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SUMMARY
In previous studies, the auxiliary differential equation (ADE) method has been appliedcto
2-D seismic-wave propagation modelling in viscoelastic media. This method is based on he
separation of the wave propagation equations derived from the constitutive law de ning &
stress—strain relation. We make here a 3-D extension of a nite-difference (FD) schemeeto
solve a system of separated equations consisting in the stress—strain rheological reIauorg the
strain—velocity and the velocity—stress equations. The current 3-D FD scheme consistg in
the discretization of the second order formulation of a non-linear viscoelastic wave equa@on
with a time actualization of the velocity and displacement elds. Compared to the USL&I
memory variable formalism, the ADE method allows exible implementation of compleg:
expressions of the desired rheological model such as attenuation/viscoelastic models or gven
non-linear behaviours, with physical parameters that can be provided from dispersion analygsis.
The method can also be associated with optimized perfectly matched layers-based boun“élary
conditions that can be seen as additional attenuation (viscoelastic) terms. We present the ré&sultc
obtained for a non-linear viscoelastic model made of a Zener viscoelastic body assomated
with a non-linear quadratic strain term. Such non-linearity is relevant to de ne unconsolldalgd
granular model behaviour. Thanks to a simple model, but without loss of generality, Q/e
demonstrate the accuracy of the proposed numerical approach.

Key words: Elasticity and anelasticity; Nonlinear differential equations; Numerical mo
elling; Computational seismology; Seismic attenuation; Wave propagation.
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associated to grain-to-grain interactions has been well identi edz
(Tournat & Guse01Q Leglandetal.2012. Atalarger scale, those %
In seismology or near surface geophysics applications, imaging andnon-linearities are arising during the wave propagation and are con#
characterizing the Earth materials at different scales using seismicmonly studied in the context of site effect assessment, and relatégl
wave propagation can face attenuation and non-linear behaviourresonance phenomena or strong ground motion (de)ampli catiofs
because of the physical nature of the media under study and theresponses. In presence of non-linear site effects, viscous dampi
frequency content of the seismic sources. It can involve a wide va- or non-linear ground behaviours have also been studied (Bonilla
riety of physical, geometrical, kinematical and structural types of et al. 2005 2011, Régnieret al. 2013, 20142016k Sandikkaya
non-linearities as well as combination of these non-linearities types et al.2013 Akkar et al.2014. Actually, attenuation and non-linear 2
(Ostrovsky & Johnso2001; Delsanta2006. Attenuation and non- characteristics of a medium are frequency dependent and are thﬁs
linearity parametrizations in seismic modelling are not an easy task not easy to model. They are a consequence of complex mixturg
and are subject to many studies in the last two decades. Non-linearof superimposed distinct linear behaviour of each phase compo%
dynamics applied to geomaterials can be essentially due to theing the media. In practice, viscoelastic parameters are commonly
presence of soft features where damage is primarily observed asestimated from seismic data and dispersion analysis, using empir-
in granular media where the physical source of the non-linearities ical measurement of the quality fact@; whether considered as
guasi constant in the simpliest and common case over a speci ¢ fre-
guency range or as frequency-dependent in case of dispersive and

1 INTRODUCTION

C TG
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non-linear behaviour. Butin many geophysical applications, thisap- In 1-D, the interest of the geophysical community to non-
proximation is too restrictive because the medium under study can linearities is obvious as 1-D non-linear response validations and ver-
have strong non-linear and attenuation behaviour depending on thei cations using different numerical solutions have recently focused
seismic/acoustic signal amplitude and the frequency range. In thethe attention on canonical/benchmark casesg(Reret al. 2016a
case of unconsolidated media (granular media, sedimentary basins2018. Non-linear models in pure solid or poroelastic rheologies
soften/weak fault systems), the parametrization of the attenuation have been studied mainly by developing 1-D analytical solutions in
and non-linearities must be done for different frequency ranges. the frequency domain in the context of dispersive granular media
Several experiments done in this context have shown resonanceHokstad2004 Tournatet al. 2003 2004 Tournat & Guse\201Q
effects and slow dynamics phenomena, with the appearance of harLeglandetal.2012 orin the time domain for non-linear constitutive
monics in the frequency domain, that are evidences of attenuationlaws (Berjamiret al.2017) as well as 1-D nite differences (FD) in
and non-linearities dependent on frequency and strain amplitude. the time domain (Favriet al.2014) or recent 2-D lattice approaches

As an example of application to earthquake dynamics, soften and (Wallen & Boechler2017). In the studies of Tournat’s group, non-
weakened materials located at the seismic source, more particularlylinear effects have been exhibited via second harmonics generated
in the fault gouge area, can be at the origin of strong non-linearities by, for instance, non-linear Hertzian contact rheologies or shear to
and exhibit non-equilibrium and non-linear dynamics. Earthquake longitudinal mode conversions in granular packed media. 1-D an-
triggering can then be explained by fault failure caused by already alytical models are essentially formulated using power law-based
weakened/jammed fault systems that are at critical and weak statenon-linear elastic and acoustic rheologies for granular and uncon-
and excited by seismic-waves impinging the fault system with a suf- solidated dispersive media. Power law degrees equal or lower than 2
ciently high strain amplitude (Johnson & J2005. The seismic are generally used and quadratic Hertz—Mindlin stress—strain rela-
waves produced by a remote earthquake are exciting the fault andtions are introduced with one non-linear parameter homogeneous to
make the fault core modulus to decrease strongly, and the fault corethe shear or bulk modulus of granular media at the laboratory scale.
weakens further. However, the strains should reach a suf ciently In Favrieet al. (2014 a 1-D non-linear version of the Zener model
high threshold value to cause triggering phenomena. In such sit- is proposed. The generalized Zener viscoelastic model degenerates
uation, the stress—strain rheological relations characterizing thesecorrectly towards a pure non-linear elastic model when attenuation
phenomena are generally non-linear and can be expressed as Taylceffects vanish. Besides, the non-linear elastic stress—strain relations
expansions of complex rheology expressions or high polynomial under study are Lennard—Jones potential based functions or cubic
(at least cubic) functions of the strain close to the critical state. functions like the Landau’s model which are widely used in non-
Such non-linear rheologies can explain how some earthquakes cardestructive testing and slow dynamics modelling.

