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21 ABSTRACT  

22 Twenty Gram-negative bacterial (GNB) strains were selected based on the biodiversity 

23 previously observed in French traditional cheeses and their safety was assessed considering 

24 various safety criteria. For the majority of tested GNB strains, only gastric stress at pH 2 (vs pH 

25 4) resulted in low survival and no regrowth after an additional simulated gastro-intestinal stress. 

26 Presence of milk was shown to be rarely protective. The majority of strains was resistant to 

27 human serum and had a low level of adherence to Caco-2 cells. When tested for virulence in 

28 Galleria mellonella larvae, GNB strains had LD 50 values similar to that of safe controls. 

29 However, four strains, Hafnia paralvei 920, Proteus sp. (close to P. hauseri) UCMA 3780, 

30 Providencia heimbachae GR4, and Morganella morganii 3A2A were highly toxic to the larvae, 

31 which suggests the presence of potential virulent factors in these strains. Noteworthy, to our 

32 knowledge, no foodborne intoxication or outbreak has been reported so far for any of the GNB 

33 belonging to the genera/species associated with the tested strains. The role of multiple dynamic 

34 interactions between cheese microbiota and GIT barriers could be key factors explaining safe 

35 consumption of the corresponding cheeses. 

36

37 Keywords: Caco-2, Galleria mellonella, gastro-intestinal stress, human serum bactericidal 

38 assay, risk factors

39

40 1. Introduction

41 Cheese microbiota consists of diverse microorganisms, including yeasts, moulds, Gram-

42 positive and -negative bacteria (Dugat-Bony et al., 2016; Gori et al., 2013; Imran et al., 2012; 

43 Irlinger and Mounier, 2009; Larpin-Laborde et al., 2011; Martín and Coton, 2017; Mounier et 

44 al., 2009, 2017; Wolfe et al., 2014). Microbial community diversity is important during cheese 

45 making as it is associated with cheese sensorial quality but can also contribute to ensure 

46 microbiological control and safety (Delbes et al., 2007; Delbès-Paus et al., 2012; Irlinger and 
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47 Mounier, 2009). While literature data are abundant concerning yeasts/molds and Gram-positive 

48 bacteria (GPB) in cheese, Gram-negative bacteria (GNB) have been seldomly studied. 

49 However, a wide diversity of GNB, found at relatively high levels in raw milk (around 3 to 4 

50 Log CFU/mL), has been reported (Desmasures et al., 1997; Frétin et al., 2018; Kable et al., 

51 2016). GNB usually represent from 18 to 60 % of the bacteria isolated from the surface of 

52 European smear cheeses (Larpin-Laborde et al., 2011; Maoz et al., 2003; Montel et al., 2014; 

53 Mounier et al., 2005, 2017; Wolfe et al., 2014). Most of the microorganisms found in cheese 

54 originate from raw milk, (animal, milking machine, environment /air) (Desmasures et al., 1997; 

55 Frétin et al., 2018), processing steps, plant, transportation equipment, labor and cheese factory 

56 sources (Mounier et al., 2006). GNB present on the surface of the ripened soft cheese mainly 

57 belong to Enterobacteriaceae, Moraxellaceae, Pseudoalteromonadaceae, Pseudomonadaceae, 

58 Sphingobacteriaceae and Vibrionaceae families (Bockelmann et al., 2005; Chaves-Lopez et 

59 al., 2006; Maoz et al., 2003; Mounier et al., 2005; Tornadijo et al., 1993). Previous work, done 

60 between 2008 and 2010 aimed at studying GNB associated with French milk and corresponding 

61 cheeses. The obtained 173 isolates corresponded to at least 26 genera and 68 species, including 

62 potential new species. Pseudomonas, Chryseobacterium, Enterobacter, and Stenotrophomonas 

63 were the most frequent genera found in cheese core and milk samples, while Proteus, 

64 Psychrobacter, Halomonas and Pseudomonas were the most frequent genera isolated from 

65 cheese surface (Coton et al., 2012).

66 Some GNB species found in cheese were reported to include some non-foodborne 

67 strains associated with clinical cases (Delbès-Paus et al., 2012). Criteria to classify bacteria as 

68 human pathogens or non-pathogens depends on the presence or absence of virulence factors. 

69 Survival during gastro intestinal transit and then adhesion to enterocyte cell surfaces is often 

70 the first step in establishing potential bacterial disease. For extracellular pathogens, adhesion is 

71 a means to withstand mechanical cleaning. For intracellular pathogens, adhesion is often a 
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72 prerequisite for invasion (dos Santos et al., 2015). The human adenocarcinoma cell line Caco-

73 2, isolated from an adult human colon, which expresses several markers characteristic of normal 

74 small villi cells (Fogh et al., 1977; Pinto et al., 1983) has been extensively used to study bacterial 

75 adhesion mechanisms for pathogens and probiotic strains (Greene and Klaenhammer, 1994). 

76 Another barrier in the human body against invading pathogens is the action of serum 

77 through a series of serum proteins interacting in a regulated sequential manner that eventually 

78 leads to bacterial death due to either lysis or opsonisation (Morgan et al., 2000). Furthermore, 

79 the safety status evaluation of a given microorganism must also be assessed by its actual 

80 pathogenicity on an animal model. Mammals have been used for a long time to evaluate 

81 microbial pathogen virulence but it is time consuming, labor intensive, and expensive in terms 

82 of purchasing animals, feeding, and housing. An alternative option is the use of an insect model 

83 (Kavanagh and Reeves, 2004) because the innate immune responses are similar. A useful model 

84 is Galleria mellonella (wax moth) larvae (Ramarao et al., 2012). It has been used to evaluate 

85 the pathogenicity of various GNB such as Proteus mirabilis (Morton et al., 1987), Francisella 

86 tularensis (Aperis et al., 2007), Yersinia pseudotuberculosis (Champion et al., 2009), 

87 Stenotrophomonas maltophilia (Nicoletti et al., 2011) and Escherichia coli (Walters and 

88 Ratcliffe, 1983). For example, Pseudomonas aeruginosa virulence or that of Bacillus 

89 thuringiensis and Bacillus cereus were correlated in Galleria larvae and in mice (Jander et al., 

90 2000; Salamitou et al., 2000). In fact, the virulence of many pathogens is similar in wax moth 

91 larvae and mammals, including Humans (Desbois and Coote, 2012).

92 The present study is a continuation of the previous work reported by Coton et al., (2012) 

93 which focused on the diversity and potential risk factors (antibiotic resistance and biogenic 

94 amines production) of milk and cheese GNB isolates. It aimed at further evaluating the safety 

95 aspects of selected representative GNB strains from each genus identified in the cited study. 

