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Accepted 2018 October 24. Received 2018 October 16; in original form 2018 March 19

S U M M A R Y
In previous studies, the auxiliary differential equation (ADE) method has been applied to
2-D seismic-wave propagation modelling in viscoelastic media. This method is based on the
separation of the wave propagation equations derived from the constitutive law defining the
stress–strain relation. We make here a 3-D extension of a finite-difference (FD) scheme to
solve a system of separated equations consisting in the stress–strain rheological relation, the
strain–velocity and the velocity–stress equations. The current 3-D FD scheme consists in
the discretization of the second order formulation of a non-linear viscoelastic wave equation
with a time actualization of the velocity and displacement fields. Compared to the usual
memory variable formalism, the ADE method allows flexible implementation of complex
expressions of the desired rheological model such as attenuation/viscoelastic models or even
non-linear behaviours, with physical parameters that can be provided from dispersion analysis.
The method can also be associated with optimized perfectly matched layers-based boundary
conditions that can be seen as additional attenuation (viscoelastic) terms. We present the results
obtained for a non-linear viscoelastic model made of a Zener viscoelastic body associated
with a non-linear quadratic strain term. Such non-linearity is relevant to define unconsolidated
granular model behaviour. Thanks to a simple model, but without loss of generality, we
demonstrate the accuracy of the proposed numerical approach.

Key words: Elasticity and anelasticity; Nonlinear differential equations; Numerical mod-
elling; Computational seismology; Seismic attenuation; Wave propagation.

1 I N T RO D U C T I O N

In seismology or near surface geophysics applications, imaging and
characterizing the Earth materials at different scales using seismic
wave propagation can face attenuation and non-linear behaviour
because of the physical nature of the media under study and the
frequency content of the seismic sources. It can involve a wide va-
riety of physical, geometrical, kinematical and structural types of
non-linearities as well as combination of these non-linearities types
(Ostrovsky & Johnson 2001; Delsanto 2006). Attenuation and non-
linearity parametrizations in seismic modelling are not an easy task
and are subject to many studies in the last two decades. Non-linear
dynamics applied to geomaterials can be essentially due to the
presence of soft features where damage is primarily observed as
in granular media where the physical source of the non-linearities

∗ Now at Normandie University, UNIROUEN, UNICAEN, CNRS, M2C,
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associated to grain-to-grain interactions has been well identified
(Tournat & Gusev 2010; Legland et al. 2012). At a larger scale, those
non-linearities are arising during the wave propagation and are com-
monly studied in the context of site effect assessment, and related
resonance phenomena or strong ground motion (de)amplification
responses. In presence of non-linear site effects, viscous damping
or non-linear ground behaviours have also been studied (Bonilla
et al. 2005, 2011; Régnier et al. 2013, 2014, 2016b; Sandikkaya
et al. 2013; Akkar et al. 2014). Actually, attenuation and non-linear
characteristics of a medium are frequency dependent and are thus
not easy to model. They are a consequence of complex mixture
of superimposed distinct linear behaviour of each phase compos-
ing the media. In practice, viscoelastic parameters are commonly
estimated from seismic data and dispersion analysis, using empir-
ical measurement of the quality factor Q, whether considered as
quasi constant in the simpliest and common case over a specific fre-
quency range or as frequency-dependent in case of dispersive and
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non-linear behaviour. But in many geophysical applications, this ap-
proximation is too restrictive because the medium under study can
have strong non-linear and attenuation behaviour depending on the
seismic/acoustic signal amplitude and the frequency range. In the
case of unconsolidated media (granular media, sedimentary basins,
soften/weak fault systems), the parametrization of the attenuation
and non-linearities must be done for different frequency ranges.
Several experiments done in this context have shown resonance
effects and slow dynamics phenomena, with the appearance of har-
monics in the frequency domain, that are evidences of attenuation
and non-linearities dependent on frequency and strain amplitude.

As an example of application to earthquake dynamics, soften and
weakened materials located at the seismic source, more particularly
in the fault gouge area, can be at the origin of strong non-linearities
and exhibit non-equilibrium and non-linear dynamics. Earthquake
triggering can then be explained by fault failure caused by already
weakened/jammed fault systems that are at critical and weak state
and excited by seismic-waves impinging the fault system with a suf-
ficiently high strain amplitude (Johnson & Jia 2005). The seismic
waves produced by a remote earthquake are exciting the fault and
make the fault core modulus to decrease strongly, and the fault core
weakens further. However, the strains should reach a sufficiently
high threshold value to cause triggering phenomena. In such sit-
uation, the stress–strain rheological relations characterizing these
phenomena are generally non-linear and can be expressed as Taylor
expansions of complex rheology expressions or high polynomial
(at least cubic) functions of the strain close to the critical state.
Such non-linear rheologies can explain how some earthquakes can
be triggered remotely by other huge earthquakes (Gomberg et al.
2003; Gomberg & Johnson 2005) like the 7.3 Mw 1992 Landers
earthquake (Hill et al. 1993; Gomberg et al. 2001) or 7.1 Mw Hec-
tor Mine (Gomberg et al. 2001) and 7.9 Mw Denali earthquakes
(Gomberg et al. 2004). In the context of the 2011 Tohoku earth-
quake, non-linear viscoelastic wave propagation modelling has been
able to reproduce displacement amplifications in the near surface.
This has been enabled by adding non-linearities in both the elas-
tic and attenuation parts of the stress tensor attenuation as well
as hysteretic effects (d’Avila et al. 2013) in the ground response
due to strong seismic motion. As another example, several harmon-
ics appearing in the observed accelerations spectra related to the
Northridge earthquake (Delépine et al. 2009) are evidences of non-
linearity effects generated by frequency modulation phenomena. At
intermediate scales as for geotechnical applications, handling the
interaction between the structure and the ground at the same time
is crucial, particularly because of the potentially significant degra-
dation of the shear modulus (Kramer 1996; Delépine et al. 2009).
It is another reason why using non-linear stress–strain relations is
interesting in seismic wave propagation modelling.

