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S U M M A R Y
In previous studies, the auxiliary differential equation (ADE) method has been applied to
2-D seismic-wave propagation modelling in viscoelastic media. This method is based on the
separation of the wave propagation equations derived from the constitutive law de�ning the
stress–strain relation. We make here a 3-D extension of a �nite-difference (FD) scheme to
solve a system of separated equations consisting in the stress–strain rheological relation, the
strain–velocity and the velocity–stress equations. The current 3-D FD scheme consists in
the discretization of the second order formulation of a non-linear viscoelastic wave equation
with a time actualization of the velocity and displacement �elds. Compared to the usual
memory variable formalism, the ADE method allows �exible implementation of complex
expressions of the desired rheological model such as attenuation/viscoelastic models or even
non-linear behaviours, with physical parameters that can be provided from dispersion analysis.
The method can also be associated with optimized perfectly matched layers-based boundary
conditions that can be seen as additional attenuation (viscoelastic) terms. We present the results
obtained for a non-linear viscoelastic model made of a Zener viscoelastic body associated
with a non-linear quadratic strain term. Such non-linearity is relevant to de�ne unconsolidated
granular model behaviour. Thanks to a simple model, but without loss of generality, we
demonstrate the accuracy of the proposed numerical approach.

Key words: Elasticity and anelasticity; Nonlinear differential equations; Numerical mod-
elling; Computational seismology; Seismic attenuation; Wave propagation.

1 I N T RO D U C T I O N

In seismology or near surface geophysics applications, imaging and
characterizing the Earth materials at different scales using seismic
wave propagation can face attenuation and non-linear behaviour
because of the physical nature of the media under study and the
frequency content of the seismic sources. It can involve a wide va-
riety of physical, geometrical, kinematical and structural types of
non-linearities as well as combination of these non-linearities types
(Ostrovsky & Johnson2001; Delsanto2006). Attenuation and non-
linearity parametrizations in seismic modelling are not an easy task
and are subject to many studies in the last two decades. Non-linear
dynamics applied to geomaterials can be essentially due to the
presence of soft features where damage is primarily observed as
in granular media where the physical source of the non-linearities

� Now at Normandie University, UNIROUEN, UNICAEN, CNRS, M2C,
76000 Rouen, France.

associated to grain-to-grain interactions has been well identi�ed
(Tournat & Gusev2010; Leglandet al.2012). At a larger scale, those
non-linearities are arising during the wave propagation and are com-
monly studied in the context of site effect assessment, and related
resonance phenomena or strong ground motion (de)ampli�cation
responses. In presence of non-linear site effects, viscous damping
or non-linear ground behaviours have also been studied (Bonilla
et al. 2005, 2011; Régnieret al. 2013, 2014, 2016b; Sandikkaya
et al.2013; Akkar et al.2014). Actually, attenuation and non-linear
characteristics of a medium are frequency dependent and are thus
not easy to model. They are a consequence of complex mixture
of superimposed distinct linear behaviour of each phase compos-
ing the media. In practice, viscoelastic parameters are commonly
estimated from seismic data and dispersion analysis, using empir-
ical measurement of the quality factorQ, whether considered as
quasi constant in the simpliest and common case over a speci�c fre-
quency range or as frequency-dependent in case of dispersive and
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non-linear behaviour. But in many geophysical applications, this ap-
proximation is too restrictive because the medium under study can
have strong non-linear and attenuation behaviour depending on the
seismic/acoustic signal amplitude and the frequency range. In the
case of unconsolidated media (granular media, sedimentary basins,
soften/weak fault systems), the parametrization of the attenuation
and non-linearities must be done for different frequency ranges.
Several experiments done in this context have shown resonance
effects and slow dynamics phenomena, with the appearance of har-
monics in the frequency domain, that are evidences of attenuation
and non-linearities dependent on frequency and strain amplitude.

As an example of application to earthquake dynamics, soften and
weakened materials located at the seismic source, more particularly
in the fault gouge area, can be at the origin of strong non-linearities
and exhibit non-equilibrium and non-linear dynamics. Earthquake
triggering can then be explained by fault failure caused by already
weakened/jammed fault systems that are at critical and weak state
and excited by seismic-waves impinging the fault system with a suf-
�ciently high strain amplitude (Johnson & Jia2005). The seismic
waves produced by a remote earthquake are exciting the fault and
make the fault core modulus to decrease strongly, and the fault core
weakens further. However, the strains should reach a suf�ciently
high threshold value to cause triggering phenomena. In such sit-
uation, the stress–strain rheological relations characterizing these
phenomena are generally non-linear and can be expressed as Taylor
expansions of complex rheology expressions or high polynomial
(at least cubic) functions of the strain close to the critical state.
Such non-linear rheologies can explain how some earthquakes can
be triggered remotely by other huge earthquakes (Gomberget al.
2003; Gomberg & Johnson2005) like the 7.3Mw 1992 Landers
earthquake (Hillet al.1993; Gomberget al.2001) or 7.1Mw Hec-
tor Mine (Gomberget al. 2001) and 7.9Mw Denali earthquakes
(Gomberget al. 2004). In the context of the 2011 Tohoku earth-
quake, non-linear viscoelastic wave propagation modelling has been
able to reproduce displacement ampli�cations in the near surface.
This has been enabled by adding non-linearities in both the elas-
tic and attenuation parts of the stress tensor attenuation as well
as hysteretic effects (d’Avilaet al. 2013) in the ground response
due to strong seismic motion. As another example, several harmon-
ics appearing in the observed accelerations spectra related to the
Northridge earthquake (Delépineet al.2009) are evidences of non-
linearity effects generated by frequency modulation phenomena. At
intermediate scales as for geotechnical applications, handling the
interaction between the structure and the ground at the same time
is crucial, particularly because of the potentially signi�cant degra-
dation of the shear modulus (Kramer1996; Delépineet al. 2009).
It is another reason why using non-linear stress–strain relations is
interesting in seismic wave propagation modelling.

At local scales, non-linear extensions of standard elastodynamic
equations have been suggested to better describe wave propaga-
tion in complex porous media. For instance, the poroelastic wave
equations given in Biot (1956a,b) have been extended to non-linear
poroelastic wave equations (Biot1973) in the particular context of
Hertz–Mindlin rheology. Such approach has been applied to wave
processes with strong acoustic non-linearity in porous rubber- or
sandstone-like media mainly in one dimension (Ostrovsky1991) or
to porous media containing spherical or cylindrical pores by Don-
skoyet al.(1997) and to unconsolidated granular media by Dazel &
Tournat (2010). This theoretical framework has been developed in
the acoustic community in an effort to understand non-linear mea-
sured responses when the source amplitude is increased for instance
in compact granular materials under gravity.