96 Growth in conditions mimicking the gastrointestinal tract (GIT) transit, Caco 2 cell adhesion, 
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97 survival in serum conditions and pathogenicity on insect larvae, were assessed to provide a 

98 more comprehensive view about the safety these GNB isolates.

99

100 2. Materials and methods

101 2.1 Strains and culture conditions 

102 Starting from an initial collection of 173 GNB strains (Coton et al., 2012), 20 strains from the 

103 raw milk or milk, cheese core or cheese surface representative of the main identified genera and 

104 of different safety status (evaluated according to low or high antibiotic resistance and biogenic 

105 amine production in vitro) were selected (Table 1). 

106 All these strains had been previously identified by 16S rRNA or rpoB gene sequencing and 

107 their antibiotic resistance and biogenic amines production in vitro were determined (Coton et 

108 al., 2012). For initial propagation, all control and tested strains were precultured in Tryptic Soy 

109 Broth (Merck, KGaA, Darmstadt, Germany) supplemented with 2.5 g/L yeast extract (Oxoid, 

110 Basingstoke, Hampshire, England) (TSB-YE) and incubated at 37°C or 25°C (for strains unable 

111 to grow at 37°C) for 24 h under aerobic conditions.

112 For adhesion and pathogenicity assays, bacterial strains were grown in TSB-YE and 

113 incubated at 37°C or 25oC (for strains unable to grow at 37°C) for 24 h with shaking (120 rpm) 

114 using a Novotron shaker (VWR, Fontenay sous bois, France).

115

116 2.2 Growth at 37°C 

117 Each precultured strain (cf. §2.1) was isolated on three plates poured with Brain Heart 

118 Infusion agar (BHA, AES, France). For each strain, three plates were inoculated 

119 simultaneously: two plates were incubated at 37°C respectively under aerobic and anaerobic 

120 (AnaeroGen Pack, Oxoid, France) conditions for 14 days and one plate was incubated at 25°C 

121 under aerobic conditions. If growth appeared as expected in aerobiosis on at least one plate and 
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122 for one temperature, results for growth/no growth at 37°C under anaerobic conditions were 

123 considered.

124

125 2.3 Gastric and gastro-intestinal media and stress simulation 

126 For gastro-intestinal stress simulation tests, bacterial strains were first precultured in J 

127 broth (JB) (5 g/L peptone, 15 g/L yeast extract, 2 g/L glucose, 3 g/L K2HPO4, adjusted to pH 

128 7.2) (Clavel et al., 2004) and incubated at 25°C for 24 h with shaking to obtain optimal growth. 

129 For all enumerations, bacteria were plated on J agar (JA) (JB supplemented with 15 g/L agar), 

130 incubated at 25°C under aerobic conditions for 24 h.

131 Simulated gastric medium (GM) was prepared by adding one volume of a sterile 

132 (autoclaved 121°C, 15 min) gastric electrolyte solution (Gänzle et al., 1999) containing 4.8 g/L 

133 NaCl, 1.56 g/L NaHCO3, 2.2 g/L KCl and 0.22 g/L CaCl2 to one volume of JB (GM-JB; 

134 autoclaved 121°C, 15 min) or milk medium (100g/L of half-skim milk powder; autoclaved 

135 100°C, 30 min) (GM-milk (Clavel et al., 2004, 2007). After sterilization, the pH of the GM-JB 

136 or GM-milk media were adjusted to 2 or 4 with sterile 1N HCl to simulate the acidic 

137 environment of human gastric fluids. Finally, media were supplemented with 500U/l of a filter 

138 sterilized (0.22µm) pepsin (gastric juice enzyme) solution prepared in water (P6887; Sigma-

139 Aldrich, France) just before use.

140 For gastric stress experiments, GM-JB and GM-milk media were inoculated with each 

141 strain at initial populations of N0 = 1.106 CFU/mL and incubated at 37°C with shaking (160 

142 rpm) for 3 h to simulate human stomach conditions. Numerations were carried out during the 

143 gastric stress simulation at 0, 1.5 and 3 h.

144 Following the 3 h gastric stress, the inoculated GM-JB or GM-milk medium was 

145 modified by adding one volume of intestinal medium (IM, composed of double strength 

146 sterilized JB medium adjusted to pH 6.5 with sterile 1N HCl, (Clavel et al., 2004, 2007)), to 
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147 obtain the simulated gastrointestinal medium (GIM). These two media were named GIM-JB 

148 and GIM-milk. Bovine bile (B3883, Sigma-Aldrich, France) was added or not at 1.5 g/L. 

149 Incubation in GIM-JB and GIM-milk was done at 37°C without shaking for 28 h to simulate 

150 the gastro-intestinal stress. Numerations were carried out at different time intervals: 0, 1.5, 3, 

151 5, 21 and 28 h. 

152 Bacterial survival was expressed as the log (N/N0) where N0 is the initial population that was 

153 adjusted to 106 CFU/ml and N is the number of CFU/mL obtained after 3 h (gastric stress) or 

154 31 h (gastro-intestinal stress). The two-fold dilution, due to changing the gastric stress medium 

155 to the gastro-intestinal stress medium, was taken into account.

156 All numerations were done by serially diluting bacterial suspensions in Trytone Salt (TS) 

157 diluent and plating on JA medium with a spiral system (Intersciences, France). Cell 

158 concentrations were expressed as CFU/mL.

159

160 2.4 Tissue culture and in vitro adhesion assay 

161 The strains were tested for their adhesion ability in vitro on epithelial intestinal cells (Caco-2: 

162 colon adenocarcinoma human, ATCC, USA, Lot# 4129634). The intestinal cells were routinely 

163 cultured and used as already described (Tareb et al., 2013). Cultures were used at post- 

164 confluence after 15 days of culture (differentiated cells). To determine the number of Caco-2 

165 cells in a monolayer, cells were detached for 2 min with Splittix and Splitstop (Bio Media) at 

166 ambient temperature and counted using a Thoma cell. Three non-pathogenic control strains 

167 were used: E. coli Nissle 1917 (obtained from Dr. Ulrich Sonnerborn from Ardeypharm, 

168 Germany GmbH), with a long history of safe use as a probiotic and large body of acquired 

169 knowledge (EFSA Panel on Biological Hazards (BIOHAZ), 2014; Wassenaar, 2016), E. coli 

