Skip to Main content Skip to Navigation
Conference papers

Improve the Performance of Transfer Learning Without Fine-Tuning Using Dissimilarity-Based Multi-view Learning for Breast Cancer Histology Images

Hongliu Cao 1, 2 Simon Bernard 1 Laurent Heutte 1 Robert Sabourin 2
1 DocApp - LITIS - Equipe Apprentissage
LITIS - Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes
Document type :
Conference papers
Complete list of metadatas

Cited literature [17 references]  Display  Hide  Download

https://hal-normandie-univ.archives-ouvertes.fr/hal-02088167
Contributor : Simon Bernard <>
Submitted on : Tuesday, April 2, 2019 - 4:04:42 PM
Last modification on : Thursday, May 2, 2019 - 10:54:05 AM
Long-term archiving on: : Wednesday, July 3, 2019 - 4:38:58 PM

File

Cao_ICIAR_2018.pdf
Files produced by the author(s)

Identifiers

Citation

Hongliu Cao, Simon Bernard, Laurent Heutte, Robert Sabourin. Improve the Performance of Transfer Learning Without Fine-Tuning Using Dissimilarity-Based Multi-view Learning for Breast Cancer Histology Images. International Conference Image Analysis and Recognition (ICIAR), Jun 2018, Póvoa de Varzim, Portugal. pp.779-787, ⟨10.1007/978-3-319-93000-8_88⟩. ⟨hal-02088167⟩

Share

Metrics

Record views

57

Files downloads

104