be triggered remotely by other huge earthquakes (Gomébiead High order polynomial stress—strain functions are commonly in-
2003 Gomberg & Johnsor2005 like the 7.3M,, 1992 Landers troduced in the frequency domain to homogenize solid—solid or
earthquake (Hilet al. 1993 Gomberget al. 2007 or 7.1M,, Hec- solid— uid interactions from pore to microscale. Ostrovsky & John-

tor Mine (Gomberget al. 2001) and 7.9M,, Denali earthquakes  son 001 made a review of different non-linear elastic behaviours
(Gomberget al. 2004. In the context of the 2011 Tohoku earth-  of earth materials and their impact in earth and material science
guake, non-linear viscoelastic wave propagation modelling has been(strong ground motion, non-destructive testing). They describe dif-
able to reproduce displacement ampli cations in the near surface. ferent sources of non-linearities in waves travelling through rocks
This has been enabled by adding non-linearities in both the elas-due for instance to geometry of cracks and solid matrices, grain
tic and attenuation parts of the stress tensor attenuation as wellshapes, uid content/saturation effects, the nature of soften/weak
as hysteretic effects (d’Avil@t al. 2013 in the ground response  materials (presence of cracks, grain—grain or grain— uid contacts,
due to strong seismic motion. As another example, several harmon-etc.), as well as hysteresis, relaxation or attenuation effects in these
ics appearing in the observed accelerations spectra related to thenaterials (slow dynamic effects). In many experiments, second and
Northridge earthquake (Depineet al. 2009 are evidences of non-  third harmonic spectrum amplitudes are evidence of non-linear be-
linearity effects generated by frequency modulation phenomena. At haviour and are varying according to the strain amplitude of the
intermediate scales as for geotechnical applications, handling thefundamental mode and with quadratic and cubic frequencies. In
interaction between the structure and the ground at the same timethis context the authors give a theoretical high order polynomial
is crucial, particularly because of the potentially signi cant degra- expression of the stress—strain relation in which non-linear coef -
dation of the shear modulus (Kram&996 Delépineet al. 2009. cients are appearing and can be modelled as combinations of the
It is another reason why using non-linear stress—strain relations iselastic moduli. The non-linear rheologies basically are derivations
interesting in seismic wave propagation modelling. of the second potential invariant and can be expressed by power
At local scales, non-linear extensions of standard elastodynamiclaws as quadratic or cubic stress—strain relations. The power laws
equations have been suggested to better describe wave propaggwith power of 3/2, 2 or 3) of the stress—strain relation and the co-
tion in complex porous media. For instance, the poroelastic wave ef cients involved in the different terms of these laws are highly
equations given in Biotl(956ab) have been extended to non-linear dependent on the shape of the pores or microcracks involved in
poroelastic wave equations (Biv973 in the particular context of the solid material (spherical, cylindrical, ellipsoidal, etc.; Nazarov
Hertz—Mindlin rheology. Such approach has been applied to wave & Sutin 1997 Nazarov20031; Ostrovsky & Johnso2001 Yu-Lin
processes with strong acoustic non-linearity in porous rubber- or et al. 2009. In this study, and without loss of generality, we will
sandstone-like media mainly in one dimension (Ostrovi§1) or carry out the numerical veri cation using a quadratic term in the
to porous media containing spherical or cylindrical pores by Don- strain—stress relationship.
skoyet al.(1997 and to unconsolidated granular media by Dazel & Concerning the numerical modelling of seismic wave propaga-
Tournat €010. This theoretical framework has been developed in tion in realistic media, general overviews (e.g. Carciethal.2002
the acoustic community in an effort to understand non-linear mea- Moczo et al. 2011, 2014 introduce most of the numerical meth-
sured responses when the source amplitude is increased for instanceds dedicated to mechanical dynamics that include different direct
in compact granular materials under gravity. methods such as pseudospectral, continuous (SEM)/discontinous
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(DG) Galerkin nite-element methods, and FD techniques in fre- matched layer (PML) absorbing boundary conditions (Maetial.
quency or in time domains. 2-D or 3-D FD time domain (FDTD) 201Q Zhang & Sher201Q Moczoetal.2014). The main speci city,
approaches are commonly applied to discretize and solve the waveand probably the best asset of this method, is that it allows a clear
equations for elastic, viscoelastic, anisotropic and numerous disper-separation to be established between the set of propagation equa-
sive media (Levandet988 Robertssoret al. 1994 Graves1996 tions: the strain—velocity equation, the velocity—stress equation, and
1999 Bohlen 2002 Saenger & Bohler2004). These techniques  the rheological model de ned by the stress—strain relation. Then by
have been generally applied using cartesian and staggered mesh dizonviniently using the differentiation theorem for the Fourier trans-
cretizations. But more recently, more sophisticated FD techniques form, an inverse Fourier transformation from the frequency to the,
using high-order time-stepping and deformed meshes with non- time domain can be performed for each term of the stress-strata
staggered and collocated mesh point discretization (Zhang & Shenrelation. As for all FDTD techniques the ADE approach rigorouslyo
201Q Zhanget al. 2012 Sunet al. 2018 have been introduced as  enforces the vector eld boundary conditions at interfaces of dlf-
well as non-deformed meshes using 2-D immersed methods (Lom-ferent media associated to a small fraction of the impinging puls@-

bardet al. 2008 Chiavassa & Lombar@013 Blancet al. 20149 width : consequently it is an almost completely general approacg
with speci ¢ operators applied at physical interfaces and at the free that permits the modelling of a broad variety of dispersive and even
surface (with mirror (Zhang & CheB006 Zhanget al. 2012 or non-linear materials. As a consequence, this method has particg-
non-centred schemes (Lombaathl. 2008). Also, recent develop- larly the advantage of allowing the exible implementation of any 5
ments in including Zener body attenuation models have been madedispersion law based on non-const@nguality factor law and on
in the SEM (Blancet al. 2016 for a constant quality factor. the complex expression of the desired viscoelastic modulus. More

Usually the linear viscoelastic behaviour is modelled by a mem- generally, by using the ADE approach, the stress—strain relations a?e
ory variable formalism in order to ease the numerical implemen- not limited to expressions only based on linear dispersion laws o@
tation of the time convolution operator associated with the stress— quasi-constant quality factors and can also incorporate non- Ilnear

strainrelation (Moczetal.1997 Xu & McMechan1998 Hestholm rheological laws to take into account hysteretic, friction and dams\
1999 Olsenet al.200Q Day 1998 Day & Bradley2001 Wanget al. aging effects for instance. =
2002, Bohlen2002 Saenger & Bohle2004). The excessive mem- In this study, we will explain how the introduction of a strain— 5

ory storage requirements associated to this material-independenstress relation, involving non-linearity and attenuation, can b(%
memory variable approach needed to be numerically optimized andef ciently solved numerically in 3-D. We will present the nu-
reduced by using coarse sampling approach for instance (Kristek & merical implementation and the numerical and physical veri ca-
Moczo2003. The aim of this study is to avoid the use of memory tion of a simple Zener model associated with a quadratic nonO
variables by extending an auxiliary differential equation (ADE) ap- linear term by introducing an ADE-FDTD approach. Our 3-D
proach in three dimensions for a simple (quadratic term) but repre- scheme includes a second order time-stepping and a fourth
sentative non-linear behaviour. To our knowledge, for the rsttime der staggered-grid spatial discretization to limit the numerical dis
in 3-D seismic wave propagation modelling, the ADE formalism persion and convolutional (Komatitsch & Mart2007 Martin &

is used for implementing a non-linear and viscoelastic constitutive Komatitsch2009 Martin et al. 2008 2010 Bodetet al. 2014
law. Such a formulation has been used with success for a linear vis-or non-convolutional (Martiret al. 2010 perfectly matched layer
coelastic case by Dhemaietlal. (2011) in an explicit FDTD-PML boundary conditions designed for elastic, viscoelastic or poroelas;
scheme using a second-order spatial and time stepping accuracy antdc seismic-wave modelling. We incorporate simultaneously thes%
a classic staggered grid for a single Zener body viscoelastic model.conditions along with viscoelastic properties inside the stress—strai
The authors were inspired by an ADE electromagnetic application formulations. Itis worth noting that, in this study, non-convolutional i z

Isqe-

%9

T89917'ES/€917/

in ground penetrating radar by Rejibaal. (2003 and were moti- PML using ADE formalism is implemented (Martet al. 2010 for 5
vated by extending the ADE approach to the seismic wave equationsmore ef ciency with less memory storage and subsequently faste?
for a desired viscoelastic model. computations. g

Attenuation is commonly described mathematically by different  In the following, we rst give the governing equations of the non-
viscoelastic models de ned as a combination of relaxation mech- linear constitutive law used. For sake of simplicity and without Iossa
anisms (series and parallel settings of springs and dashpots) as irof generality for linear or non-linear stress—strain relations, we cong
Moczo & Kristek 2005 that allow different frequency dependent sider a homogeneous medium and an associated rheology de n@j
formulations of the attenuation. Maxwell, Kelvin—\Voigt or Zener by a single Zener body model for the viscoelastic part of the stress=
body models are generally used, and the reader can be referred tetrain relation and an additional non-linear (quadratic) stress—stra@
Semblat & Pecker009 for more details about those models. The relation term in one direction of space. The 3-D medium can thus’
Zener body model is used here and provides a simple stress—strairbe considered here as anisotropic in the direction of source polaﬁ
formulation in the frequency domain and is de ned as a Kelvin— ization. We then show a set of 3-D numerical experiments to check
\oigt cell and a spring in series. for the accuracy and validity of the present numerical ADE-FDTD_.

The use of ADE formalism in 3-D-FDTD, for non-linear and  scheme, particularly concerning viscoelastic and non-linearity ef
dispersive material, is widely used for electromagnetic waves prop- fects. The numerical experiments are designed for three diﬁere@
agation and particularly for photonics and active plasmonics appli- rheologies of the medium (elastic, viscoelastic and non-linear visg
cations where Lorentz—Drude, Raman and Kerr non-linear terms coelastic) to be compared if excited with the same source signal;
are incorporated (Ta ove & Hagne&§05 Greene & Ta ove2006 We concentrate our numerical (i.e. spectral) analysis and veri cag
Ta ove et al. 2013. This approach is very uncommon (almost in- tion process on the isotropic non-linear viscoelastic rheology. The
existant) in seismic wave propagation despite its great potential, study of non-linear aspects is performed thanks to classical spectral
except in rare modelling studies in 1-D dispersive and attenuated and dispersion analysis tools. Different amplitude factors and fre-
uid/acoustic biophysical media (Jiemezet al. 2016 or non- guency contents of the source excitation are tested to clearly exhibit
destructive testing (Lombard & Piral2011). The only mention the non-linear response of the medium. The in uence of the source
of ADE formalism concerns the implementation of ADE-perfectly type on the non-linear effects is also discussed.