170 K12 (ATCC 10798) and Lactobacillus rhamnosus GG strain. In addition, another control was 

171 used: Escherichia coli O157: H7 C267 (stx-, eae+), this strain is a shiga toxin negative mutant 
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172 (stx1- and stx2-) which has kept the gamma-intimin (adherence protein) producing gene 

173 (eaeA+) (Vernozy-Rozand et al., 2000). Bacterial strains were cultured in TSB-YE incubated 

174 at 37°C or 25°C (for strains unable to grow at 37°C) for 24 h under shaking (120 rpm) and then 

175 washed twice with PBS. Concentrations were adjusted to 2 x 108 cells/mL and cells were labeled 

176 with 0.2% aqueous solution of 4’, 6-diamidino-2-phenylindole (DAPI, Sigma) by incubating 

177 for 15 min. Three washing steps were performed with PBS (0.01 M, pH 7.4) to remove excess 

178 unbound DAPI, then cells were suspended in 0.2mL Dulbecco’s Modified Eagle Medium 

179 (DMEM) without antibiotics and put into contact with Caco-2 cells at a final concentration of 

180 107 per 7 x 104 Caco-2 cells for 2h under standard Caco-2 growing conditions (incubation at 

181 37oC, 5% CO2, 95% humidity). Not adherent bacterial cells were removed by three washing 

182 steps with PBS solution and cell fixation was performed using a 3.7% (w/v) solution of 

183 formaldehyde in PBS. 

184 Enumeration of adherent bacteria was performed using an epifluoresence microscope. 

185 Results were determined as an average of ten observations per assay. Adhesion was calculated 

186 by enumerating the adhered bacterial cells in 10 microscopic fields for each strain and was 

187 expressed as the average number of adhered bacterial cells per 100 Caco-2 cells. For selected 

188 strains, validation of bacterial adhesion was performed by using electron microscopy as 

189 routinely done (Tareb et al., 2013).

190

191 2.5 Human serum bactericidal assay 

192 To determine the sensitivity of GNB strains to human serum, human serum type male, 

193 blood group: AB, HIV negative (Biowest, Nauille-France) was used. The bacterial strains were 

194 cultivated overnight in TSB under shaking at 30 or 37°C, depending on the strain. GNB strains 

195 and negative/positive control strains (see below) were added to 50% human serum solution to 

196 obtain the initial cell density of 105 cells per mL (Jankowski et al., 1996). Each mixture was 
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197 separated in two aliquots, one was plated onto Tryptic Soy Agar (TSA) in Petri plate and was 

198 incubated at 30 or 37°C according to the tested strain. The other one was placed in a water bath 

199 for 3 hours at 37°C then plated onto TSA and incubated at 30 or 37°C. The results were 

200 validated by using Hafnia alvei 56.85 (resistant strain) as a positive control and Hafnia alvei 

201 31.86 (sensitive strain) as a negative control (Jankowski et al., 1996). 

202

203 2.6 Pathogenicity evaluation:

204 Galleria mellonella larvae were grown in medium containing 50.6% wheat flour, 19% 

205 honey, 19% glycerol, 7.7% brewer’s yeast and 3.7% bee hive wax. All bacterial strains were 

206 grown as mentioned above, washed three times and cell concentrations were adjusted to ~1010 

207 cells/mL of PBS by optical density (OD 600 nm) determination using pre-enumeration data for 

208 each strain. The two non-pathogenic Escherichia coli K12 and E. coli Nissle 1917 strains were 

209 used as safe controls. Additionally, as above, E. coli C267, O157: H7 (stx1-, stx2-, eaeA+) was 

210 also used because of the presence of an adherence protein (intimin coding gene eaeA). Galleria 

211 mellonella larvae, in groups of ten, were inoculated by injection into the haemocoel through the 

212 last pro-leg by using a sterile syringe (Needle: 0.33x 12mm; 0.3mL U-100 insulin- TERUMO, 

213 Belgium) with a needle diameter of 0.33 mm. Ten µl of sterile PBS (negative control) and 10 

214 µl of a dose series corresponding to successive 10-fold dilutions of bacterial cell suspensions 

215 (ranging from 2 to 10 logs) were injected. After inoculation, larvae were placed in sterile Petri 

216 dishes and incubated at 30°C for 72 h and up to the moth stage (10-15 days). Mortality rate was 

217 assessed by the lack of movement of larvae in response to stimulation and observation of 

218 concomitant melanization of the cuticle. LD 50 (cfu/g of larvae) was estimated at 72 h in two 

219 independent assays as the geometric mean of the doses for which the first 100% mortality and 

220 0% mortality were found (Lorke, 1983).

221
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222 2.7 Statistical analysis

223 Principal Component Analysis (PCA) using Pearson correlation (n) method to determine the 

224 correlation between different variables was carried out by using XLSTAT 2014.5.03 program.

225

226 3. Results and Discussion 

227 3.1 Growth Assessment of Gram negative bacterial species in different conditions related to the 

228 human gastro intestinal tract (GIT) environment 

229 3.1.1 Growth at 37°C 

230 The ability to grow at 37°C under anaerobic conditions was first tested on Petri dishes 

231 as it is an easy way to screen bacteria in order to evaluate their potential to survive in human 

232 body temperature conditions. All strains grew at 25°C in aerobic conditions. At 37°C under 

233 aerobic conditions, only one strain Alcaligenes faecalis 904 did not grow. Twelve out of the 20 

234 selected isolates (60%) were able to grow at 37°C under anaerobic conditions (Table 1). As 

235 expected most of the tested Enterobacteriaceae (e.g. Citrobacter, Klebsiella, Morganella, 

236 Proteus or Hafnia alvei) were able to grow in these conditions, which is in accordance with 

237 their general physiological characteristics. Surprisingly, some Enterobacteriaceae (namely, 

238 Hafnia paralvei 920, Proteus sp UCMA 3779 (close to P. hauseri)) did not grow in these 

239 conditions. Growth of Pseudomonas sp. depended on the considered strain, and it was positive 

240 for Pseudomonas putida CV30.6 and negative for Pseudomonas putida VRBG37.3. 