In 1-D, the interest of the geophysical community to non-
linearities is obvious as 1-D non-linear response validations and ver-
i�cations using different numerical solutions have recently focused
the attention on canonical/benchmark cases (Régnieret al. 2016a,
2018). Non-linear models in pure solid or poroelastic rheologies
have been studied mainly by developing 1-D analytical solutions in
the frequency domain in the context of dispersive granular media
(Hokstad2004; Tournatet al.2003, 2004; Tournat & Gusev2010;
Leglandet al.2012) or in the time domain for non-linear constitutive
laws (Berjaminet al.2017) as well as 1-D �nite differences (FD) in
the time domain (Favrieet al.2014) or recent 2-D lattice approaches
(Wallen & Boechler2017). In the studies of Tournat’s group, non-
linear effects have been exhibited via second harmonics generated
by, for instance, non-linear Hertzian contact rheologies or shear to
longitudinal mode conversions in granular packed media. 1-D an-
alytical models are essentially formulated using power law-based
non-linear elastic and acoustic rheologies for granular and uncon-
solidated dispersive media. Power law degrees equal or lower than 2
are generally used and quadratic Hertz–Mindlin stress–strain rela-
tions are introduced with one non-linear parameter homogeneous to
the shear or bulk modulus of granular media at the laboratory scale.
In Favrieet al. (2014) a 1-D non-linear version of the Zener model
is proposed. The generalized Zener viscoelastic model degenerates
correctly towards a pure non-linear elastic model when attenuation
effects vanish. Besides, the non-linear elastic stress–strain relations
under study are Lennard–Jones potential based functions or cubic
functions like the Landau’s model which are widely used in non-
destructive testing and slow dynamics modelling.

High order polynomial stress–strain functions are commonly in-
troduced in the frequency domain to homogenize solid–solid or
solid–�uid interactions from pore to microscale. Ostrovsky & John-
son (2001) made a review of different non-linear elastic behaviours
of earth materials and their impact in earth and material science
(strong ground motion, non-destructive testing). They describe dif-
ferent sources of non-linearities in waves travelling through rocks
due for instance to geometry of cracks and solid matrices, grain
shapes, �uid content/saturation effects, the nature of soften/weak
materials (presence of cracks, grain–grain or grain–�uid contacts,
etc.), as well as hysteresis, relaxation or attenuation effects in these
materials (slow dynamic effects). In many experiments, second and
third harmonic spectrum amplitudes are evidence of non-linear be-
haviour and are varying according to the strain amplitude of the
fundamental mode and with quadratic and cubic frequencies. In
this context the authors give a theoretical high order polynomial
expression of the stress–strain relation in which non-linear coef�-
cients are appearing and can be modelled as combinations of the
elastic moduli. The non-linear rheologies basically are derivations
of the second potential invariant and can be expressed by power
laws as quadratic or cubic stress–strain relations. The power laws
(with power of 3/2, 2 or 3) of the stress–strain relation and the co-
ef�cients involved in the different terms of these laws are highly
dependent on the shape of the pores or microcracks involved in
the solid material (spherical, cylindrical, ellipsoidal, etc.; Nazarov
& Sutin 1997; Nazarov2001; Ostrovsky & Johnson2001; Yu-Lin
et al. 2009). In this study, and without loss of generality, we will
carry out the numerical veri�cation using a quadratic term in the
strain–stress relationship.

Concerning the numerical modelling of seismic wave propaga-
tion in realistic media, general overviews (e.g. Carcioneet al.2002;
Moczo et al. 2011, 2014) introduce most of the numerical meth-
ods dedicated to mechanical dynamics that include different direct
methods such as pseudospectral, continuous (SEM)/discontinous
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(DG) Galerkin �nite-element methods, and FD techniques in fre-
quency or in time domains. 2-D or 3-D FD time domain (FDTD)
approaches are commonly applied to discretize and solve the wave
equations for elastic, viscoelastic, anisotropic and numerous disper-
sive media (Levander1988; Robertssonet al. 1994; Graves1996,
1999; Bohlen 2002; Saenger & Bohlen2004). These techniques
have been generally applied using cartesian and staggered mesh dis-
cretizations. But more recently, more sophisticated FD techniques
using high-order time-stepping and deformed meshes with non-
staggered and collocated mesh point discretization (Zhang & Shen
2010; Zhanget al. 2012; Sunet al. 2018) have been introduced as
well as non-deformed meshes using 2-D immersed methods (Lom-
bardet al. 2008; Chiavassa & Lombard2013; Blanc et al. 2014)
with speci�c operators applied at physical interfaces and at the free
surface (with mirror (Zhang & Chen2006; Zhanget al. 2012) or
non-centred schemes (Lombardet al.2008)). Also, recent develop-
ments in including Zener body attenuation models have been made
in the SEM (Blancet al.2016) for a constant quality factor.

Usually the linear viscoelastic behaviour is modelled by a mem-
ory variable formalism in order to ease the numerical implemen-
tation of the time convolution operator associated with the stress–
strain relation (Moczoet al.1997; Xu & McMechan1998; Hestholm
1999; Olsenet al.2000; Day1998; Day & Bradley2001; Wanget al.
2001; Bohlen2002; Saenger & Bohlen2004). The excessive mem-
ory storage requirements associated to this material-independent
memory variable approach needed to be numerically optimized and
reduced by using coarse sampling approach for instance (Kristek &
Moczo2003). The aim of this study is to avoid the use of memory
variables by extending an auxiliary differential equation (ADE) ap-
proach in three dimensions for a simple (quadratic term) but repre-
sentative non-linear behaviour. To our knowledge, for the �rst time
in 3-D seismic wave propagation modelling, the ADE formalism
is used for implementing a non-linear and viscoelastic constitutive
law. Such a formulation has been used with success for a linear vis-
coelastic case by Dhemaiedet al.(2011) in an explicit FDTD-PML
scheme using a second-order spatial and time stepping accuracy and
a classic staggered grid for a single Zener body viscoelastic model.
The authors were inspired by an ADE electromagnetic application
in ground penetrating radar by Rejibaet al. (2003) and were moti-
vated by extending the ADE approach to the seismic wave equations
for a desired viscoelastic model.

Attenuation is commonly described mathematically by different
viscoelastic models de�ned as a combination of relaxation mech-
anisms (series and parallel settings of springs and dashpots) as in
Moczo & Kristek (2005) that allow different frequency dependent
formulations of the attenuation. Maxwell, Kelvin–Voigt or Zener
body models are generally used, and the reader can be referred to
Semblat & Pecker (2009) for more details about those models. The
Zener body model is used here and provides a simple stress–strain
formulation in the frequency domain and is de�ned as a Kelvin–
Voigt cell and a spring in series.

