H. Cao, S. Bernard, L. Heutte, and R. Sabourin, Dissimilarity-based representation for radiomics applications, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02111139

L. Sorensen, S. B. Shaker, and M. De-bruijne, Quantitative analysis of pulmonary emphysema using local binary patterns, IEEE transactions on medical imaging, vol.29, issue.2, pp.559-569, 2010.

I. Sluimer, A. Schilham, M. Prokop, and B. Van-ginneken, Computer analysis of computed tomography scans of the lung: a survey, IEEE transactions on medical imaging, vol.25, issue.4, pp.385-405, 2006.

P. Lambin, E. Rios-velazquez, R. Leijenaar, S. Carvalho, R. G. Van-stiphout et al., Radiomics: extracting more information from medical images using advanced feature analysis, European journal of cancer, vol.48, issue.4, pp.441-446, 2012.

V. Kumar, Y. Gu, S. Basu, A. Berglund, S. A. Eschrich et al., Radiomics: the process and the challenges, Magnetic resonance imaging, vol.30, issue.9, pp.1234-1248, 2012.

H. Aerts, E. R. Velazquez, R. Leijenaar, C. Parmar, P. Grossmann et al., Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach, Nat Commun, vol.5, pp.1-8, 2014.

H. Cao, S. Bernard, L. Heutte, and R. Sabourin, Improve the performance of transfer learning without fine-tuning using dissimilarity-based multi-view learning for breast cancer histology images, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02088167

C. Parmar, P. Grossmann, D. Rietveld, M. M. Rietbergen, P. Lambin et al., Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer, Frontiers in oncology, vol.5, 2015.

J. Song, Z. Liu, W. Zhong, Y. Huang, Z. Ma et al., Non-small cell lung cancer: quantitative phenotypic analysis of ct images as a potential marker of prognosis, Scientific Reports, vol.6, 2016.

A. Serra, M. Fratello, V. Fortino, G. Raiconi, R. Tagliaferri et al., Mvda: a multi-view genomic data integration methodology, BMC bioinformatics, vol.16, issue.1, p.261, 2015.

A. Tsymbal, M. Pechenizkiy, and P. Cunningham, Dynamic integration with random forests, European Conference on Machine Learning, pp.801-808, 2006.

R. M. Cruz, R. Sabourin, and G. D. Cavalcanti, Dynamic classifier selection: Recent advances and perspectives, Information Fusion, vol.41, pp.195-216, 2018.

A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, Dynamic integration of classifiers for handling concept drift, Information fusion, vol.9, issue.1, pp.56-68, 2008.

L. Breiman, Random forests, Machine learning, vol.45, issue.1, pp.5-32, 2001.

G. Biau and E. Scornet, A random forest guided tour, Test, vol.25, issue.2, pp.197-227, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01307105

L. Breiman, Out-of-bag estimation, 1996.

C. C. Aggarwal, A. Hinneburg, and D. A. Keim, On the surprising behavior of distance metrics in high dimensional space, International Conference on Database Theory, pp.420-434, 2001.

H. Zhou, M. Vallì-eres, H. X. Bai, C. Su, H. Tang et al., MRI features predict survival and molecular markers in diffuse lower-grade gliomas, Neuro-Oncology, vol.19, issue.6, pp.862-870, 2017.

V. Bolón-canedo, N. Sánchez-maroño, and A. Alonso-betanzos, A review of feature selection methods on synthetic data, Knowledge and information systems, vol.34, issue.3, pp.483-519, 2013.