241 Interestingly, other GNB (i.e. strains belonging to the Acinetobacter, Alcaligenes, 

242 Chryseobacterium, Halomonas, Pseudomonas, Psychrobacter, Sphingobacterium and 

243 Stenotrophomonas genera) showed variable growth in these conditions and were not all able to 

244 withstand anaerobic conditions. However, a limitation of this test was that it was performed in 

245 laboratory conditions with pure cultures at a relatively neutral pH without bile salts, these 

246 conditions being different from in vivo conditions encountered in the GIT. 
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247 3.1.2 Gastric and gastrointestinal stress simulation

248 To get closer to in vivo conditons, survival of 20 GNB dairy strains was evaluated 

249 successively in simulated gastric fluids and gastrointestinal stress environments over time, in 

250 the presence or absence of milk (to mimic ingestion of a dairy product), in vitro. For all strains, 

251 growth data after 3 h gastric stress and 28 h gastrointestinal stress at 37oC were plotted together 

252 and are presented in Table 2. Additionally, changes in counts for four strains representative of 

253 the observed behaviours during the 31h gastric and gastrointestinal stress simulation are 

254 presented in Figures 1 A to D.

255 The effects of in vitro simulated gastric stress were assessed over a 3 h period, for the 

256 20 selected GNB dairy isolates, in the presence of gastric juices (containing 500 U/l pepsin), 

257 and at pH 2 and pH 4, supplemented or not with milk. A good survival, corresponding to stable 

258 or increased population counts, was observed for the majority of the 20 GNB isolates in gastric 

259 juices initially adjusted to pH 4, both in the presence or absence of milk, except for Alcaligenes 

260 faecalis 904 and to a lesser extent for Pseudomonas putida VRBG37.3, and in GM-milk for 

261 Halomonas venusta/alkaliphila/hydrothermas 4C1A and Sphingobacterium sp. PCAi F2.5 

262 (Table 2). At pH 2.0 in the absence of milk, a decrease in survival for the majority (14 strains) 

263 of strains was reported. Six strains actually grew or presented relatively stable populations in 

264 these conditions: Acinetobacter sp. PCAi E6.10, Hafnia paralvei 920, Halomonas 

265 venusta/alkaliphila/hydrothermas 4C1A (Figure 1A), Pantoea agglomerans Q6.3, Providencia 

266 heimbachae GR4, and Sphingobacterium faecium F2.5. In the presence of milk, a decrease in 

267 survival was also mainly observed for 13 strains. In these conditions, populations remained 

268 relatively stable for only 7 strains (log (N/N0) > -0.5): Chryseobacterium bovis Pi18 (Figure 

269 1B), Hafnia paralvei 920, Halomonas venusta/alkaliphila/hydrothermalis 4C1A (Figure 1A), 

270 Halomonas sp. B39, Morganella morganii 3A2A, Providencia heimbachae GR4 and 

271 Pseudomonas putida CV30.6 (Table 2). 
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272 These results showed that under simulated gastric stress conditions (no bile salts added), 

273 pH 2 had a different effect on growth than pH 4; presence of milk had only a slight impact on 

274 growth for both tested pH values. 

275 The effects of an additional 28 h simulated gastrointestinal stress (with or without 1.5 g/L 

276 bile salts) after 3 h gastric stress treatment, at pH 2 or pH 4, on the viability of the 20 GNB 

277 dairy isolates was then evaluated at neutral pH (pH 6.5). In all the tested conditions, no or low 

278 survival was observed for Alcaligenes faecalis 904 while two other strains exhibited good 

279 survival in all conditions as observed by an increase in population counts or re-growth during 

280 the simulated stress (i.e. Halomonas sp B39, Panteoa agglomerans PCA Q6.3). Surprisingly, 

281 bile salts (studied concentration was 1.5 g/L), that are normally encountered during 

282 gastrointestinal stress, did not modify strain survival or had only slight effects when compared 

283 to the same conditions without bile salts (for example among others, Chryseobacterium bovis 

284 Pi18 (Figure 1B) or Pseudomonas putida VRBG 37.3). 

285 No or low survival of a large number of strains was observed after a pH 2.0 gastric fluids 

286 treatment regardless of the conditions encountered in the simulated gastrointestinal tract. No or 

287 low survival was observed for 7 strains at pH 2 , contrary to a high growth observed at pH 4 for 

288 these strains. This was the case for Hafnia alvei (Biogroup 1) B16, Proteus sp. (close to P. 

289 hauseri) UCMA 3779 (Figure 1C), Pseudomonas putida CV 30.6, Pseudomonas stutzeri 

290 UCMA 3883, and Psychrobacter celer 91. Survival in the simulated gastrointestinal tract 

291 containing milk was better for some strains: Hafnia paralvei 920, Halomonas sp. B39 and 

292 Proteus sp. (close to P. hauseri) UCMA 3780, suggesting a protective effect on the overall 

293 survival in GIM-media of these dairy isolates.

294 These results showed that the determinant role of initial pH persisted while bile salts 

295 concentration had a negligible effect on growth; the addition of milk rarely showed a protective 

296 survival effect for the tested GNB strains at both pHs after the total of 31 h of incubation. 
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297 Noteworthy, the simulated TGI stress conditions could also potentially lead to a viable but non-

298 culturable state for some cells and under some conditions, thus potentially underestimating 

299 viable cell counts. This state has been previously observed for some foodborne pathogens in 

300 environmentally limiting conditions during food processing and conservation such as drastic 

301 temperatures or the use of preservatives (Zhao et al, 2017). 

302 The protective survival effect of food in gastrointestinal simulated media has already 

303 been observed for Bacillus cereus (milk media) (Clavel et al., 2007), Bifidobacterium (soymilk) 

304 (Shimakawa et al., 2003) and Lactobacillus curvatus (meat based medium) (Gänzle et al., 1999) 

305 and is often linked to food components such as proteins and fats. Additionally, in the intestinal 

306 tract, bile reacts with cell membrane phospholipids and proteins and disrupts cellular 

307 homeostasis (Begley et al., 2005). However, in this study, the presence of bile salts in the 

308 intestinal media only had an effect on a limited number of strains and low survival was rather 

309 due to the acidic environment encountered in the gastric fluids simulation before the 

310 gastrointestinal stress. High variability in bile salt tolerance has also been previously observed 

311 for GPB such as lactic acid bacteria and Listeria monocytogenes (Begley et al., 2005; Chateau 

312 et al., 1994; Hyronimus et al., 2000). Finally, some species including those belonging to 

313 Chryseobacterium sp., Proteus sp., Halomonas sp. and Psychrobacter sp., recently identified 

314 as corresponding to the most frequent surface and/or core genera of French dairy products 

315 (cheeses and milk, (Dugat-Bony et al., 2016)) did not survive well in the simulated gastric and 

316 gastrointestinal media used in this study. 

317

318 3.2 Adhesion analyses 

319 The observed adhesion capacities are presented in Table 3 as a mean of two biological 

320 replicates. Results for all tested strains varied from 5 to 363 bacterial cells per 100 Caco-2 cells. 