The use of ADE formalism in 3-D-FDTD, for non-linear and
dispersive material, is widely used for electromagnetic waves prop-
agation and particularly for photonics and active plasmonics appli-
cations where Lorentz–Drude, Raman and Kerr non-linear terms
are incorporated (Ta�ove & Hagness2005; Greene & Ta�ove2006;
Ta�ove et al. 2013). This approach is very uncommon (almost in-
existant) in seismic wave propagation despite its great potential,
except in rare modelling studies in 1-D dispersive and attenuated
�uid/acoustic biophysical media (Jiḿenez et al. 2016) or non-
destructive testing (Lombard & Piraux2011). The only mention
of ADE formalism concerns the implementation of ADE-perfectly

matched layer (PML) absorbing boundary conditions (Martinet al.
2010; Zhang & Shen2010; Moczoet al.2014). The main speci�city,
and probably the best asset of this method, is that it allows a clear
separation to be established between the set of propagation equa-
tions: the strain–velocity equation, the velocity–stress equation, and
the rheological model de�ned by the stress–strain relation. Then by
conviniently using the differentiation theorem for the Fourier trans-
form, an inverse Fourier transformation from the frequency to the
time domain can be performed for each term of the stress–strain
relation. As for all FDTD techniques the ADE approach rigorously
enforces the vector �eld boundary conditions at interfaces of dif-
ferent media associated to a small fraction of the impinging pulse
width : consequently it is an almost completely general approach
that permits the modelling of a broad variety of dispersive and even
non-linear materials. As a consequence, this method has particu-
larly the advantage of allowing the �exible implementation of any
dispersion law based on non-constantQ quality factor law and on
the complex expression of the desired viscoelastic modulus. More
generally, by using the ADE approach, the stress–strain relations are
not limited to expressions only based on linear dispersion laws or
quasi-constant quality factors and can also incorporate non-linear
rheological laws to take into account hysteretic, friction and dam-
aging effects for instance.

In this study, we will explain how the introduction of a strain–
stress relation, involving non-linearity and attenuation, can be
ef�ciently solved numerically in 3-D. We will present the nu-
merical implementation and the numerical and physical veri�ca-
tion of a simple Zener model associated with a quadratic non-
linear term by introducing an ADE-FDTD approach. Our 3-D
scheme includes a second order time-stepping and a fourth or-
der staggered-grid spatial discretization to limit the numerical dis-
persion and convolutional (Komatitsch & Martin2007; Martin &
Komatitsch2009; Martin et al. 2008, 2010; Bodet et al. 2014)
or non-convolutional (Martinet al. 2010) perfectly matched layer
boundary conditions designed for elastic, viscoelastic or poroelas-
tic seismic-wave modelling. We incorporate simultaneously these
conditions along with viscoelastic properties inside the stress–strain
formulations. It is worth noting that, in this study, non-convolutional
PML using ADE formalism is implemented (Martinet al.2010) for
more ef�ciency with less memory storage and subsequently faster
computations.

In the following, we �rst give the governing equations of the non-
linear constitutive law used. For sake of simplicity and without loss
of generality for linear or non-linear stress–strain relations, we con-
sider a homogeneous medium and an associated rheology de�ned
by a single Zener body model for the viscoelastic part of the stress–
strain relation and an additional non-linear (quadratic) stress–strain
relation term in one direction of space. The 3-D medium can thus
be considered here as anisotropic in the direction of source polar-
ization. We then show a set of 3-D numerical experiments to check
for the accuracy and validity of the present numerical ADE-FDTD
scheme, particularly concerning viscoelastic and non-linearity ef-
fects. The numerical experiments are designed for three different
rheologies of the medium (elastic, viscoelastic and non-linear vis-
coelastic) to be compared if excited with the same source signal.
We concentrate our numerical (i.e. spectral) analysis and veri�ca-
tion process on the isotropic non-linear viscoelastic rheology. The
study of non-linear aspects is performed thanks to classical spectral
and dispersion analysis tools. Different amplitude factors and fre-
quency contents of the source excitation are tested to clearly exhibit
the non-linear response of the medium. The in�uence of the source
type on the non-linear effects is also discussed.
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2 G OV E R N I N G E Q UAT I O N S O F T H E
L I N E A R A N D N O N L I N E A R
V I S C O E L A S T I C E Q UAT I O N S

In this study, we aim at directly introducing linear or nonlinear
viscoelastic rheologies, but with a true constitutive law relating
the strain deformations to the stresses by writing, in the frequency
domain:

� =
�

i = 1,N

� L
i + � N L

i

=
�

i = 1,N

ai � i +
�

i = 1,N

�

j = 1,M

bi ci j �
j
i , (1)

where� L
i and� N L

i are, respectively, the linear and non-linear parts
of the global effective tensor� . ai are complex coef�cients de-
pending on the physical and geometrical properties of the linear
viscoelastic part of the effective tensor. Subscripti refers to one of
the partial tensors� i and j is the j-th polynomial degree of each
term of the non-linear part of eachi-th partial tensor� i . bi andcij

are the polynomial coef�cients of the non-linear part of the effective
tensor. For simplicity, we will considerN = 1 in all cases,M = 1 in
the linear case andM = 2 in the non-linear case, the general effec-
tive tensor calculation being possibly treated in the same way. The
strong form of the linear viscoelastic wave propagation equation in
the time domain is given by:

�
� 2

� t2
U = � · �,

(2)

whereU = (ui)i = 1, D (D being the space dimension) is the solid
displacement vector and� is the viscoelastic stress tensor. To in-
troduce a viscoelastic rheology, the stress tensor is de�ned by a
convolution product of the modulus tensor and the strain (Carcione
2007) as follows:

� i j = (C� � )i j (3)

� i j =
1
2

�
� ui

� x j
+

� u j

� xi

�
, (4)

whereC is the modulus tensor of the viscoelastic solid matrix. In
the frequency domain, by applying a Fourier Transform, we can
write:

�̂ i j = F(C� � )i j = (Ĉ�̂ )i j = � � � i j ˆ� kk + 2µ � ˆ� i j

�̂ i j =
1
2

�
� ûi

� x j
+

� û j

� xi

�
, (5)

where indicesi and j can be 1, 2 or 3 here in 3-D, and with the
Einstein convention of implicit summation over a repeated index.
� is the strain tensor of the viscoelastic solid matrix, and� is
the density of the solid material.µ � = µ ( 1+ i �	 0
 µ

1+ i �	 0
) is a complex

shear modulus and� � = � ( 1+ i �	 0
 �
1+ i �	 0

) is a complex Laḿe coef�cient
parameter of the solid matrix. We can notice thatµ � and � � are
non-linear functions of the frequency� .