456 R. Martinet al.

2 GOVERNING EQUATIONS OF THE
LINEAR AND NONLINEAR
VISCOELASTIC EQUATIONS

In this study, we aim at directly introducing linear or nonlinear
viscoelastic rheologies, but with a true constitutive law relating
the strain deformations to the stresses by writing, in the frequency
domain:

j
bicj |,
i=L,N j=1,M

@)

where L and N* are, respectively, the linear and non-linear parts
of the global effective tensor. a are complex coef cients de-
pending on the physical and geometrical properties of the linear
viscoelastic part of the effective tensor. Subsciritfers to one of

the partial tensors; andj is thej-th polynomial degree of each
term of the non-linear part of eadtth partial tensor ; . by andc;

are the polynomial coef cients of the non-linear part of the effective
tensor. For simplicity, we will considéM = 1 in all casesM = 1in

the linear case anldl = 2 in the non-linear case, the general effec-
tive tensor calculation being possibly treated in the same way. The
strong form of the linear viscoelastic wave propagation equation in
the time domain is given by:

@)

whereU = (u)i= 1,0 (D being the space dimension) is the solid
displacement vector and is the viscoelastic stress tensor. To in-
troduce a viscoelastic rheology, the stress tensor is de ned by a
convolution product of the modulus tensor and the strain (Carcione
2007) as follows:

ij = (C )i (3)
_ 1 Ui Ui
=5 7] + 7: ) (4)

whereC is the modulus tensor of the viscoelastic solid matrix. In
the frequency domain, by applying a Fourier Transform, we can
write:

NEFC )= €= w2

1 oG o

P — —_— + 5
Y 2 Xj X ' ( )

where indiced andj can be 1, 2 or 3 here in 3-D, and with the

Einstein convention of implicit summation over a repeated index.
is the strain tensor of the viscoelastic solid matrix, ands

the density of the solid materigh = p(“' 21) is a complex

i o
shear modulus and = 1Lii 00 ) is a complex Lara coef cient
parameter of the solid matrix. We can notice thatand are
non-linear functions of the frequency.

After some algebraic manipulations, we can also compare the
numerical and the analytical compressible and shear moduli of the
viscoelastic medium, the expressions of the analytical moduli being
givenbyMp= + 2u andMs= p and the expressions of the

numerical moduli by

5t 30+ St 2
w20+ ot W)

Mp:

(6)

z Q)

yz
These expressions will allow us in the next section to validate the
numerical solutions at least for the linear viscoelastic case.

For simplicity, but without loss of generality, we add non-linear
behaviour to the stress—strain law and consider that the non-linearity
is only present in one direction of space (the longitudatitection
for instance). We make the assumption that the uid part is missing
in the non-linear (quadratic) poroelastic formulation of Donskoy
et al. (1997 or Dazel & Tournat 2010 and that the elastic part
is replaced by the Zener linear viscoelastic strain—stress relation
of Dhemaiedet al. (2011). The stress—strain (") = M( )"( )
relation in the frequency domain is given by:

~_ (ps* psi )+ HTM
1+ i

Ms:

®)

whereH is a non-linear tensom is an exponent that generally
depends on the nature of the non-linear rheology (due to ellipti-
cal/spherical cracks, inclusions or cavities distributions, .g)is

the stress relaxation timep s andNPYS are, respectively, the unre-
laxed (real) and relaxed (imaginary) parts of the legparameters.
Once these rheological laws are given in the frequency domain,
they are expressed in the time domain after applying the inverse
Fourier transform to each term of the stress—strain relation, and
consequently the stress—strain equation yields:

— ~ m
ot = ps * pst +HT,

9)

In a less compact form, the system of equations is developed as:

|j+0t: ijkk+ZUij+~ijtkk+2ﬁtij+HijijiT
L
4 2 X;j Xi
1 Vi Vi
sl v v 10
img ety (10

wherey; (i = 1, 3 in 3-D) are the solid velocity vector components.
As stated earlier, we assume thgg = Hyy = Hyy = Hy, = Hy, = 0
andH,,= D where the paramet@r can take zero or non-zero value.
In the case ob = 0 we retrieve the linear isotropic viscoelastic case
and forD = 0 we retrieve a non-linear anisotropic viscoelastic stress
tensor in the frequency domain with a non-linear anisotropy in one
direction of space. A powen= 2 is chosen now in this study for the
additional non-linear term without loss of generality. The relaxed
Lamé coef cients” andi are expressed as follows:

- 0

A= oMy (11)
with
1, .
= - —0( +2u)S2u
= = (12)
0

where , and s are theP and Swave relaxation times. Eq10)

is the required ADE de ning the stress tensoft) in the time
domain. It has been easily implemented in an FDTD code using a
semi-implicit scheme centred at time step 1 wherein yet-to-be
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Figure 1. Simpli ed illustration of our numerical setup (a). A dominant frequency of 1500 Hz for a Ricker wavelet point-force source has been impleme?lted
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computed velocity and displacement elds at time 1/2 are used term 2 involved in the strain—stress law and applied in the source
to create an update formula for a eld known at time-step n; almost polarization directiorz only (here only the componetid,, = D
exactly as detailed in Dhemaiedal. (2011) for the 2-D case. This is non-zero in thed non-linear tensor, and,, is denoted by to
ADE-FDTD integration scheme is detailed in the next section. alleviate notations). To avoid possible high order spurious modes,
we denote by j k-2 = 0.5( 5+ ) the average strain com-
puted at a cell face discontinuity where two strain deformation

