M. A. Atmodjo, Z. Y. Hao, and D. Mohnen, Evolving views of pectin biosynthesis, Annual Review of Plant Biology, vol.64, pp.747-779, 2013.

I. Barany, B. Fadon, M. C. Risueno, and P. S. Testillano, Cell wall components and pectin esterification levels as markers of proliferation and differentiation events during pollen development and pollen embryogenesis in Capsicum annuum L, J. Exp. Bot, vol.61, pp.1159-1175, 2010.

G. Borderies, M. Le-bechec, M. Rossignol, C. Lafitte, E. Le-deunff et al., Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development, Eur. J. Cell Biol, vol.83, pp.205-212, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01190922

F. Bou-daher and S. A. Braybrook, How to let go: pectin and plant cell adhesion, Front. Plant Sci, vol.6, p.523, 2015.

D. M. Cavalier, O. Lerouxel, L. Neumetzler, K. Yamauchi, A. Reinecke et al., Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component, Plant Cell, vol.20, pp.1519-1537, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00352498

A. Chapman, A. Blervacq, T. Hendriks, C. Slomianny, J. Vasseur et al., Cell wall differentiation during early somatic embryogenesis in plants. II. Ultrastructural study and pectin immunolocalization on chicory embryos, Can. J. Bot, vol.78, pp.824-831, 2000.

A. Y. Cheung and H. M. Wu, Arabinogalactan proteins in plant sexual reproduction, Protoplasma, vol.208, pp.87-98, 1999.
DOI : 10.1007/bf01279078

P. Corral-martínez, E. García-fortea, S. Bernard, A. Driouich, and J. M. Seguí-simarro, Ultrastructural immunolocalization of arabinogalactan protein, pectin and hemicellulose epitopes through anther development in Brassica napus, Plant Cell Physiol, vol.57, pp.2161-2174, 2016.

P. Corral-martínez, F. Nuez, and J. M. Seguí-simarro, Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms10 35 tomato anthers, Euphytica, vol.178, pp.215-228, 2011.

P. Corral-martínez, V. Parra-vega, and J. M. Seguí-simarro, Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretionbased cytoplasmic cleaning, J. Exp. Bot, vol.64, pp.3061-3075, 2013.

P. Corral-martínez and J. M. Seguí-simarro, Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins, Euphytica, vol.195, pp.369-382, 2014.

D. J. Cosgrove, Assembly and enlargement of the primary cell wall in plants, Annu. Rev. Cell Dev. Biol, vol.13, pp.171-201, 1997.

D. J. Cosgrove, Growth of the plant cell wall, Nat. Rev. Mol. Cell Biol, vol.6, pp.850-861, 2005.

J. Custers, Microspore culture in rapeseed (Brassica napus L.), " in Doubled Haploid Production in Crop Plants, pp.185-193, 2003.
DOI : 10.1007/978-94-017-1293-4_29

C. P. Darley, A. M. Forrester, and S. J. Mcqueen-mason, The molecular basis of plant cell wall extension, Plant Mol. Biol, vol.47, pp.179-195, 2001.

S. Duchow, R. I. Dahlke, T. Geske, W. Blaschek, and B. Classen, Arabinogalactan-proteins stimulate somatic embryogenesis and plant propagation of Pelargonium sidoides, Carbohydr. Polym, vol.152, pp.149-155, 2016.

A. El-tantawy, M. Solís, M. L. Costa, S. Coimbra, M. Risueño et al., Arabinogalactan protein profiles and distribution patterns during microspore embryogenesis and pollen development in Brassica napus, Plant Reprod, vol.26, pp.231-243, 2013.
DOI : 10.1007/s00497-013-0217-8

URL : https://digital.csic.es/bitstream/10261/89731/1/accesoRestringido.pdf

A. Faik, Xylan biosynthesis: news from the grass, Plant Physiol, vol.153, pp.396-402, 2010.

A. Feher, T. P. Pasternak, and D. Dudits, Transition of somatic plant cells to an embryogenic state, Plant Cell Tissue Organ Cult, vol.74, pp.201-228, 2003.

J. C. Gilkey and L. A. Staehelin, Advances in ultrarapid freezing for the preservation of cellular ultrastructure, J. Electron Microsc. Tech, vol.3, pp.177-210, 1986.

J. Harholt, A. Suttangkakul, V. Scheller, and H. , Biosynthesis of pectin, Plant Physiol, vol.153, pp.384-395, 2010.
DOI : 10.1104/pp.110.156588

URL : http://www.plantphysiol.org/content/153/2/384.full.pdf

P. Immerzeel, H. A. Schols, A. G. Voragen, D. Vries, and S. C. , Different arabinogalactan proteins are present in carrot (Daucus carota) cell culture medium and in seeds, Physiol. Plant, vol.122, pp.181-189, 2004.

H. Iwai, N. Masaoka, T. Ishii, and S. Satoh, A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.16319-16324, 2002.

L. Jones, G. B. Seymour, and J. P. Knox, Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to, Plant Physiol, vol.113, issue.1, pp.1405-1412, 1997.

A. Kikuchi, S. Satoh, N. Nakamura, and T. Fujii, Differences in pectic polysaccharides between carrot embryogenic and non-embryogenic calli, Plant Cell Rep, vol.14, pp.279-284, 1995.
DOI : 10.1007/bf00232028

J. P. Knox, P. J. Linstead, J. King, C. Cooper, and K. Roberts, Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices, Planta, vol.181, pp.512-521, 1990.

J. P. Knox, P. J. Linstead, J. Peart, C. Cooper, and K. Roberts, Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation, Plant J, vol.1, pp.317-326, 1991.

D. T. Lamport and P. Varnai, Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development, New Phytol, vol.197, pp.58-64, 2013.
DOI : 10.1111/nph.12005

J. Letarte, E. Simion, M. Miner, K. , and K. J. , Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture, Plant Cell Rep, vol.24, pp.691-698, 2006.
DOI : 10.1007/s00299-005-0013-5

R. Lichter, Induction of haploid plants from isolated pollen of Brassica napus, Z. Pflanzenphysiol, vol.105, pp.427-434, 1982.

A. Majewska-sawka and A. Münster, Cell-wall antigens in mesophyll cells and mesophyll-derived protoplasts of sugar beet: possible implication in protoplast recalcitrance?, Plant Cell Rep, vol.21, pp.946-954, 2003.

A. Majewska-sawka, A. Munster, and E. Wisniewska, Temporal and spatial distribution of pectin epitopes in differentiating anthers and microspores of fertile and sterile sugar beet, Plant Cell Physiol, vol.45, pp.560-572, 2004.

K. Makowska, M. Ka?u?-zniak, S. Oleszczuk, J. Zimny, A. Czaplicki et al., Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture, Plant Cell Tissue Organ Cult, vol.131, pp.247-257, 2017.
DOI : 10.1007/s11240-017-1280-x

URL : https://link.springer.com/content/pdf/10.1007%2Fs11240-017-1280-x.pdf

R. Malinowski and M. Filipecki, The role of cell wall in plant embryogenesis, Cell. Mol. Biol. Lett, vol.7, pp.1137-1151, 2002.

S. Marcus, Y. Verhertbruggen, C. Herve, J. Ordaz-ortiz, V. Farkas et al., Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls, BMC Plant Biol, vol.8, p.60, 2008.

L. Mccartney, S. E. Marcus, and J. P. Knox, Monoclonal antibodies to plant cell wall xylans and arabinoxylans, J. Histochem. Cytochem, vol.53, pp.543-546, 2005.

L. Mccartney, A. P. Ormerod, M. J. Gidley, and J. P. Knox, Temporal and spatial regulation of pectic (1?4)-?-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties, Plant J, vol.22, pp.105-113, 2000.

L. Mccartney, C. G. Steele-king, E. Jordan, and J. P. Knox, Cell wall pectic (1?4)-?-d-galactan marks the acceleration of cell elongation in the Arabidopsis seedling root meristem, Plant J, vol.33, pp.447-454, 2003.

F. Micheli, Pectin methylesterases: cell wall enzymes with important roles in plant physiology, Trends Plant Sci, vol.6, pp.414-419, 2001.
DOI : 10.1016/s1360-1385(01)02045-3

D. Mohnen, Pectin structure and biosynthesis, Curr. Opin. Plant Biol, vol.11, pp.266-277, 2008.

J. C. Mortimer, N. Faria-blanc, X. L. Yu, T. Tryfona, M. Sorieul et al., An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14, Plant J, vol.83, pp.413-527, 2015.

E. Nguema-ona, M. Vicre-gibouin, M. Gotte, B. Plancot, P. Lerouge et al., Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function, Front. Plant Sci, vol.5, p.499, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01842174

E. A. Nothnagel, Proteoglycans and related components in plant cells, Int. Rev. Cytol, vol.174, pp.195-291, 1997.

A. Paire, P. Devaux, C. Lafitte, C. Dumas, and E. Matthys-rochon, Proteins produced by barley microspores and their derived androgenic structures promote in vitro zygotic maize embryo formation, Plant Cell Tissue Organ Cult, vol.73, pp.167-176, 2003.

V. Parra-vega, P. Corral-martínez, A. Rivas-sendra, and J. M. Seguí-simarro, Formation and excretion of autophagic plastids (plastolysomes) in Brassica napus embryogenic microspores, Front. Plant Sci, vol.6, p.94, 2015.

V. Parra-vega, P. Corral-martínez, A. Rivas-sendra, and J. M. Seguí-simarro, Induction of embryogenesis in Brassica napus microspores produces a callosic subintinal layer and abnormal cell walls with altered levels of callose and cellulose, Front. Plant Sci, vol.6, p.1018, 2015.

S. Pattathil, U. Avci, D. Baldwin, A. G. Swennes, J. A. Mcgill et al., A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies, Plant Physiol, vol.153, pp.514-525, 2010.

M. J. Peña, P. Ryden, M. Madson, A. C. Smith, and N. C. Carpita, The galactose residues of xyloglucan are essential to maintain mechanical strength of the primary cell walls in Arabidopsis during growth, Plant Physiol, vol.134, pp.443-451, 2004.

R. I. Pennell, L. Janniche, P. Kjellbom, G. N. Scofield, J. M. Peart et al., Developmental regulation of a plasma membrane arabinogalactan protein epitope in oilseed rape flowers, Plant Cell, vol.3, pp.1317-1326, 1991.

A. M. Pereira, L. G. Pereira, and S. Coimbra, Arabinogalactan proteins: rising attention from plant biologists, Plant Reprod, vol.28, pp.1-15, 2015.
DOI : 10.1007/s00497-015-0254-6

A. B. Pereira-netto, F. Pettolino, C. T. Cruz-silva, F. F. Simas, A. Bacic et al., Cashew-nut tree exudate gum: identification of an arabinogalactan-protein as a constituent of the gum and use on the stimulation of somatic embryogenesis, Plant Sci, vol.173, pp.468-477, 2007.

Y. Qin and J. Zhao, Localization of arabinogalactan-proteins in different stages of embryos and their role in cotyledon formation of Nicotiana tabacum L, Sex. Plant Reprod, vol.20, pp.213-224, 2007.

A. Rivas-sendra, A. Calabuig-serna, and J. M. Seguí-simarro, Dynamics of calcium during in vitro microspore embryogenesis and in vivo microspore development in Brassica napus and Solanum melongena, Front. Plant Sci, vol.8, p.1177, 2017.