After some algebraic manipulations, we can also compare the
numerical and the analytical compressible and shear moduli of the
viscoelastic medium, the expressions of the analytical moduli being
given byMP = � � + 2µ � andMS = µ � and the expressions of the
numerical moduli by

MP =
ˆ� zz( ˆ� zz + ˆ� xx) + ˆ� yy( ˆ� yy + ˆ� xx)
ˆ� zz( ˆ� zz + ˆ� xx) + ˆ� yy( ˆ� yy + ˆ� xx)

(6)

MS =
ˆ� yz

ˆ� yz
. (7)

These expressions will allow us in the next section to validate the
numerical solutions at least for the linear viscoelastic case.

For simplicity, but without loss of generality, we add non-linear
behaviour to the stress–strain law and consider that the non-linearity
is only present in one direction of space (the longitudinalzdirection
for instance). We make the assumption that the �uid part is missing
in the non-linear (quadratic) poroelastic formulation of Donskoy
et al. (1997) or Dazel & Tournat (2010) and that the elastic part
is replaced by the Zener linear viscoelastic strain–stress relation
of Dhemaiedet al. (2011). The stress–strain ˆ� (� ) = M(� )�̂ (� )
relation in the frequency domain is given by:

�̂ =
(� P,S + �̃ P,Si � )�̂ + H ˆ� m

1 + 	 0i �
,

(8)

whereH is a non-linear tensor,m is an exponent that generally
depends on the nature of the non-linear rheology (due to ellipti-
cal/spherical cracks, inclusions or cavities distributions, ...),	 0 is
the stress relaxation time,� P, S and�̃ P,S are, respectively, the unre-
laxed (real) and relaxed (imaginary) parts of the Lamé parameters.
Once these rheological laws are given in the frequency domain,
they are expressed in the time domain after applying the inverse
Fourier transform to each term of the stress–strain relation, and
consequently the stress–strain equation yields:

� + 	 0� t � = � P,S� + �̃ P,S� t � + H� m,

(9)

In a less compact form, the system of equations is developed as:

� i j + 	 0
�� i j

� t
= �� i j � kk + 2µ� i j + �̃� i j � t � kk + 2µ̃� t � i j + Hi j � i j � m

i j

� i j =
1
2

�
� ui

� x j
+

� u j

� xi

�

� t � i j =
1
2

�
�v i

� x j
+

�v j

� xi

�
, (10)

wherevi (i = 1, 3 in 3-D) are the solid velocity vector components.
As stated earlier, we assume thatHxx = Hyy = Hxy = Hxz = Hyz = 0
andHzz= D where the parameterD can take zero or non-zero value.
In the case ofD = 0 we retrieve the linear isotropic viscoelastic case
and forD �= 0 we retrieve a non-linear anisotropic viscoelastic stress
tensor in the frequency domain with a non-linear anisotropy in one
direction of space. A powerm= 2 is chosen now in this study for the
additional non-linear term without loss of generality. The relaxed
Lamé coef�cients�̃ andµ̃ are expressed as follows:

�̃ = 	 0�
 �

µ̃ = 	 0µ
 µ (11)

with


 � =
1
�

�
	 p

	 0
(� + 2µ ) Š 2µ
 µ

�


 µ =
	 s

	 0
, (12)

where	 p and 	 s are theP andS-wave relaxation times. Eq. (10)
is the required ADE de�ning the stress tensor� (t) in the time
domain. It has been easily implemented in an FDTD code using a
semi-implicit scheme centred at time stepn + 1 wherein yet-to-be
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Figure 1. Simpli�ed illustration of our numerical setup (a). A dominant frequency of 1500 Hz for a Ricker wavelet point-force source has been implemented
in the longitudinal (z) direction with several excitation amplitudes in the non-linear viscoelastic case (black diamonds correspond to picked maxima) (b).
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Figure 2. Seismograms (a) and spectrograms (b) of vertical component particle velocity (raw amplitude) recorded along the simulated models for: elastic,
linear viscoelastic and non-linear viscoelastic rheologies medium (source excitation amplitude× 1).
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458 R. Martinet al.

computed velocity and displacement �elds at timen + 1/2 are used
to create an update formula for a �eld known at time-step n; almost
exactly as detailed in Dhemaiedet al.(2011) for the 2-D case. This
ADE-FDTD integration scheme is detailed in the next section.

3 N U M E R I C A L E X P E R I M E N T

3.1 Setup

A second order displacement formulation is chosen and a fourth or-
der staggered-grid FD spatial discretization in space (Graves1996)
as well as a second order time-stepping algorithm are used to solve
the whole set of equations. The ADE system of equations is dis-
cretized in time at the second order using a semi-implicit scheme
as follows:

� v n+ 1/ 2
i = � v nŠ1/ 2

i + � t(� j � n
i j + Fi )

un+ 1/ 2
i = unŠ1/ 2

i + � tvn+ 1/ 2
i + � t2 vn+ 1/ 2

i Š vnŠ1/ 2
i

� t

� n+ 1/ 2
i j =

1
2

�
� un+ 1/ 2

i

� x j
+

� un+ 1/ 2
j

� xi

�

� t �
n+ 1/ 2
i j =

1
2

�
�v n+ 1/ 2

i

� x j
+

�v n+ 1/ 2
j

� xi

�

� n+ 1
i j (	 0/� t + 0.5) = � n

i j (	 0/� t Š 0.5) + �� i j �
n+ 1/ 2
kk + 2µ� n+ 1/ 2

i j

= + �̃� i j � t �
n+ 1/ 2
kk + 2µ̃� t �

n+ 1/ 2
i j

= + Hi j � i j � 2
i j |n+ 1/ 2, (13)

whereui and vi (i = 1, 3 in 3-D) are the, respectively the solid
displacement and velocity vector components.

We implement the following FD operator of each gradient of a
variablef in a given directionx, similar operators being applied in
the other two directionsy andz:

� f
� x

|i + 1/ 2, j ,k�
Š fi + 1, j ,k + 27fi, j ,k Š 27fi Š1, j ,k + fi Š2, j ,k

24
. (14)

Optimized convolution (Komatitsch & Martin2007) or non-
convolution (Martinet al.2010) frequency shift perfectly matched
layers absorbing boundary conditions complete the implementation
to ef�ciently truncate the computational domain and mimic this way
an in�nite medium. The advantage of this non-convolution PML is
that we have more �exibility to implement different time-stepping
schemes when compared to CPML formulation.