3 NUMERICAL EXPERIMENT states L (left) and R (right) are de ned. We assume ttﬁg[(ﬂ,z =
Y L if 7 > 0, and 2, =7 R
LIk+ U2 ke 12 Lkt 12 ’ ijk+ 12 LIkt U2 ) ke 12
3.1 Setup if Tijey2<0. Here we choose |y, = ijk and
R -
A second order displacement formulation is chosen and a fourth or- i.jkrv2 = ijk+1:

der staggered-grid FD spatial discretization in space (GrE98§ _A simpli ed illustration of our numerlcgl setu_p is pre_sented on
Fig. 1(a). In all cases, we perform our simulations using a domi-

as well as a second order time-stepping algorithm are used to solve ) -
the whole set of equations. The ADE system of equations is dis- nant frequency of 1500 Hz for a Ricker wavelet point-force source,

cretized in time at the second order using a semi-implicit scheme implemented in the longitudinab) direction (see Figda and b).

We have sampled the spatial and time steps in our simulations in

as follows: X
. order to have access to a wide range of wavelengths compared to
vitYE= w2 (g e R) the source signal. The time step is thus chosentas 0.4 s and
) yTY2 &\ nSY2 the spatial stepisx= y= z= 0.0014 m. The grid mesh is
T A /At S o i discretized by 1800 points along the longitudiaaixis and, 200
va 12 t points over the traversal direction and 200 points over the depth
vz _ 1 " + uj y. A source is located a = 0.2324 m from the left boundary of
T2 Xj Xi the thin slice and receivers are located at all discretization points
e 12 12 along the longitudinal length and in the middle of the medium (the
. if}+1/2 = 1 v + Vi length of the models along the longitudinal axis 2.52 m). We
2 Xj Xi checked the accuracy of the numerical method for pure viscoelastic

and non-linear viscoelastic cases for two different sources (a Ricker

and a Gaussian-modulated sine pulse source) that will be used in

=+ ij ot E:uz + 2 ¢ ir}”/z the next sections of this study. For sake of clarity, the reader is

+ Hy 2 |2, (13) referred to the appendix section for more details. In that section
j "

P- and Swave velocities are very well reproduced for both types
whereu; andv; (i = 1, 3 in 3-D) are the, respectively the solid  of sources in the viscoelastic case. Furthermore, in the non-linear
displacement and velocity vector components. viscoelastic case, the,, component of the stress tensor (computed

We implement the following FD operator of each gradient of a using the non-centred discretization of the non-liner term at the cell
variablef in a given directiorx, similar operators being applied in  faces described before) is well reproduced in the frequency domain.
the other two directiong andz

f Sfierjk+ 27fi ik S 27fisyjk + fiszjk
— li+v2jk .
X 24

Optimized convolution (Komatitsch & Martir007 or non-
convolution (Martinet al. 2010 frequency shift perfectly matched
layers absorbing boundary conditions complete the implementation
to ef ciently truncate the computational domain and mimic this way
an in nite medium. The advantage of this non-convolution PML is  Now, we focus our attention to the physical aspects of our study. To
that we have more exibility to implement different time-stepping illustrate the effect of the current non-linear regime (F2g), we
schemes when compared to CPML formulation. rst present the seismograms obtained for a reference elastic and
For the sake of clarity, we use here, respectively, second andhomogeneous medium characterized by a pressure-wave velocity
fourth order discretization operators in time and space to inte- (V,) of 245.63 msl, a shear-wave velocityvg) of 122.65 m§?!
grate the equations as well as CPML boundary conditions. Be- and a bulk density = 1610kgnt3, these values corresponding
sides, without loss of generality, higher order operators can also beto experimental observations in unconsolidated granular media re-
used to solve the elastodynamic equations and add non-convolutioncently studied in Bodegt al. (2014). A second simulation consid-
PML conditions as in Martiret al. (2010, where we introduced ers the viscoelastic case, based on similar homogeneous properties
eighth order Holberg space operators and fourth-order Runge—Kuttabut with stress and strain relaxation times, respectively, sep to
(RK4) time-stepping integration. The discretization could also be =0.28 msand, = <=0.3 ms. A third simulation nally presents
replaced by more sophisticated space discretizations in space andhe non-linear case. The parameter described earlier is set to
time on deformed meshes and collocated grids as those mentionned x 10 x Vg to highlight non-linear regime effects.
in the introduction. But here, the fourth-order staggered grid nu-  The seismograms of particle velocity recorded inzfuérection
merical discretization and second-order time-stepping we chooseare given as a function of offset (source-recording point distance
are enough for the purpose of this study because we just want toalong the longitudinat-axis) and time (presented on F&a). They
exhibit attenuation and non-linear effects in 3-D with reasonable consistin 1634 traces of 50 000 amplitude samples. Except for vis-
accuracy. In addition, it should be emphasized that, to regularize ible variations in amplitude of particle velocity between the elastic
possible sharp shocks related to the non-linearity introduced, we case and the two viscoelastic cases, distance—time data systemati-
use non-centred fourth-order spatial discretization of the quadratic cally depict two distinct events: B- and aSwave train P andS

Mol t+ 05)

Mol t805)+ P+ 2u Y2

(14)