At local scales, non-linear extensions of standard elastodynamic
equations have been suggested to better describe wave propaga-
tion in complex porous media. For instance, the poroelastic wave
equations given in Biot (1956a,b) have been extended to non-linear
poroelastic wave equations (Biot 1973) in the particular context of
Hertz–Mindlin rheology. Such approach has been applied to wave
processes with strong acoustic non-linearity in porous rubber- or
sandstone-like media mainly in one dimension (Ostrovsky 1991) or
to porous media containing spherical or cylindrical pores by Don-
skoy et al. (1997) and to unconsolidated granular media by Dazel &
Tournat (2010). This theoretical framework has been developed in
the acoustic community in an effort to understand non-linear mea-
sured responses when the source amplitude is increased for instance
in compact granular materials under gravity.

In 1-D, the interest of the geophysical community to non-
linearities is obvious as 1-D non-linear response validations and ver-
ifications using different numerical solutions have recently focused
the attention on canonical/benchmark cases (Régnier et al. 2016a,
2018). Non-linear models in pure solid or poroelastic rheologies
have been studied mainly by developing 1-D analytical solutions in
the frequency domain in the context of dispersive granular media
(Hokstad 2004; Tournat et al. 2003, 2004; Tournat & Gusev 2010;
Legland et al. 2012) or in the time domain for non-linear constitutive
laws (Berjamin et al. 2017) as well as 1-D finite differences (FD) in
the time domain (Favrie et al. 2014) or recent 2-D lattice approaches
(Wallen & Boechler 2017). In the studies of Tournat’s group, non-
linear effects have been exhibited via second harmonics generated
by, for instance, non-linear Hertzian contact rheologies or shear to
longitudinal mode conversions in granular packed media. 1-D an-
alytical models are essentially formulated using power law-based
non-linear elastic and acoustic rheologies for granular and uncon-
solidated dispersive media. Power law degrees equal or lower than 2
are generally used and quadratic Hertz–Mindlin stress–strain rela-
tions are introduced with one non-linear parameter homogeneous to
the shear or bulk modulus of granular media at the laboratory scale.
In Favrie et al. (2014) a 1-D non-linear version of the Zener model
is proposed. The generalized Zener viscoelastic model degenerates
correctly towards a pure non-linear elastic model when attenuation
effects vanish. Besides, the non-linear elastic stress–strain relations
under study are Lennard–Jones potential based functions or cubic
functions like the Landau’s model which are widely used in non-
destructive testing and slow dynamics modelling.

High order polynomial stress–strain functions are commonly in-
troduced in the frequency domain to homogenize solid–solid or
solid–fluid interactions from pore to microscale. Ostrovsky & John-
son (2001) made a review of different non-linear elastic behaviours
of earth materials and their impact in earth and material science
(strong ground motion, non-destructive testing). They describe dif-
ferent sources of non-linearities in waves travelling through rocks
due for instance to geometry of cracks and solid matrices, grain
shapes, fluid content/saturation effects, the nature of soften/weak
materials (presence of cracks, grain–grain or grain–fluid contacts,
etc.), as well as hysteresis, relaxation or attenuation effects in these
materials (slow dynamic effects). In many experiments, second and
third harmonic spectrum amplitudes are evidence of non-linear be-
haviour and are varying according to the strain amplitude of the
fundamental mode and with quadratic and cubic frequencies. In
this context the authors give a theoretical high order polynomial
expression of the stress–strain relation in which non-linear coeffi-
cients are appearing and can be modelled as combinations of the
elastic moduli. The non-linear rheologies basically are derivations
of the second potential invariant and can be expressed by power
laws as quadratic or cubic stress–strain relations. The power laws
(with power of 3/2, 2 or 3) of the stress–strain relation and the co-
efficients involved in the different terms of these laws are highly
dependent on the shape of the pores or microcracks involved in
the solid material (spherical, cylindrical, ellipsoidal, etc.; Nazarov
& Sutin 1997; Nazarov 2001; Ostrovsky & Johnson 2001; Yu-Lin
et al. 2009). In this study, and without loss of generality, we will
carry out the numerical verification using a quadratic term in the
strain–stress relationship.

Concerning the numerical modelling of seismic wave propaga-
tion in realistic media, general overviews (e.g. Carcione et al. 2002;
Moczo et al. 2011, 2014) introduce most of the numerical meth-
ods dedicated to mechanical dynamics that include different direct
methods such as pseudospectral, continuous (SEM)/discontinous
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(DG) Galerkin finite-element methods, and FD techniques in fre-
quency or in time domains. 2-D or 3-D FD time domain (FDTD)
approaches are commonly applied to discretize and solve the wave
equations for elastic, viscoelastic, anisotropic and numerous disper-
sive media (Levander 1988; Robertsson et al. 1994; Graves 1996,
1999; Bohlen 2002; Saenger & Bohlen 2004). These techniques
have been generally applied using cartesian and staggered mesh dis-
cretizations. But more recently, more sophisticated FD techniques
using high-order time-stepping and deformed meshes with non-
staggered and collocated mesh point discretization (Zhang & Shen
2010; