S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe et al., A Silicon Nanocrystals Based Memory, Appl. Phys. Lett, vol.68, pp.1377-1379, 1996.

D. V. Talapin, J. Lee, M. V. Kovalenko, and E. V. Shevchenko, Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications, Chem. Rev, vol.110, pp.389-458, 2010.

L. Khriachtchev, S. Ossicini, F. Iacona, and F. Gourbilleau, Silicon Nanoscale Materials: From Theoretical Simulations to Photonic Applications, Int. J. Photoenergy, p.872576, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00738420

M. A. Green, Third Generation Photovoltaics: Ultra-High Conversion Efficiency at Low Cost, Progr. Photovolt.: Res. Appl, vol.9, pp.123-135, 2001.

G. Conibeer, M. Green, D. Konig, I. Perez-wurfl, S. Huang et al., Silicon Quantum Dot Based Solar Cells: Addressing the Issues of Doping, Voltage and Current Transport, Progr. Photovolt.: Res. Appl, vol.19, pp.813-824, 2011.

N. O'farrell, A. Houlton, and B. R. Horrocks, Silicon Nanoparticles: Applications in Cell Biology and Medicine, Int. J. Nanomed, vol.1, p.451, 2006.

X. Cheng, S. B. Lowe, P. J. Reece, and J. J. Gooding, Colloidal Silicon Quantum Dots: from Preparation to the Modification of Self-Assembled Monolayers (SAMs) for BioApplications, Chem. Soc. Rev, vol.43, 2014.

M. Fujii, A. Mimura, S. Hayashi, Y. Yamamoto, and K. Murakami, Hyperfine Structure of the Electron Spin Resonance of Phosphorus-Doped Si Nanocrystals, Phys. Rev. Lett, p.206805, 2002.

M. Fujii, A. Mimura, S. Hayashi, and K. Yamamoto, Photoluminescence from Si Nanocrystals Dispersed in Phosphosilicate Glass Thin Films: Improvement of Photoluminescence Efficiency, Appl. Phys. Lett, vol.75, pp.184-186, 1999.

K. Sumida, K. Ninomiya, M. Fujii, K. Fujio, S. Hayashi et al., Electron Spin-Resonance Studies of Conduction Electrons in Phosphorus-Doped Silicon Nanocrystals, J. Appl. Phys, vol.101, issue.033504, 2007.

R. Khelifi, D. Mathiot, R. Gupta, D. Muller, M. Roussel et al., Efficient N-Type Doping of Si Nanocrystals Embedded in SiO 2 by Ion Beam Synthesis, Appl. Phys. Lett, vol.102, p.13116, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00799830

K. Sato, K. Niino, N. Fukata, K. Hirakuri, and Y. Yamauchi, The Synthesis and Structural Characterization of Boron-Doped Silicon-Nanocrystals with Enhanced Electroconductivity, Nanotechnology, vol.20, p.365207, 2009.

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, Control of Photoluminescence Properties of Si Nanocrystals by Simultaneously Doping n-and p-Type Impurities, Appl. Phys. Lett, vol.85, pp.1158-1160, 2004.

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, Photoluminescence from Impurity Codoped and Compensated Si Nanocrystals, Appl. Phys. Lett, vol.87, p.211919, 2005.

X. Pi and C. Delerue, Tight-Binding Calculations of the Optical Response of Optimally P-Doped Si Nanocrystals: A Model for Localized Surface Plasmon Resonance, Phys. Rev. Lett, p.177402, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00877649

S. Zhou, X. Pi, Z. Ni, Y. Ding, Y. Jiang et al., Comparative Study on the Localized Surface Plasmon Resonance of Boron-and Phosphorus-Doped Silicon Nanocrystals, ACS Nano, vol.9, pp.378-386, 2015.

K. Sakamoto, K. Nishi, F. Ichikawa, and S. Ushio, Segregation and Transport Coefficients of Impurities at the Si/SiO 2 Interface, J. Appl. Phys, pp.1553-1555, 1987.

T. Chan, M. L. Tiago, E. Kaxiras, and J. R. Chelikowsky, Size Limits on Doping Phosphorus into Silicon Nanocrystals, Nano Lett, vol.8, pp.596-600, 2008.

G. M. Dalpian, J. R. Chelikowsky, A. R. Stegner, R. N. Pereira, R. Lechner et al., Doping Efficiency in Freestanding Silicon Nanocrystals from the Gas Phase: Phosphorus Incorporation and Defect-Induced Compensation, Phys. Rev. Lett, p.165326, 2006.

D. J. Rowe, J. S. Jeong, K. A. Mkhoyan, and U. R. Kortshagen, Phosphorus-Doped Silicon Nanocrystals Exhibiting Mid-Infrared Localized Surface Plasmon Resonance, Nano Lett, vol.13, pp.1317-1322, 2013.

X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, Doping Efficiency, Dopant Location, and Oxidation of Si Nanocrystals, Appl. Phys. Lett, p.123102, 2008.

R. Lechner, A. R. Stegner, R. N. Pereira, R. Dietmueller, M. S. Brandt et al., Electronic Properties of Doped Silicon Nanocrystal Films, J. Appl. Phys, vol.104, issue.053701, 2008.

R. Guerra and S. Ossicini, Preferential Positioning of Dopants and Co-Dopants in Embedded and Freestanding Si Nanocrystals, J. Am. Chem. Soc, vol.136, pp.4404-4409, 2014.

N. Garcia-castello, S. Illera, J. D. Prades, S. Ossicini, A. Cirera et al., Energetics and Carrier Transport in Doped Si/SiO 2 Quantum Dots, Nanoscale, vol.7, pp.12564-12571, 2015.

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, Below Bulk-Band-Gap Photoluminescence at Room Temperature from Heavily P-and B-Doped Si Nanocrystals, J. Appl. Phys, vol.94, 1990.

M. Perego, G. Seguini, E. Arduca, J. Frascaroli, D. De-salvador et al., Thermodynamic Stability of High Phosphorus Concentration in Silicon Nanostructures, Nanoscale, vol.7, pp.14469-14475, 2015.

K. Nomoto, D. Hiller, S. Gutsch, A. V. Ceguerra, A. Breen et al., Atom Probe Tomography of Size-Controlled Phosphorus Doped Silicon Nanocrystals, Phys. Status Solidi RRL, vol.11, p.1600376, 2017.

H. Gnaser, S. Gutsch, M. Wahl, R. Schiller, M. Kopnarski et al., Phosphorus Doping of Si Nanocrystals Embedded in Silicon Oxynitride Determined by Atom Probe Tomography, J. Appl. Phys, vol.115, issue.034304, 2014.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, SRIM ? The Stopping and Range of Ions in Matter (2010), Nucl. Instrum. Methods Phys. Res., Sect. B, pp.268-1818, 2010.

G. B. Thompson, M. K. Miller, and H. L. Fraser, Some Aspects of Atom Probe Specimen Preparation and Analysis of Thin Film Materials, Ultramicroscopy, vol.100, pp.25-34, 2004.

W. Lefebvre-ulrikson, F. Vurpillot, and X. Sauvage, Atom Probe Tomography, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01954208

K. Thompson, J. H. Bunton, J. S. Moore, and K. S. Jones, Compositional Analysis of Si Nanostructures: SIMS?3D Tomographic Atom Probe Comparison, Semicond. Sci. Technol, vol.22, p.127, 2007.

S. Duguay, A. Colin, D. Mathiot, P. Morin, and D. Blavette, Atomic-Scale Redistribution of Dopants in Polycrystalline Silicon Layers, J. Appl. Phys, vol.108, issue.034911, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00526353

Y. Shimizu, H. Takamizawa, Y. Kawamura, M. Uematsu, T. Toyama et al., Atomic-scale Characterization of Germanium Isotopic Multilayers by Atom Probe Tomography, J. Appl. Phys, vol.113, 2013.

B. Garrido, M. Lo?ez, A. Pe?ez-rodriguez, C. García, P. Pellegrino et al., Optical and Electrical Properties of Si-Nanocrystals Ion Beam Synthesized in SiO 2, Nucl. Instrum. Methods Phys. Res., Sect. B, pp.213-221, 2004.

F. Vurpillot, A. Bostel, and D. Blavette, Trajectory Overlaps and Local Magnification in Three-Dimensional Atom Probe, Appl. Phys. Lett, vol.76, pp.3127-3129, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01928929

E. Talbot, R. Larde, F. Gourbilleau, C. Dufour, P. Pareige et al., Espiau de Lamaestre, R.; Bernas, H. Significance of Lognormal Nanocrystal Size Distributions, EPL Europhysics Lett, vol.87, issue.39, pp.5053-5059, 2004.

L. Nikolova, R. G. Saint-jacques, C. Dahmoune, and G. Ross,

, Si Nanoparticle Formation in SiO 2 by Si Ion Implantation: Effect of Energy and Fluence on Size Distribution and on SiO 2 Composition, Surf. Coat. Technol, 2009.

C. Bonafos, B. Colombeau, A. Altibelli, M. Carrada, G. B. Assayag et al., Kinetic Study of Group IV Nanoparticles Ion Beam Synthesized in SiO 2, Nucl. Instrum. Methods Phys. Res., Sect. B, vol.178, pp.17-24, 2001.

G. Fernandez, B. Lo?ez, M. García, C. Pe?ez-rodriguez, A. Morante et al., Influence of Average Size and Interface Passivation on the Spectral Emission of Si Nanocrystals Embedded in SiO 2, J. Appl. Phys, vol.91, pp.798-807, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02356107

M. Lo?ez, B. Garrido, C. Bonafos, A. Pe?ez-rodriguez, and J. R. Morante, Optical and Structural Characterization of Si Nanocrystals Ion Beam Synthesized in SiO 2 : Correlation Between the Surface Passivation and the Photoluminescence Emission, Solid-State Electron, vol.45, pp.1495-1504, 2001.

X. J. Hao, E. Cho, G. Scardera, E. Bellet-amalric, D. Bellet et al., Effects of Phosphorus Doping on Structural and Optical Properties of Silicon Nanocrystals in a SiO 2 Matrix, Thin Solid Films, vol.517, pp.5646-5652, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01067625

B. Gault, M. P. Moody, J. M. Cairney, and S. P. Ringere,

, Atom Probe Microscopy, 2012.

D. Vaumousse, A. Cerezo, and P. J. Warren, A Procedure for Quantification of Precipitate Microstructures from Three-Dimensional Atom Probe Data, Ultramicroscopy, vol.95, pp.215-221, 2003.

V. E. Boeisenko and S. G. Yudin, Steady-State Solubility of Substitutional Impurities in Silicon, Phys. Status Solidi, vol.101, pp.123-127, 1987.

K. Nomoto, H. Sugimoto, A. Breen, A. V. Ceguerra, T. Kanno et al., Atom Probe Tomography Analysis of Boron and/or Phosphorus Distribution in Doped Silicon Nanocrystals, J. Phys. Chem. C, vol.120, pp.17845-17852, 2016.

I. F. Crowe, N. Papachristodoulou, M. P. Halsall, N. P. Hylton, O. Hulko et al., Donor Ionization in Size Controlled Silicon Nanocrystals: The Transition from Defect Passivation to Free Electron Generation, J. Appl. Phys, vol.113, 2013.

S. Guha, S. B. Qadri, R. G. Musket, M. A. Wall, and T. Shimizu-iwayama, Characterization of Si Nanocrystals Grown by Annealing SiO 2 Films with Uniform Concentrations of Implanted Si, J. Appl. Phys, vol.88, pp.3954-3961, 2000.

P. Normand, E. Kapetanakis, P. Dimitrakis, D. Tsoukalas, K. Beltsios et al., Effect of Annealing Environment on the Memory Properties of Thin Oxides with Embedded Si Nanocrystals Obtained by Low-Energy Ion-Beam Synthesis, Appl. Phys. Lett, vol.83, pp.168-170, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01736112

A. Carvalho, S. O?berg, M. Barroso, M. J. Rayson, and P. Briddon,

P. Nanoparticles, The Effect of Oxidation. Phys. Status Solidi, vol.209, pp.1847-1850, 2012.