3.2 Numerical veribcation of the nonlinear viscoelastic
regime

3.2.1 Classical dispersion analysis using a wideband pulse
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Figure 3. Dispersion curves: maxima picked from frequency-phase velocity transforms of seismograms f@rmnats waves compared to corresponding ;F;
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on Fig. 2a) of similar apparent velocities for each rheology. How- but could not be exactly and accurately associated to a speci c
ever, the effect of viscoelasticity is clearly apparent on correspond- harmonic: the fundamental mode is located around a frequency of
ing spectrograms (Fi2b) which present important differences in 1900 Hz, and the third harmonic is roughly 5700 Hz, but the second
terms of amplitude and shape. The non-linear case typically presentsharmonic that should be located around a frequency of 3800 Hz does
frequency-up conversions with at least two ampli cations at higher not appear clearly. In addition, the wave eld recorded for each case
frequencies that are linked to the source peak frequen&yktiz) has been transformed into the frequency-phase velocity domain (by
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Figure 5. Amplitude spectrum of particle velocity (raw amplitude) recorded along the simulated models for different source excitation anfplitades.
muted.

a slant-stack in common shot gathers after correction for geometri- on top of Fig.6. They correspond to the signals computed at each
cal spreading) to quantify the phase velocities ofRhandS-wave different source excitation amplitude (from 0.25 tox 2.25 the
events cited above. The resulting dispersion curves, presented oramplitude of the reference run presented in Section 3.2.1; see colour-
Fig. 3 clearly show that the simulations perfectly describe imple- scale on Figlb). The corresponding spectra are presented on top
mented phase velocities: constant velocity in the elastic case and, byof Fig. 7, on which the main frequency peal and two other
de nition, dispersive relationship between velocity and frequency peaksA andA clearly appear (maxima are picked and shown as
in the viscoelastic case. black plus signs). These maxima are not in ratio 2 in frequency, but
seem to correspond to the third and fth harmonics, respectively,
which poses the question of their correspondence with harmonic
3.2.2 P-wave extraction using advanced preprocessing tools and Wave components. These traces are then normalized to the source
pulse modulation maximum amplitude in both time and frequency domains (bottom
lines of Figs6 and 7). When the normalization in time remains
We will consider the Ricker source described earlierasareferenceinequiva|em (every normalized traces can be considered superim-
term of amplitude. More runs involving exactly the same parameters posed on Fig7), the ratio presented in frequency clearly shows
as the latter non-linear viscoelastic model are presented, but with opposite behaviour as a function of source amplitude depending on

different amplitudes of the source (from 0.25to 2.25x the the considered peak. The black arrows, given on top of Fig an
excitation amplitude of the rst case, as shown on Hig). We will example, depict a non-monotonous behaviour of these harmonics
focus on the longitudinat direction, and consequently on tke as a function of source amplitude.

wave train only. The seismograms, presented on4idptained for We picked the amplitude of each peak and presented, or8Fig.
each source excitation amplitude, are thus muted as soenzael their ratios between the rst peak and the other peaks. These spectral

Swave trains can be separated. Each corresponding spectrogramatios were computed at the 4 different offsets corresponding to
on Fig.5 clearly depicts the harmonics observed earlier resulting o to ve times the dominant wavelength of the source (
from implemented non-linearities. 0.18 m) described above. The colours on Fegdepend on these

In order to clearly identify the non-linear effects, we extracted offsets and ratio are given of course for every source excitation
traces from each seismogram and spectrogram along the line at fouramplitudes (fromx 0.25 tox 2.25 the amplitude of the reference

different offsets, corresponding to two to ve times the dominant 1y presented in Section 3.2.1). At far- eld offsets, the ratio shows
wavelength of the source§  0.18 m). These traces are presented
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Figure 6. Traces recorded at four different offsets given as a function of the source-signal dominant wavelpngth.18 m) presented for each different
source excitation amplitude (from 0.25 tox 2.25; see colour-scale on Figh) with corresponding normalization to the amplitude at the source (A0). A
the amplitude of the trace at corresponding offset.
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strong variations with source amplitude and tends to remain stable six successive modes are clearly de ned in terms of peak frequen
at near- eld offsets. As stated earlier, picked maxima are not in location and amplitude. In this case of a Gaussian-modulated sire
ratio 2 in frequency which suggests overlap (interferences) betweenpulse, we can observe that the amplitude maxihéave similar
adjacent harmonics due to the wide frequency band of the Ricker non-linear effects (Figé2a and b) as th&l maxima in the Ricker
source and dispersion effects (a 1900 Hz fundamental frequency andvavelet source case (Fidda and b), and are much better indi-
a 5700 Hz third harmonic frequency). This observation illustrates vidualized on a wider frequency range. However, the spectral ratlg
as well the fact that non-linear effects accumulate over the distanceamplitudesA3/A1% have almost the same exponentially i mcreasmg
to the source, as these ratios increase at xed amplitiband patterns a#\ /A13 in the Ricker source case at almost similar off-
increasing distance. sets. In Fig.11(b), the second and third peaksandA are well
Consequently, to exhibit and individualize the different peaks separated while in Figl2(b) the maximaA2 and A3 are almost
more precisely, we introduce a narrow frequency band pulse sourcesuperimposed. The ratios of second and third harmonic amplitud
implemented as a Gaussian-modulated sine pulse with a dominantA2 andA3 over rst peaksAl, A1? and A1® present a more pro-
frequency of 1500 Hz. Fid®d compares normalized traces obtained nounced non-linear behaviour (Figgb—d) at offsets closer to the
from both the Ricker pulse (with amplitude of the source 2he source location when compared to the Ricker wavelet source cas(e.
excitation amplitude of the rst case (3.2.1)) and the Gaussian- More particularly, the ratios of second and third harmonic ampll-o
modulated sine pulse (Fi@0). From these seismograms (Fit&a tudesA2 andA3 overA1? andA1® show an increasing trend with 2
and b), we computed amplitude (Fi6c and d) andSk spectra offset (Figsl2c and). Small oscillations of those spectral ratios for;
(Figs 10e and f). The spectra clearly show that, within the same the gaussian-modulated sine pulse appear at small offsets probakly
propagation ranges and domains, the source modulation allowsdue to near eld effects, and seem to be mainly associated wit@
the identi cation of all consecutive harmonics (frequency-up con- amplitude oscillations oAl. Finally, in both non-linear cases, we N
versions in ratio 2 in frequency), corresponding to the expected can see that the spectral ratios are increasing (Flgsand f,12e &
non-linear effect. In addition, for example in the case of strong and f) and are reaching similar high values for valuegbfclose
non-linearities arising from a high amplitude of the source, the su- to zero at very far offsets to the source while they are converging
perimposition of all spectra corresponding to all successive offsets asymptotically to a constant value for high valueg\tfclose to the
along the analysed direction (Figl) highlights the overlapping source.
process associated with wideband pulse. In the present case, all rst
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Figure 7. Amplitude spectra and spectral ratio of traces recorded at four different offsets given as a function of the source-signal dominant wavelen
( p 0.18m) presented for each different source excitation amplitude (frd25 tox 2.25; see colour-scale on Fith). A is the amplitude of the trace at
corresponding offset, AO the amplitude at source AhdA andA are the amplitudes of the three rst maxima detected in the spectrum at each offset. The
black arrows are just given on top as an example showing their non-monotonous behaviour as a function of source amplitude.