For the sake of clarity, we use here, respectively, second and
fourth order discretization operators in time and space to inte-
grate the equations as well as CPML boundary conditions. Be-
sides, without loss of generality, higher order operators can also be
used to solve the elastodynamic equations and add non-convolution
PML conditions as in Martinet al. (2010), where we introduced
eighth order Holberg space operators and fourth-order Runge–Kutta
(RK4) time-stepping integration. The discretization could also be
replaced by more sophisticated space discretizations in space and
time on deformed meshes and collocated grids as those mentionned
in the introduction. But here, the fourth-order staggered grid nu-
merical discretization and second-order time-stepping we choose
are enough for the purpose of this study because we just want to
exhibit attenuation and non-linear effects in 3-D with reasonable
accuracy. In addition, it should be emphasized that, to regularize
possible sharp shocks related to the non-linearity introduced, we
use non-centred fourth-order spatial discretization of the quadratic

term� 2 involved in the strain–stress law and applied in the source
polarization directionz only (here only the componentHzz = D
is non-zero in theH non-linear tensor, and� zz is denoted by� to
alleviate notations). To avoid possible high order spurious modes,
we denote by� i, j ,k+ 1/ 2 = 0.5(� L

i , j ,k + � R
i, j ,k) the average strain com-

puted at a cell face discontinuity where two strain deformation
states L (left) and R (right) are de�ned. We assume that� 2

i , j ,k+ 1/ 2 =
� i , j ,k+ 1/ 2� L

i , j ,k+ 1/ 2 if � i , j ,k+ 1/ 2 > 0, and� 2
i, j ,k+ 1/ 2 = � i , j ,k+ 1/ 2� R

i, j ,k+ 1/ 2
if � i , j ,k+ 1/ 2 < 0. Here we choose � L

i, j ,k+ 1/ 2/ = � i , j ,k and
� R

i, j ,k+ 1/ 2 = � i , j ,k+ 1.
A simpli�ed illustration of our numerical setup is presented on

Fig. 1(a). In all cases, we perform our simulations using a domi-
nant frequency of 1500 Hz for a Ricker wavelet point-force source,
implemented in the longitudinal (z) direction (see Figs1a and b).
We have sampled the spatial and time steps in our simulations in
order to have access to a wide range of wavelengths compared to
the source signal. The time step is thus chosen as� t = 0.4 µs and
the spatial step is� x = � y = � z = 0.0014 m. The grid mesh is
discretized by 1800 points along the longitudinalz-axis and, 200
points over the traversalx direction and 200 points over the depth
y. A source is located atz = 0.2324 m from the left boundary of
the thin slice and receivers are located at all discretization points
along the longitudinal length and in the middle of the medium (the
length of the models along the longitudinal axisz is 2.52 m). We
checked the accuracy of the numerical method for pure viscoelastic
and non-linear viscoelastic cases for two different sources (a Ricker
and a Gaussian-modulated sine pulse source) that will be used in
the next sections of this study. For sake of clarity, the reader is
referred to the appendix section for more details. In that section
P- andS-wave velocities are very well reproduced for both types
of sources in the viscoelastic case. Furthermore, in the non-linear
viscoelastic case, the� zz component of the stress tensor (computed
using the non-centred discretization of the non-liner term at the cell
faces described before) is well reproduced in the frequency domain.

3.2 Numerical veriÞcation of the nonlinear viscoelastic
regime

3.2.1 Classical dispersion analysis using a wideband pulse

Now, we focus our attention to the physical aspects of our study. To
illustrate the effect of the current non-linear regime (Fig.2a), we
�rst present the seismograms obtained for a reference elastic and
homogeneous medium characterized by a pressure-wave velocity
(Vp) of 245.63 m sŠ1, a shear-wave velocity (Vs) of 122.65 m sŠ1

and a bulk density� = 1610 kg mŠ3, these values corresponding
to experimental observations in unconsolidated granular media re-
cently studied in Bodetet al. (2014). A second simulation consid-
ers the viscoelastic case, based on similar homogeneous properties
but with stress and strain relaxation times, respectively, set to	 0

= 0.28 ms and	 p = 	 s = 0.3 ms. A third simulation �nally presents
the non-linear case. TheD parameter described earlier is set to
5 × 1013 × � V2

p to highlight non-linear regime effects.
The seismograms of particle velocity recorded in thez direction

are given as a function of offset (source-recording point distance
along the longitudinalz-axis) and time (presented on Fig.2a). They
consist in 1634 traces of 50 000 amplitude samples. Except for vis-
ible variations in amplitude of particle velocity between the elastic
case and the two viscoelastic cases, distance–time data systemati-
cally depict two distinct events: aP- and aS-wave train (P andS
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Figure 3. Dispersion curves: maxima picked from frequency-phase velocity transforms of seismograms for bothP andSwaves compared to corresponding
theoretical dispersion curves.

Figure 4. Seismograms of particle velocity (raw amplitude) recorded along the simulated models for different source excitation amplitudes.S-wave muted.

on Fig.2a) of similar apparent velocities for each rheology. How-
ever, the effect of viscoelasticity is clearly apparent on correspond-
ing spectrograms (Fig.2b) which present important differences in
terms of amplitude and shape. The non-linear case typically presents
frequency-up conversions with at least two ampli�cations at higher
frequencies that are linked to the source peak frequency (1.5 kHz)

but could not be exactly and accurately associated to a speci�c
harmonic: the fundamental mode is located around a frequency of
1900 Hz, and the third harmonic is roughly 5700 Hz, but the second
harmonic that should be located around a frequency of 3800 Hz does
not appear clearly. In addition, the wave�eld recorded for each case
has been transformed into the frequency-phase velocity domain (by
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460 R. Martinet al.

Figure 5. Amplitude spectrum of particle velocity (raw amplitude) recorded along the simulated models for different source excitation amplitudes.S-wave
muted.

a slant-stack in common shot gathers after correction for geometri-
cal spreading) to quantify the phase velocities of theP- andS-wave
events cited above. The resulting dispersion curves, presented on
Fig. 3 clearly show that the simulations perfectly describe imple-
mented phase velocities: constant velocity in the elastic case and, by
de�nition, dispersive relationship between velocity and frequency
in the viscoelastic case.

3.2.2 P-wave extraction using advanced preprocessing tools and
pulse modulation

We will consider the Ricker source described earlier as a reference in
term of amplitude. More runs involving exactly the same parameters
as the latter non-linear viscoelastic model are presented, but with
different amplitudes of the source (from 0.25× to 2.25 × the
excitation amplitude of the �rst case, as shown on Fig.1b). We will
focus on the longitudinalz direction, and consequently on theP-
wave train only. The seismograms, presented on Fig.4 obtained for
each source excitation amplitude, are thus muted as soon asP- and
S-wave trains can be separated. Each corresponding spectrogram
on Fig.5 clearly depicts the harmonics observed earlier resulting
from implemented non-linearities.

In order to clearly identify the non-linear effects, we extracted
traces from each seismogram and spectrogram along the line at four
different offsets, corresponding to two to �ve times the dominant
wavelength of the source (� P � 0.18 m). These traces are presented

on top of Fig.6. They correspond to the signals computed at each
different source excitation amplitude (from× 0.25 to× 2.25 the
amplitude of the reference run presented in Section 3.2.1; see colour-
scale on Fig.1b). The corresponding spectra are presented on top
of Fig. 7, on which the main frequency peakA1 and two other
peaksA

�
andA�� clearly appear (maxima are picked and shown as

black plus signs). These maxima are not in ratio 2 in frequency, but
seem to correspond to the third and �fth harmonics, respectively,
which poses the question of their correspondence with harmonic
wave components. These traces are then normalized to the source
maximum amplitude in both time and frequency domains (bottom
lines of Figs6 and 7). When the normalization in time remains
equivalent (every normalized traces can be considered superim-
posed on Fig.7), the ratio presented in frequency clearly shows
opposite behaviour as a function of source amplitude depending on
the considered peak. The black arrows, given on top of Fig.7 as an
example, depict a non-monotonous behaviour of these harmonics
as a function of source amplitude.

We picked the amplitude of each peak and presented, on Fig.8,
their ratios between the �rst peak and the other peaks. These spectral
ratios were computed at the 4 different offsets corresponding to
two to �ve times the dominant wavelength of the source (� P �
0.18 m) described above. The colours on Fig.8 depend on these
offsets and ratio are given of course for every source excitation
amplitudes (from× 0.25 to× 2.25 the amplitude of the reference
run presented in Section 3.2.1). At far-�eld offsets, the ratio shows
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Nonlinear viscoelastic modelling using ADE 461

Figure 6. Traces recorded at four different offsets given as a function of the source-signal dominant wavelength (� P � 0.18 m) presented for each different
source excitation amplitude (from× 0.25 to× 2.25; see colour-scale on Fig.1b) with corresponding normalization to the amplitude at the source (A0). A is
the amplitude of the trace at corresponding offset.

strong variations with source amplitude and tends to remain stable
at near-�eld offsets. As stated earlier, picked maxima are not in
ratio 2 in frequency which suggests overlap (interferences) between
adjacent harmonics due to the wide frequency band of the Ricker
source and dispersion effects (a 1900 Hz fundamental frequency and
a 5700 Hz third harmonic frequency). This observation illustrates
as well the fact that non-linear effects accumulate over the distance
to the source, as these ratios increase at �xed amplitudeA1 and
increasing distance.

Consequently, to exhibit and individualize the different peaks
more precisely, we introduce a narrow frequency band pulse source
implemented as a Gaussian-modulated sine pulse with a dominant
frequency of 1500 Hz. Fig.9 compares normalized traces obtained
from both the Ricker pulse (with amplitude of the source 2× the
excitation amplitude of the �rst case (3.2.1)) and the Gaussian-
modulated sine pulse (Fig.10). From these seismograms (Figs10a
and b), we computed amplitude (Figs10c and d) andfŠk spectra
(Figs 10e and f). The spectra clearly show that, within the same
propagation ranges and domains, the source modulation allows
the identi�cation of all consecutive harmonics (frequency-up con-
versions in ratio 2 in frequency), corresponding to the expected
non-linear effect. In addition, for example in the case of strong
non-linearities arising from a high amplitude of the source, the su-
perimposition of all spectra corresponding to all successive offsets
along the analysed direction (Fig.11) highlights the overlapping
process associated with wideband pulse. In the present case, all �rst

six successive modes are clearly de�ned in terms of peak frequency
location and amplitude. In this case of a Gaussian-modulated sine
pulse, we can observe that the amplitude maximaA1 have similar
non-linear effects (Figs12a and b) as theA1 maxima in the Ricker
wavelet source case (Figs11a and b), and are much better indi-
vidualized on a wider frequency range. However, the spectral ratio
amplitudesA3/A13 have almost the same exponentially increasing
patterns asA�� /A13 in the Ricker source case at almost similar off-
sets. In Fig.11(b), the second and third peaksA

�
andA�� are well

separated while in Fig.12(b) the maximaA2 andA3 are almost
superimposed. The ratios of second and third harmonic amplitudes
A2 andA3 over �rst peaksA1, A12 andA13 present a more pro-
nounced non-linear behaviour (Figs12b–d) at offsets closer to the
source location when compared to the Ricker wavelet source case.
More particularly, the ratios of second and third harmonic ampli-
tudesA2 andA3 overA12 andA13 show an increasing trend with
offset (Figs12c and). Small oscillations of those spectral ratios for
the gaussian-modulated sine pulse appear at small offsets probably
due to near �eld effects, and seem to be mainly associated with
amplitude oscillations ofA1. Finally, in both non-linear cases, we
can see that the spectral ratios are increasing (Figs11e and f,12e
and f) and are reaching similar high values for values ofA1 close
to zero at very far offsets to the source while they are converging
asymptotically to a constant value for high values ofA1 close to the
source.
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462 R. Martinet al.

Figure 7. Amplitude spectra and spectral ratio of traces recorded at four different offsets given as a function of the source-signal dominant wavelength
(� P � 0.18 m) presented for each different source excitation amplitude (from× 0.25 to× 2.25; see colour-scale on Fig.1b). A is the amplitude of the trace at
corresponding offset, A0 the amplitude at source andA1, A

�
andA�� are the amplitudes of the three �rst maxima detected in the spectrum at each offset. The

black arrows are just given on top as an example showing their non-monotonous behaviour as a function of source amplitude.