A. Rivas-sendra, P. Corral-martínez, R. Porcel, C. Camacho-fernández, A. Calabuig-serna et al., Embryogenic competence of microspores is associated with their ability to form a callosic, osmoprotective subintinal layer, J. Exp. Bot, vol.70, pp.1267-1281, 2019.

H. V. Scheller and P. Ulvskov, Hemicelluloses. Ann. Rev. Plant Biol, vol.61, pp.263-289, 2010.

J. M. Seguí-simarro, High pressure freezing and freeze substitution of in vivo and in vitro cultured plant samples, Plant Microtechniques: Methods and Protocols, pp.117-134, 2015.

J. M. Seguí-simarro, P. Corral-martínez, V. Parra-vega, and B. González-garcía, Androgenesis in recalcitrant solanaceous crops, Plant Cell Rep, vol.30, pp.765-778, 2011.

J. M. Seguí-simarro and F. Nuez, Pathways to doubled haploidy: chromosome doubling during androgenesis, Cytogenet. Genome Res, vol.120, pp.358-369, 2008.

G. J. Seifert and K. Roberts, The biology of arabinogalactan proteins, Ann. Rev. Plant Biol, vol.58, pp.137-161, 2007.

H. Shu, L. Xu, Z. Li, J. Li, Z. Jin et al., Tobacco arabinogalactan protein NtEPc can promote banana, 2014.

, Appl. Biochem. Biotechnol, vol.174, pp.2818-2826

D. H. Simmonds and W. A. Keller, Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus, Planta, vol.208, pp.383-391, 1999.

P. Sitte, Untersuchungen zur submikroskopischen morphologie der pollen und sporoenmembranen, vol.8, pp.290-299, 1953.

M. T. Solis, E. Berenguer, M. C. Risueño, and P. S. Testillano, BnPME is progressively induced after microspore reprogramming to embryogenesis, correlating with pectin de-esterification and cell differentiation in Brassica napus, BMC Plant Biol, vol.16, p.176, 2016.

E. D. Supena, B. Winarto, T. Riksen, E. Dubas, A. Van-lammeren et al., Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning, J. Exp. Bot, vol.59, pp.803-814, 2008.

X. C. Tang, Y. Q. He, Y. Wang, and M. X. Sun, The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas, J. Exp. Bot, vol.57, pp.2639-2650, 2006.

W. G. Willats and J. P. Knox, A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of ?-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana, Plant J, vol.9, pp.919-925, 1996.

W. G. Willats, C. G. Steele-king, S. E. Marcus, and J. P. Knox, Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation, Plant J, vol.20, pp.619-628, 1999.

W. G. Willats, G. Limberg, H. C. Buchholt, G. Van-alebeek, J. Benen et al., Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation, Carbohydr. Res, vol.327, pp.39-41, 2000.

W. G. Willats, S. E. Marcus, and J. P. Knox, Generation of a monoclonal antibody specific to (1?5)-?-l-arabinan, Carbohydr. Res, vol.308, pp.149-152, 1998.

W. G. Willats, C. Orfila, G. Limberg, H. C. Buchholt, G. Van-alebeek et al., Modulation of the degree and pattern of methylesterification of pectic homogalacturonan in plant cell walls: implications for pectic methyl esterase action, matrix properties and cell adhesion, J. Biol. Chem, vol.276, pp.19404-19413, 2001.

M. A. Williams, Quantitative Methods in Biology (Practical Methods in Electron Microscopy, vol.6, 1977.

E. Wisniewska and A. Majewska-sawka, The differences in cell wall composition in leaves and regenerating protoplasts of Beta vulgaris and Nicotiana tabacum, Biol. Plant, vol.52, pp.634-641, 2008.

C. Xu, L. Zhao, X. Pan, and J. Samaj, Developmental localization and methylesterification of pectin epitopes during somatic embryogenesis of banana (Musa spp. AAA), PLoS One, vol.6, p.22992, 2011.

M. A. Zaki and H. G. Dickinson, Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development, Sex. Plant Reprod, vol.4, pp.48-55, 1991.