(@ « 109
N I |
< 4 '—iﬁz—tf _|_-|-4 - 31 l
= | + P ZKP |
< ol SR R
0 1 2 3 4 5
(b) A1 x 1071
20
15"*10 . . | |
“_10 K % 5k, .
<\E 5+ %HQ 4)\‘P J
p 3;\‘P 2\
<ol R kK k. % % %k
0 1 2 3 4 5

A1 x 1071

Figure 8. Spectral ratio computed at different offsets for every Ricker wavelet source excitation amplitudes (the four different offsets, correspanding to t
ve times the dominant wavelength of the source( 0.18 m), are given with colours depending offset from bluex)2o green (5p)).

6T0Z Arenuer T UO 1SN alpuewIoN-asseg use) ap alsianun Aq I8991719/8917/1/9Iz/m@sqe—apguenlﬁ/woo'dnoogujape:m//:sduq woJy papeojumod



Nonlinear viscoelastic modelling using ADE 463

a
( ) —— Gaussian-modulated sinusoidal pulse (implemented) (b) —— Gaussian-modulated sinusoidal pulse
_— 1" 1 I I ded ;
—— Ricker pulse (implemented) (recorded) Ricker pulse
1 /I (recorded)
1 1
2 T T
?( 0 kbes I\VAVI\ A ,\VAVI\ 0.8
‘A 7 0.5 ]
VY ) ) .
2 : - 0.6 2
0 0.005 0.01 0015 o n” ”n,\ iy )
Time (s) o MR- © 2
< V < o4 8
g
-0.5
] 0.2 =3
o
o
o
0 S . -1 . 0 \_/\/\j\_.— 8
0 2000 4000 6000 8000 10000 0 0.01 0 5000 10000 &
Frequency (Hz) Time (s) Frequency (Hz) %
o
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3.3 Discussion on non-linear regimes using = Vp, T= Vps/ . Then the previous equations can be simpli ed 5
non-dimensional analysis as: g
()

In order to characterize better the regime (linear, weakly or strongly VU, 2Vp2 . - DU2L, )
. . i i o = o TRagiv(") + —22 div( 2) 7
non-linear) under which the numerical experiments studied in the 2 U, 2y, L4 =
previous section are performed, we consider below the simplest non- R u2L. 4 ~ Q
linear model and its associated non-dimensional numbers. The sim- = div( )+ a div( 2) N
- . : UV o

ulated problem corresponds to an oscillating point (dipolar) source : =
along thez-direction in a homogeneous elastic solid medium, show- = div(")+ DUoL, div( Az) g
ing linear viscoelastic isotropy. The non-linearity, as described ear- Vit oi
lier, is anisotropic (only acting on the,, and ,, relation) and oA oA 5
; _li ion is i = div( )+ —div( ?) o
quadratic. The non-linear propagation is inspected alongzthe Lo &
direction. To our knowledge, there is no analytical solution in this - div(Y+ div( 2 16 -
con guration for the non-linear process of harmonic generation. We = div(") v( 9, (16) E
3

therefore recall here the usual parameters for plane wave propagaynere we can consider the non-dimensional Goldberg number £

tion of longitudinal waves in a homogeneous medium with quadratic that measures the ratio between the linear attenuation effects aid
non-linearity. First, we de ne linear and non-linear time or length  the non-linear elastic effects. can be expressed as o)
scales denoted by,, i, La, Lni- La and 4 correspond to the char- &
acteristic length and timescales over which the initial amplitude of _ _a _ i 17) &
a wave is divided bye due to dissipation effects, ard; and nl Lo’ 3
are the characteristic non-linear Iengtlh and timescales over WhiChwhere the different lengths and timescales can be formulated as: g
non-linear effects develop. If the receivers are located close to the @
source then non-linearities cannot accumulate enough. Iftheyareat vl '
a distance to the source lower tHajthen the non-linear effects can T2 DU,

be observed but are still in a regime of accumulation. If it is equal Lo

to Ly then the non-linearities are fully accumulated and developped nl =

z
]
3
5
=
. 1 developp Vi e
andL, denotes the shock front distance. If we non-dimensionalize VR @
the non-linear equations, they can be expressed as: = ZDJ °
o S5
. + Tpol o La” - = I
2 UOU — 1/Lad|v(( P,S P,S! ) of La + Dugng 2) a nl ;
1+ o La= Vp/ 3
(p5+ psl )U/l_a DU2 _ a 2
us=-= div(")+ ——° _div( 2 La= Lo—. (1) <
2 Ug(l+ ol ) V(') 20,13 €9 T N
15) . : ©
( Since we haveD = D V] with D = 5.10° we can compute
whereU = U x Ug, X = X X La, t=1t/ , = x Uy/L, with
=0.5( U+ UDT.Ifwe denote the modulus of the viscoelastic D UoL, 2
seismic velocity byV p, = (IMel)¥2 \whereMp is the complex = Vi
a

modulus associated to tliewave, then the (visco-)elastic length

) S V,
scale can be considered homogeneous to the seismic wavelgngth °

Vps'

(19)
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Figure 10. Seismograms (a, b), spectrograms (c, d) &dspectra (e, f) obtained for the Ricker pulse source (a, ¢, €) and the Gaussian-modulated sine pulse2
source (b, d, f) are compared to show the impact of two different types of pulse source on the seismograms and the spectra. The source amplitude facé;r is
equal to 2 in both pulse source cases.

In our simulations of the previous Section 3.2.2 and for a = 7.77x 105 measured close to the source we have a ratio value
source amplitude factor of 2.25, the particle velocity and the dis- around 3.88. When compared to plane waves, in the 3-D simulated

placement at the source akg = 2.1 x 10°" m.e* and U, problem it is expected that, is reduced due to geometrical attenu-

= 1.4 x 10°* m. The values of these time and length scales ation, and_, is increased due to decreasing wave amplitude along
are 0.3 ms (maximum viscoelastic relaxation time), distance. As a result, the Goldberg number of our problem (the non-
0.07714 msk, 0.18 m (maximum viscoelastic wavelengthy, linear over linear ratio) is necessarily slighlty smaller than 4, and

6T0Z Arenuer T UO Jasn aIp

0.04628 m. The non-dimensional Goldberg number is approxi- exhibits clearly the non-linear propagation regime. The non-linear
mately equal to a value of 4. Furthermore, the non-linear effects  effects on signal amplitudes depicted in Figsand12 correspond
can be measured also in terms of the rate of perturbation of theto an amplitude source equal to 2.25 and to a very similar Goldberg
linear stress tensor by the non-linear terms in Bawave direc- non-linear number.
tion: Z"Z‘SI o E zz(1E+ DE ) = p/E ,, whereE = V2. Here If the wave problem would be for plane waves, the con gura-
ZZ tion of viscoelastic parameters and the non-linear parameter would

D/E = D = 5x 10%. Therefore if we take the initial strain.
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Figure 12. Offset presentation (a) of spectrograms of Higfor the Gaussian-modulated sine pulse source. In semi-logarithmic scale : (b) Representation of
the amplitudes of the three rst maxin#sl, A2 andA3 detected in the spectrum at all offsets in the simulation. (c) and (d) represent spectral ratio between the
three rst maxima computed at all offsets in (c) and (d), and versus the rst peak Al at all offsets in (e) and (f).
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give a Goldberg number of 4. This indicates that non-linear ef-  kept simply associated with a viscoelastic model. It does not show
fects would appear in the direction of propagation of the viscoelastic any sign of numerical instability, and thus illustrates also the ca-
plane wave. However, in our speci ¢ problem, the three-dimensional pabilities of this numerical approach to appraise a whole range
character of the oscillating point source introduces additional ef- of issues associated to the role of anisotropy associated with both
fects. First, a higher attenuation with distance from the source is dispersion and non-linear behaviour (Saenger & BoRI@od). Fi-
expected due to geometric losses. This leads to a localization of thenally, we have de ned non-linear non-dimensional numbers like the
main non-linear effects closer to the source than in the plane wave Goldberg number and the ratio of non-linear perturbations to linear
case. This also allows for the presence of near eld effects such terms that are representative of the non-linear regimes.
as a hon-monotonous evolution of the fundamental wave amplitude  The validity of our 3-D ADE-FDTD approach has beenillustrated
along thez-axis, probably at the origin of the oscillations observed on an anisotropic analog rather than on a heterogeneous model as the
in Fig. 12. In our con guration, the fact that the non-linearity op-  main objective of de ning a dispersive-non-linear constitutive law
erates only on, and is essentially anisotropic, necessarily leads is to model the behaviour associated with a naturally heterogeneous
to a preferential accumulation direction for the non-linear effects medium at different scales. In the future an interesting goal would
of harmonic generation. The harmonic generation process is thusconsist in using such homogenized models (for dispersion and non-
possible only in the-direction, which may lead to the generation linear behaviour) for several types of problems: at the mesoscale like
of a 'beam’ of harmonics with less geometrical attenuation than site effectissues (for example by adjusting the constitutive law of the
the fundamental wave. This unusually strong non-linear anisotropy, sedimentary lling) or at the laboratory scale for phenomenological
which, to our knowledge, has not been observed in real systems earissues to analyse the attenuation parameters coming from the data
lier, is only made possible here thanks to the developed simulation analysis. Atthe laboratory scale we could then try to see if non-linear
method. effects due to grain-to-grain contacts can explain acoustic modes
appearing on wider frequency ranges at different distances from the
source and how they are competing with attenuation effects.

4 CONCLUSIONS
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Figure Al. Similar numerical and analytical velocity componeptomputed in the time domain for the Ricker source (a). Numerical and theoretiaall
Swave phase velocities for the Ricker (b and c¢) and the Gaussian-modulated sine (d and e) pulse source cases are compared for the linear \Aiseoelasiic cas
a 0.5 m distance from the source along #eis. In (f), for the non-linear viscoelastic case and the Gaussian-modulated sine pulse source of 2.25 max@um

amplitude, the numerical and analytical values of thestress component are compared in the frequency domain with very good agreement.
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