(a)

(b)

Figure 8. Spectral ratio computed at different offsets for every Ricker wavelet source excitation amplitudes (the four different offsets, corresponding to two to
�ve times the dominant wavelength of the source (� P � 0.18 m), are given with colours depending offset from blue (2� P) to green (5� P)).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/1/453/5145581 by U

niversite de C
aen B

asse-N
orm

andie user on 14 January 2019



Nonlinear viscoelastic modelling using ADE 463

0 0.005 0.01 0.015
Time (s)

-2

0

2
A

0

0 2000 4000 6000 8000 10000
Frequency (Hz)

0

0.5

1

A
0

0 0.01
Time (s)

-1

-0.5

0

0.5

1

0 5000 10000
Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

(a) (b)

A
 @

 2
� P

A
 @

 2
� P

Gaussian-modulated sinusoidal pulse

Ricker pulse

Gaussian-modulated sinusoidal pulse (implemented)
        //             //               //             //    (recorded)
Ricker pulse (implemented)
     //       //     (recorded)
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3.3 Discussion on non-linear regimes using
non-dimensional analysis

In order to characterize better the regime (linear, weakly or strongly
non-linear) under which the numerical experiments studied in the
previous section are performed, we consider below the simplest non-
linear model and its associated non-dimensional numbers. The sim-
ulated problem corresponds to an oscillating point (dipolar) source
along thez-direction in a homogeneous elastic solid medium, show-
ing linear viscoelastic isotropy. The non-linearity, as described ear-
lier, is anisotropic (only acting on the� zz and � zz relation) and
quadratic. The non-linear propagation is inspected along thez-
direction. To our knowledge, there is no analytical solution in this
con�guration for the non-linear process of harmonic generation. We
therefore recall here the usual parameters for plane wave propaga-
tion of longitudinal waves in a homogeneous medium with quadratic
non-linearity. First, we de�ne linear and non-linear time or length
scales denoted by	 a, 	 nl, La, Lnl. La and	 a correspond to the char-
acteristic length and timescales over which the initial amplitude of
a wave is divided bye due to dissipation effects, andLnl and 	 nl

are the characteristic non-linear length and timescales over which
non-linear effects develop. If the receivers are located close to the
source then non-linearities cannot accumulate enough. If they are at
a distance to the source lower thanLnl then the non-linear effects can
be observed but are still in a regime of accumulation. If it is equal
to Lnl then the non-linearities are fully accumulated and developped
andLnl denotes the shock front distance. If we non-dimensionalize
the non-linear equations, they can be expressed as:

� 2� UoU� = 1/ Ladiv(
(� P,S + �̃ P,Si � )Uo/ La�̂ �

1 + 	 0i �
+ DU2

o / L2
a

ˆ� �2)

U� =
(� P,S + �̃ P,Si � )Uo/ L2

a

� 2� Uo(1 + 	 0i � )
div(�̂ �) +

DU2
o

�� 2UoL3
a

div( ˆ� �2)

(15)

whereU = U
�
× Uo, xi = x�

i × La, t = t
�
/� , � = �

�
× Uo/La with �

�

= 0.5(�
�
U

�
+ �

�
U

� T). If we denote the modulus of the viscoelastic
seismic velocity byV pa = ( ||MP||

� )1/ 2, whereMP is the complex
modulus associated to theP wave, then the (visco-)elastic length
scale can be considered homogeneous to the seismic wavelengthLa

= Vpa� T = Vpa/� . Then the previous equations can be simpli�ed
as:

U� =
� V p2

aUo� 2/ V p2
a

� 2� Uo
div(�̂ �) +

DU2
o La

�� 2UoL4
a

div( ˆ� �2)

= div(�̂ �) +
DU2

o La� 4

�� 2UoV p4
a

div( ˆ� �2)

= div(�̂ �) +
DUoLa� 2

� V p4
a

div( ˆ� �2)

= div(�̂ �) +
La

Lnl
div( ˆ� �2)

= div(�̂ �) + � div( ˆ� �2), (16)

where we can consider the non-dimensional Goldberg number�
that measures the ratio between the linear attenuation effects and
the non-linear elastic effects.� can be expressed as

� =
	 a

	 nl
=

La

Lnl
, (17)

where the different lengths and timescales can be formulated as:

Lnl =
� V p4

a

� 2DUo

	 nl =
Lnl

V pa

=
� V p3

a

� 2DUo

	 a = �	 nl

La = V pa/�

La = Lnl
	 a

	 nl
. (18)

Since we haveD = D�� V2
p with D

�
= 5.1013 we can compute

� :

� =
D�UoLa� 2

V p2
a

� = D� Vo

V pa
. (19)
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464 R. Martinet al.

Figure 10. Seismograms (a, b), spectrograms (c, d) andfŠk spectra (e, f) obtained for the Ricker pulse source (a, c, e) and the Gaussian-modulated sine pulse
source (b, d, f) are compared to show the impact of two different types of pulse source on the seismograms and the spectra. The source amplitude factor is
equal to 2 in both pulse source cases.

In our simulations of the previous Section 3.2.2 and for a
source amplitude factor of 2.25, the particle velocity and the dis-
placement at the source areVo = 2.1 × 10Š11 m.sŠ1 and Uo

= 1.4 × 10Š14 m. The values of these time and length scales
are 	 a 	 0.3 ms (maximum viscoelastic relaxation time),	 nl 	
0.07714 ms,La 	 0.18 m (maximum viscoelastic wavelength),Lnl

	 0.04628 m. The non-dimensional Goldberg number is approxi-
mately equal to a value of	 4. Furthermore, the non-linear effects
can be measured also in terms of the rate of perturbation of the
linear stress tensor by the non-linear terms in theP-wave direc-

tion: � nl
zzŠ� l

zz

� l
zz

= E� � zz(1+ D/ E� � zz)
E� � zz

= D/ E� � zz, whereE� = � V2
p . Here

D/E� = D
�

= 5 × 1013. Therefore if we take the initial strain� zz0

= 7.77× 10Š14 measured close to the source we have a ratio value
around 3.88. When compared to plane waves, in the 3-D simulated
problem it is expected thatLa is reduced due to geometrical attenu-
ation, andLnl is increased due to decreasing wave amplitude along
distance. As a result, the Goldberg number of our problem (the non-
linear over linear ratio) is necessarily slighlty smaller than 4, and
exhibits clearly the non-linear propagation regime. The non-linear
effects on signal amplitudes depicted in Figs11and12correspond
to an amplitude source equal to 2.25 and to a very similar Goldberg
non-linear number.

If the wave problem would be for plane waves, the con�gura-
tion of viscoelastic parameters and the non-linear parameter would
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Offset presentation (a) of spectrograms of Fig.10 for the Ricker pulse source. In semi-logarithmic scale: (b) Representation of the amplitudes of
the three �rst maximaA1, A

�
andA�� detected in the spectrum at all offsets in the simulation. (c) and (d) represent spectral ratio between the three �rst maxima

computed at all offsets in (c) and (d), and versus the �rst peak A1 in (e) and (f).

(a) (b)

(c) (d)

(e) (f)

Figure 12. Offset presentation (a) of spectrograms of Fig.10 for the Gaussian-modulated sine pulse source. In semi-logarithmic scale : (b) Representation of
the amplitudes of the three �rst maximaA1, A2 andA3 detected in the spectrum at all offsets in the simulation. (c) and (d) represent spectral ratio between the
three �rst maxima computed at all offsets in (c) and (d), and versus the �rst peak A1 at all offsets in (e) and (f).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/1/453/5145581 by U

niversite de C
aen B

asse-N
orm

andie user on 14 January 2019



466 R. Martinet al.

give a Goldberg number of	 4. This indicates that non-linear ef-
fects would appear in the direction of propagation of the viscoelastic
plane wave. However, in our speci�c problem, the three-dimensional
character of the oscillating point source introduces additional ef-
fects. First, a higher attenuation with distance from the source is
expected due to geometric losses. This leads to a localization of the
main non-linear effects closer to the source than in the plane wave
case. This also allows for the presence of near �eld effects such
as a non-monotonous evolution of the fundamental wave amplitude
along thez-axis, probably at the origin of the oscillations observed
in Fig. 12. In our con�guration, the fact that the non-linearity op-
erates only on� zz, and is essentially anisotropic, necessarily leads
to a preferential accumulation direction for the non-linear effects
of harmonic generation. The harmonic generation process is thus
possible only in thez-direction, which may lead to the generation
of a ’beam’ of harmonics with less geometrical attenuation than
the fundamental wave. This unusually strong non-linear anisotropy,
which, to our knowledge, has not been observed in real systems ear-
lier, is only made possible here thanks to the developed simulation
method.

4 C O N C LU S I O N S

The simulation of seismic wave propagation in a 3-D viscoelas-
tic and non-linear media is presently performed using a 3-D
ADE-FDTD scheme. Comparing to classical recursive convolu-
tion schemes, the �exibility and its perfect suit for multi-threaded
execution of the ADE method must be weighted with the need of
implementing as many functions as constitutive laws to be tested.
However it offers the possibility to even de�ne 3-D models made
of completely different non-linear behaviours. The choice of the
non-linear quadratic term in the constitutive law is adapted to the
granular media behaviour under consideration. Such constitutive
law represents fairly well the non-linear behaviour due to grain-to-
grain interaction which plays a signi�cant role in earthquake strong
ground motion modelling.

In the present case, the non-linear constant valueD, associ-
ated with a Gaussian-modulated sine pulse peak frequency of
1.5 kHz, generates harmonics that are multiple of 1.5 kHz. The
non-linearities detected in the displacement spectrograms highlight
several harmonics at frequencies that are multiples of the dominant
frequency of the excitation source only for narrow band pulse exci-
tations. In case of a wide band pulse, (i.e. when the peak frequency
is similar to the bandwidth) the different harmonics are not so well
described and individualized, and are overlapping each other. Such
aspects are rarely discussed, more likely because such wideband
sources are rarely encountered in reality whatever the scale and
type of the case study (i.e. seismology, near-surface seismic, non-
destructive testing). The results show that we are able to accurately
assess non-linear and dispersive behaviour in 3-D with an adequate
strategy of source excitation, that is going to a Gaussian-modulated
sine wave of narrower frequency bandwidth, which constitutes an
ef�cient tool to tackle for example seismic source inversion prob-
lems.

Moreover, in three-dimensions the orders of magnitude of the
amplitudes simulated are lower than their equivalent in 1-D, which
make very dif�cult their interpretation when observed in rare oc-
casions as in laboratory sandbox experiments (Bodetet al. 2014).
It is worth noting, that the numerical veri�cation process of the
current 3-D scheme has been performed considering a non-linear
viscoelastic behaviour along a single direction, while others were

kept simply associated with a viscoelastic model. It does not show
any sign of numerical instability, and thus illustrates also the ca-
pabilities of this numerical approach to appraise a whole range
of issues associated to the role of anisotropy associated with both
dispersion and non-linear behaviour (Saenger & Bohlen2004). Fi-
nally, we have de�ned non-linear non-dimensional numbers like the
Goldberg number and the ratio of non-linear perturbations to linear
terms that are representative of the non-linear regimes.

The validity of our 3-D ADE-FDTD approach has been illustrated
on an anisotropic analog rather than on a heterogeneous model as the
main objective of de�ning a dispersive-non-linear constitutive law
is to model the behaviour associated with a naturally heterogeneous
medium at different scales. In the future an interesting goal would
consist in using such homogenized models (for dispersion and non-
linear behaviour) for several types of problems: at the mesoscale like
site effect issues (for example by adjusting the constitutive law of the
sedimentary �lling) or at the laboratory scale for phenomenological
issues to analyse the attenuation parameters coming from the data
analysis. At the laboratory scale we could then try to see if non-linear
effects due to grain-to-grain contacts can explain acoustic modes
appearing on wider frequency ranges at different distances from the
source and how they are competing with attenuation effects.
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A P P E N D I X : V E R I F I C AT I O N A N D
AC C U R AC Y T E S T S O F T H E
N U M E R I C A L M E T H O D

In the linear viscoelastic case, it is important to check the accuracy
of the numerical method used. For this purpose, we compare, in
the frequency domain and at as 0.5 m distance from the source, the
analytical and the numerically computed compressional and shear
phase velocities de�ned as the norms ofMP/� and MS/� , where
MP andMS are the moduli given in eq. (7) for a 1500 Hz dominant
frequency Ricker or Gaussian-modulated sine pulse wavelet source.
In Figs A1b–e), we can observe thatP andS phase velocities are
very well represented numerically, particularly in a frequency range
between around 200 Hz and
 f0 	 4712 Hz. Maximum errors
of less than 0.3 and 0.2 per cent are obtained onP and S phase
velocities for the Ricker and Gauss-modulated sine source cases,
respectively, which is very good. In the non-linear case, we consider
the strain� numerically computed at each time step and we use it
to compute the stress directly in the frequency domain after Fourier
transform of the desired stress–strain de�ned by eq. (9). We compare
this ’theoretical’ solution to the FD numerical stress solution in
the frequency domain. We can see in Fig.A1f that the numerical
solution of the� zz component is very accurate.
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Figure A1. Similar numerical and analytical velocity componentvz computed in the time domain for the Ricker source (a). Numerical and theoreticalP- and
S-wave phase velocities for the Ricker (b and c) and the Gaussian-modulated sine (d and e) pulse source cases are compared for the linear viscoelastic case at
a 0.5 m distance from the source along thez axis. In (f), for the non-linear viscoelastic case and the Gaussian-modulated sine pulse source of 2.25 maximum
amplitude, the numerical and analytical values of the� zz stress component are compared in the frequency domain with very good agreement.
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