321 Value for attachment of Lactobacillus rhamnosus GG to Caco-2 cells were similar to that 
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322 previously published (Gopal et al., 2001), thus confirming the validity of the present results. 

 
323 The results for adherence of the two Gram negative species used as safe control strains were 

 
324 low (<100 cells) as well for the control E. coli O157: H7 C267 (stx1-, stx2-, eae+) and twelve 

 
325 other strains. The other remaining eight strains exhibited attachment > 100 cells and the most 

 
326 adherent strain was Halomonas venusta/alkaliphila/hydrothermalis 4C1A with 363 cells per 

 
327 100 Caco-2 cells, followed by 200, 152, 145, 141, 138, 114, 100 microbial units for Alcaligenes 

 
328 faecalis  904,  Proteus  sp  (close  to  P.  hauseri)  UCMA  3779,  Psychrobacter  celer  91, 

 
329 Pseudomonas group putida VRBG 37.3, Klebsiella oxytoca 927, Pseudomonas stutzeri UCMA 

 
330 3883 and Citrobacter freundii UCMA 4217, respectively. Adherence is a clue for probiotic 

 
331 potential but is also the first step leading to potential cytotoxicity (dos Santos et al., 2015; 

 
332 Pavlov et al., 2004; Pogačar et al., 2015). In the present study, adhesion capacity was overall 

 
333 low for most of the tested strains and it was lower than previously tested strains of the same 

 
334 species present in drinking water (Pavlov et al., 2004). The low level of adherence was also 

 
335 confirmed by scanning electron microscopy (data not shown). 
 

 
 

336 3.3 Bactericidal effect of human serum 

 
337 The strains were described as sensitive or resistant to human serum after incubation in 

 
338 the presence of 50% human serum for three hours in comparison to known resistant and 

 
339 sensitive control strains of Hafnia alvei (e.g. in Table 4). Only 5 out of the 20 strain subsets 

 
340 were sensitive, namely Halomonas B39, Halomonas venusta/alkaliphila/hydrothermalis 4C1A, 

 
341 Pseudomonas group putida VRBG 37.3, Psychrobacter celer 91 and Sphingobacterium sp. 

 
342 (close S. faecium) PCAi F2.5 (Table 3). Most of the studied strains showed resistance against 

 
343 human serum as previously reported for GNB like Acinetobacter sp. (King et al., 2009). Serum 

 
344 resistance is often related to capsules or lipopolysaccharides which can protect the bacteria from 

 
345 entrance of the bactericidal compounds, but lipopolysaccharides are not solely responsible for 

 
346 resistance (Wand et al., 2013). The complement system is a series of serum proteins interacting 
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347 in a regulated sequence that could lead to bacterial cell death (Morgan et al., 2000). The 

 
348 resistance mechanism could be due to a bacterial surface protein which binds the human factor 

 
349 H (FH), and thereby inhibits complement deposition on the bacterial surface (Quin et al., 2006). 
 

 
 

350 3.4 Virulence of bacteria to Galleria mellonella 

 
351 The 20 selected GNB and four control strains were tested for virulence in G. mellonella 

 
352 (Table 3). All PBS-injected control larvae grew until the moth stage. Control strains, E. coli 

 
353 Nissle 1917, E. coli K12 ATCC 10798, and Lactobacillus rhamnosus GG had LD 50 from 

 
354 around 107 to >108, respectively. This range was considered as the reference non-toxic range, 

 
355 since it was obtained for the three safe control strains. Thirteen GNB strains showed no 

 
356 virulence score within this range. Among them Hafnia alvei (biogroup 1) B16 was found safe 

 
357 which is reassuring as strains from this species are used as commercial ripening cultures for 

 
358 many cheeses (Irlinger et al., 2012). Three strains, including K. oxytoca 927, P. stutzeri UCMA 

 
359 3883, Sphingobacterium sp (close to S. faecium) PCAi F2.5 had intermediate LD 50 around 6.5 

 
360 106 as observed for E. coli O157:H7 (stx1-, stx2-, eae+) C267 wich was used as a control. Two 

 
361 strains, H. paralvei 920 and Proteus sp (close to P. hauseri) UCMA 3780, were toxic to larvae 

 
362 with a lower LD 50 around 105. Two other strains were even more virulent, with LD50 value 

 
363 lower than 104, and corresponded to Providencia heimbachae GR4 and Morganella morganii 

 
364 3A2A. 

 
365 Assuming that G. mellonella larvae injection experiments are commonly used to detect 

 
366 bacterial strains presenting virulence factors and that the virulence of many pathogens is similar 

 
367 in wax moth larvae and mammals, including Humans (Desbois and Coote, 2012), it was 

 
368 deduced that only few strains contained efficient virulent factors and could act as direct or 

 
369 indirect pathogens. In the literature, a recent study showed that Galleria mellonella can also 

 
370 provide significant insights into virulence mechanisms and that this can be applied to the study 

 
371 of opportunistic human pathogens (Wand et al., 2013). Virulence clearly depended here on the 
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372 considered strain but not on its origin as two Proteus sp. (close to P. hauseri) strains, 3779 and 

 
373 3780, having the same origin, were very different in their virulence towards the wax moth 

 
374 larvae. Only Proteus sp. (close to P. hauseri) UCMA 3780, H. paralvei 920, and even more M. 

 
375 morganii 3A2A and P. heimbachae GR4 strains required the lowest concentrations to kill larvae 

 
376 and can be considered as harbouring efficient virulence factors. Overall, the majority of the 

 
377 strains tested for virulence in Galleria mellonella larvae were safe for this organism when 

 
378 compared with the three control strains known to be safe for use in Humans through oral 

 
379 absorption. 

 
380 

 
381 3.5 Data analysis for safety assessment of GNB associated with traditional French cheeses 

 
382 A compilation of selected results obtained in the present work (Table S1) provides a global 

 
383 view about main safety characteristics of the tested GNB during simulated GIT transit after oral 

 
384 ingestion of milk products and their potential virulence. In this table, the individual strains were 

 
385 classified from safe to virulent based on the results obtained using the insect model Galleria 

 
386 mellonella larvae. Then, in vitro results are presented by following the GIT transit progression 

 
387 described in Figure 2 for cheese ingestion. 

