Front are com-
bined to add the ability to reject. The combining classifiers that
proposes the best solution for tackling particular cost-sensitive
situations, i.e. with given (imbalanced) misclassification and

Fig. 3: Illustration of the pathological case for RBR, where
the ROC curve does not contain enough operating points for
selecting two differents thresholds

rejection costs, are retained to compose a new ROC Front with
reject option.

The proposed approach compares favorably to the state-of-
the-art ROC-based reject rule, with two noticeable improve-
ments: (i) it gives a significant improvement in terms of cost-
sensitive performance and (ii) it is always able to propose an
efficient solution for any cost-sensitive situation, contrary to
the state-of-the-art method that regularly fails to introduce the
reject option regarding the costs ratios.
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