 
388 From the in vivo data, it was concluded that Proteus sp (close to P. hauseri) UCMA 3780, M. 

 
389 morganii 3A2A, H. paralvei 920 and P. heimbachae GR4 strains presented some efficient 

 
390 virulence factors. Among these four strains, M. morganii 3A2A and H. paralvei 920 survived 

 
391 well in aerobic simulated gastric conditions (with milk and bile salts) while the two others 

 
392 survived to a lesser extent. Only one strain, H. paralvei 920, did not grow at 37oC under 

 
393 anaerobic conditions. PCA analysis (Figure S2) of the quantitative results given in Table S1, 

 
394 for pH 2 as primary gastric stress, showed some negative correlation (r = -0.42) between LD50 

 
395 in wax moth larvae and survival in GIM-milk at pH 6.5 with bile salt (1.5g/L). So, the more 
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397 at pH4 (Figure S2B), this negative correlation value was weaker (r = -0.29) and it could be 

398 explained by a lower number of strains sensitive to this less aggressive pH. Furthermore, at 

399 pH4, although adherence to Caco-2 cells and survival were opposed on the F1 axis, no negative 

954 400  
correlation appeared (r  =  -0.21)  between them. Qualitative factors were not specifically 
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405 To assess the safety status of GNB strains of dairy origin studied here, a bibliographic 

 
406 review on the potential human pathogenicity of strains belonging to the corresponding species, 

 
407 was  conducted  and  is  listed  in  Table  S3.  Four  bacteria,  namely  Chryseobacterium sp., 

 
408 Psychrobacter celer, Sphingobacterium sp., and Stenotrophomonas maltophilia, were so far 

 
409 never reported in any clinical cases. Only individual clinical cases were reported for the GNB 

 
410 species studied in Table S3 but not associated with food vectors. The only one exception was 

 
411 for  Proteus  sp.  that  caused  biogenic amine  (BA)  related  intoxications (after  eating  BA 

 
412 contaminated  fish).  BA  could  pose  a  safety  risk  for  human  health.  Fortunately,  the 

 
413 corresponding clinical effect appeared to be very moderate except in rare cases and it could 

 
414 explain that there is no regulation for BA in food, except for histamine levels in fish products. 

 
415 Furthermore, a study (Delbès-Paus et al., 2012) involving eleven strains used in vitro in the 

 
416 present study, reported that only negligible biogenic amine amounts were produced in situ (in 

 
417 model  cheeses),  contrary  to  BA  production  observed  in  vitro  by  Coton  et  al.,  (2012). 

 
418 Nevertheles, as BA production is a strain-dependant trait, strain effect and cheese type must 

 
419 also be considered. 

 
420 
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422 The safety status as well as contribution of most GNB to the cheese process is poorly 

 
423 documented. In previous years, GNB were classically considered as indicators of hygienic 

 
424 problems (Bockelmann et al., 2005; Tornadijo et al., 1993) and responsible for defects in cheese 

 
425 texture and flavor due to the production of extracellular proteolytic and lipolytic enzymes 

 
426 (Amato et al., 2012; Martins et al., 2006). For example, dairy related Pseudomonas spp. strains 

 
427 have been shown to produce volatile compounds such as ethyl esters and alcohols that may 

 
428 negatively affect cheese sensory characteristics (Arslan et al., 2011; Morales et al., 2005). The 

 
429 idea that GNB species can be normal and interesting elements of cheese microbiota is more 

 
430 recent (Larpin-Laborde et al., 2011). In this sense, for example, Proteus sp. (close to P. hauseri) 

 
431 and Psychrobacter sp. have been shown to significantly contribute to flavor production in smear 

 
432 cheeses (Deetae et al., 2007; Irlinger et al., 2012) raising questions about the potential beneficial 

 
433 effects of GNB in general. Recently, it was confirmed that some GNB strains have interesting 

 
434 specific technological properties (Schmitz-Esser et al., 2018). 

 
435 In this context, to delve deeper into the knowledge about GNB, it was necessary to 

 
436 assess the safety status of these species. The present study was designed to evaluate the potential 

 
437 health risks, if any, associated with the consumption of GNB present in cheeses (and coming 

 
438 from raw milk, milk, or the milking environment), in simulated body conditions. However, risk 

 
439 analysis is complex. You need to know, successively, the danger and its characteristics, the 

 
440 exposure level and to set a safe threshold value, then, and only in that case, risk assessment can 

 
441 be performed. In this study, from the present data and by using a general exposure context, only 

 
442 part of risk analysis (i.e. the qualification of the danger) was done through an in vivo study of 

 
443 pathogenicity in Galleria mellonella larvae and by using in vitro determinations of bacterial 

 
444 growth in the simulated GIT, on Caco-2 cells and in the presence of human serum. The presence 

 
445 of virulent factors was sugested here for some specific GNB strains but their virulence in human 
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446 gut also depends on their active dose which is modulated by the effect of different gut barriers, 

 
447 as reported in Figure 2. 

 
448 Data from human consumption can however be considered. In fact, the safety status of 

 
449 cheese in healthy consumers has been recognized for a long time, despite or thanks to microbial 

 
450 strain  diversity  and  microbial  interactions in  the  cheese  microbiota that  evolves  during 

 
451 fermentation and ripening (Imran et al., 2012). Although cheeses have been implicated in 7.8% 

 
452 of strongly evidenced foodborne outbreaks due to zoonotic agents in the EU (European Food 

 
453 Safety Authority and European Centre for Disease Prevention and Control, 2016; Imran et al., 

 
454 2012), none of the GNB strains studied here (nor other strains belonging to the same species 

 
455 than those assessed in this study) have been determined to be responsible for any known 

 
456 foodborne outbreaks associated to cheeses. This was also confirmed by our literature analysis 

 
457 described in Table S3. However, two key food risk factors (potential antibiotic resistances and 

 
458 biogenic amine (BA) production, see Table S1) can modulate GNB safety. Assessment of these 

 
459 traits has already been discussed for the 20 selected strains as well as some others (Coton et al., 

 
460 2012). Particularly of interest is the variable antibiotic resistance profiles observed among 

 
461 certain GNB strains since their genetic material may harbour antibiotic resistance associated 

 
462 genes  that  may  be  potentially  transferable.  Additionnally,  the  presence  of  potentially 

 
463 transferable virulence factors in cheese GNB strains must also be underlined. 

 
464 Up until now, the absence of cheese foodborne outbreaks, might be explained by the positive 

 
465 bioactive impact of the cheese microbial community, as previously demonstrated in a model 

 
466 cheese ecosystem against Listeria monocytogenes (Imran et al., 2013). Additionally, it was 

 
467 also recently shown that Hafnia alvei B16 had an inhibitory effect in a model cheese 

 
468 ecosystem against Escherichia coli O26:H11 (Callon et al., 2016; Delbès-Paus et al., 2013). 

 
469 Multiple dynamic interactions between GIT microbiota, cheese matrix and its initial 
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471 and of special importance is the gut microbiota which was shown to play a crucial role for 

 
472 protection against some pathogenic bacteria (Ubeda et al., 2017). This dense resident 

 
473 microbial community, referred as the commensal microbiota, has a major function of 

 
474 protection against colonization of pathogens and this ability to restrain pathogen growth 

 
475 include competitive metabolic interaction, localization to intestinal niches, and induction of 

 
476 host immune responses (Kumada et al., 2013). 

 
477 The impact of the dairy matrix on microbial interactions can also lead to changes in 

 
478 functionality such as a means to combat against pathogens as already described (Imran et al., 

 
479 2012; Imran and Desmasures, 2015). In very recent scientific reports, it has been demonstrated 

 
480 that the dairy matrix also has a significant impact on the survival and immunostimulant ability 

 
481 (treatment of Inflammatory Bowel Diseases) of microbiota in a model gastrointestinal tract and 

 
482 mouse model (Adouard et al., 2016; Foligné et al., 2016; Plé et al., 2015). The role of biliary 

 
483 salts to prevent microbial adherence (Begley et al., 2005) was also recently confirmed (Sanchez 

 
484 et al., 2016). The role of metabolites appearing during digestion must also be detailed. 

 
485 In silico studies could of help to complete our understanding of these interactions, but 

 
486 it is missing for the GNB studied here. Till now only the genome sequence of several other 

 
487 cheese-related GNB, which include the strain P. heimbachae GR4, was determined in a 

 
488 subsequent study (Almeida et al., 2014). It indicated that this strain, studied in this work, is not 

 
489 closely related to the reference strain; an adaptation to the dairy environment could be supposed. 

 
490 For the future, in vivo approaches using wax worm could be further combined with in silico 

 
491 approaches to seek for pathogenicity factors and their potential mobility, in the genome 

 
492 sequence of these strains. 

 
493 To conclude, presumption of safety of most GNB strains studied here was successfully 

 
494 established,  while  some  could  harbour  virulence  factors.  These  factors  (including  some 
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496 other bacteria of the human gut occured. The role of multiple dynamic interactions between 

 
497 cheese microbiota and GIT barriers including gut microbiota could be key factors explaining 

 
498 safe consumption of the corresponding cheeses. However, the present study, which was partly 

 
499 limited to in vitro studies of selected individual strains, cannot replace in vivo studies involving 

 
500 actual cheese and gut microbiota ecosystem. There is always a gap between microbial behavior 

 
501 in  in  vitro and in  vivo conditions, especially taking into account the complexity of  the 

 
502 considered systems (cheese, alimentary bolus, human body). The present approach is a first step 

 
503 for future studies aiming at elucidating the role of each microbial component (GNB or others) 

 
504 within such complex microbial communities. 

 
505 However, the present study, which was partly limited to in vitro studies of selected 

 
506 individual strains, cannot replace in vivo studies involving actual cheese and gut microbiota 

 
507 ecosystem. 
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786 Table 1. Identification of representative Gram-negative bacterial strains of dairy origin 
787 used in this study. Growth in anaerobic or aerobic conditions at 37°C was assessed in the 
788 present study.
789
790

Species Code Dairy source
Growth in 

anaerobic/aerobic 
condition at 37oC*

Acinetobacter close to A. genospecies 3 PCAi E6.10 Milk from Salers cow -/+

Alcaligenes faecalis 904 Smear-ripened cheese -/-

Chryseobacterium close to C. bovis Pi18 Uncooked pressed cheese +/+

Citrobacter freundii UCMA 4217 Smear-ripened cheese +/+

Hafnia alvei (biogroup 1) B16 Smear-ripened cheese +/+

Hafnia paralvei 920 Smear-ripened cheese -/+

Halomonas venusta/ alkaliphila/ hydrothermalis 4C1A Smear-ripened cheese +/+

Halomonas sp. nov. B39 Smear-ripened cheese -/+

Klebsiella oxytoca 927 Smear-ripened cheese +/+

Morganella morganii 3A2A Smear-ripened cheese +/+

Pantoea agglomerans PCA Q6.3 Milk +/+

Proteus sp. close to P. hauseri  UCMA 3779 Smear-ripened cheese -/+

Proteus sp. close to P. hauseri UCMA 3780 Smear-ripened cheese +/+

Providencia heimbachae GR4 Smear-ripened cheese +/+

Pseudomonas group putida VRBG37.3 Milk +/+

Pseudomonas group putida CV30.6 Milk -/+

Pseudomonas stutzeri  UCMA 3883 Smear-ripened cheese -/+

Psychrobacter celer 91 Mould-ripened soft cheese -/+

Sphingobacterium sp. close to S. faecium PCAi F2.5 Milk +/+

Stenotrophomonas maltophilia/rhizophila PCAi D6.5 Milk +/+
791 *all strains grew at 25°C in aerobic conditions
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792 Table 2. Survival of Gram-negative bacteria of dairy origin (inoculated at N0=106 cfu/ml) 
793 in in vitro simulated conditions related to gastric media (GM) and gastrointestinal (GIM) 
794 stress. Results are presented as the log (N/N0) where N is the number of CFU/ml after 3h 
795 gastric stress (GM-3) followed by 28h gastrointestinal stress simulation, with or without bile 
796 salts (GIM-28), corresponding to a total of 31 h of (GM+GIM) stress.
797

pH 4.0 at T0 pH 2.0 at T0

GM-JB GM-milk GM-JB GM-milk

Time (h) of exposure with pH change to 6.5 at T+3h

Gram negative bacterial strains 

Bile g/L

3 31 3 31 3 31 3 31
0 0.49            2.72  0.01               3.23  0.44            2.66  -5.74        -5.74Acinetobacter (close to A. genospecies 3) 

PCAi E6.10 1.5 3.01 2.62 0.73 -2.84
0 -5.20           -5.20 -4.81              -4.81 -3.30           -3.30 -5.20        -5.20

Alcaligenes faecalis 904
1.5 -5.20 -4.81 -3.30 -5.20
0 0.22            1.15 0.06               -1.48 -2.24           -5.84 -0.17         -3.55

Chryseobacterium (close to C. bovis) Pi18
1.5 2.57 -1.47 -5.84 -5.85
0 -0.11           4.04 0.85                3.25 -5.55           -2.94 -5.85         -2.85

Citrobacter freundii UCMA 4217
1.5 3.91 2.95 -2.77 -2.64
0 0.40             3.43 0.53                3.16 -5.90           -5.90 -6.06         -2.86

Hafnia alvei (biogroup 1) B16
1.5 3.53 3.08 -5.90 -2.99
0 -0.48           3.26 0.15                3.12 -0.32           -5.99 -0.11           2.56

Hafnia paralvei 920
1.5 3.14 3.46 -5.99 2.95
0 0.65             3.10 -1.28               2.03 0.92             3.55 -0.39          -5.82Halomonas 

venusta/alkaliphila/hydrothermas 4C1A 1.5 3.23 1.73 3.62 -5.82
0 -0.10            3.91 0.22                3.64 -5.66           -1.03 -0.17           3.87

Halomonas sp. nov. B39
1.5 3.89 3.40 -0.88 3.84
0 -0.62           3.86 -0.26               3.59 -3.60           -3.60 -5.55           0.95

Klebsiella oxytoca 927
1.5 3.64 3.93 -3.60 1.24
0 -0.29           2.75 -0.34              -0.13 -0.93           -6.24 -0.06          -6.12

Morganella morganii 3A2A
1.5 2.85 -0.07 -3.64 0.20
0 0.40            3.37 0.23                3.17 0.51             3.50 -5.41          -0.94

Pantoea agglomerans PCA Q6.3
1.5 3.42 3.19 3.42 -0.93
0 -0.24           2.91 0.21                2.86 -6.00           -6.00 -6.70          -6.70

Proteus sp. (close P. hauseri) UCMA 3779
1.5 3.47 2.15 -6.00 -6.70
0 -0.05          3.41 -0.54             -0.74 -5.83           -5.83 -1.39           2.00

Proteus sp. (close P. hauseri) UCMA 3780
1.5  3.90 2.90 -5.83 2.17
0 0.19            2.87 -0.17              0.86 0.58             3.09 -0.46          -2.97

Providencia heimbachae GR4
1.5 2.76 0.98 2.19 -2.85
0 -1.04          -5.45 -1.99              -5.59 -5.61           -3.31 -4.20          -4.20

Pseudomonas group putida VRBG37.3
1.5 2.56 -3.29 -2.83 -4.20
0 0.38            3.44 -0.13               2.61 -6.38           -6.38 -0.32          -6.31

Pseudomonas group putida CV30.6
1.5 3.37 3.01 -6.38 -6.31
0 0.68            3.97 0.16                3.30 -5.92           -5.92 -5.75          -5.75

Pseudomonas stutzeri UCMA 3883
1.5 3.34 4.45 -5.92 -5.75
0 0.47            3.26 -0.16               3.05 -6.05           -6.05 -5.68          -5.68

Psychrobacter celer 91
1.5 3.45 3.58 -6.05 -5.68
0 0.20             3.56 -1.32               2.71 -0.36            3.90 -5.30          -2.15Sphingobacterium sp. (close to S. faecium) 

PCAi F2.5 1.5 3.63 2.73 3.28 -1.74
0 -0.23           4.29 -0.52               0.26 -4.15           -4.15 -5.14          -2.84Stenotrophomonas maltophilia/rhizophila 

PCAi D6.5 1.5 3.93 -2.79 -4.15 -5.14
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800 Table 3. Adhesion to Caco-2 cells, sensitivity to human serum and increasing in vivo 
801 pathogenicity on wax moth worm of the tested Gram-negative bacteria of dairy origin. 
802
803

804
805 nd: not determined, R: resistant, S: sensisitive
806 *results are mean of two separate experiments 
807

Identification
No. bacterial cell 

adhering 
to 100 Caco-2*

Sensitivity 
to human 

serum 

50% lethal dose at 72 h 
(CFU/g of larva*)

Control strains for safety
Lactobacillus rhamnosus GG (Gram +) 200                    nd          7.00 108

Escherichia coli Nissle 1917 23 nd 1.70 107

Escherichia coli K12 ATCC 10798 65 nd 3.16 107

Strain with intimin 
Escherichia coli O157:H7 C267 (eae+, stx-) 35 nd 1.46 106

Dairy strains
Chryseobacterium sp (close to C. bovis) 
Pi18 73 R 3.71 108

Psychrobacter celer 91   145 S 1.41 108

Alcaligenes faecalis 904 200 R 9.83 107

Proteus sp. (close to P. hauseri) UCMA 
3779 58  R 9.78 107

Acinetobacter sp. (close to  A. genospecies 
3) PCAi E6.10 33 R 8.82 107

Halomonas venusta/alkaliphila/ 
hydrothermalis 4C1A 363 S 6.06 107

Pantoea agglomerans  PCA Q6.3 63 R 5.91 107

Halomonas sp. nov. B39 30 S 2.54 107

Citrobacter freundii  UCMA 4217 100 R 2.18 107

Pseudomonas group  putida VRBG 37.3 141 S 1.91 107

Stenotrophomonas maltophilia/rhizophila 
PCAi D6.5 70 R 1.33 107

Pseudomonas group putida CV30.6 5 R 1.25 107

Hafnia alvei biogroup 1 B16 43 R 9.48 106

Pseudomonas stutzeri UCMA 3883 114 R 6.57 106

Sphingobacterium sp. (close to S. faecium) 
PCAi F2.5 45 S 6.57 106

Klebsiella oxytoca 927 138 R 6.13 106

Hafnia paralvei 920 36 R 2.80 105

Proteus sp. (close to  P. hauseri) UCMA 
3780 152 R 9.63 104

Providencia heimbachae GR4 49 R < 1.6 104

Morganella morganii 3A2A 54 R < 1.16 104
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808 Table 4. Impact of human serum on Gram-negative bacteria (GNB) strains after none and 
809 3 hours contact time: examples of results for a sensitive strain (Pseudomonas group putida 
810 VRBG 37.3) and a resistant strain (Chryseobacterium sp. (close to C. bovis) Pi18).
811  
812

813

Dilution 
Chryseobacterium sp. 
(close to C. bovis) Pi18
(number of colonies)

Pseudomonas putida 
VRBG 37.3

(number of colonies)

Control sensitive
(number of colonies)

Control 
Resistant 

(number of colonies)
At 0 hour

10-1 >1000 >1000 >1000 >1000
10-2 >1000 141 >1000 >1000
10-3 354 6 42 152
10-4 42 0 9 16

At 3rd hour
10-1 >1000 0 0 >1000
10-2 >1000 0 0 >1000
10-3 >1000 0 0 >1000
10-4 135 0 0 426
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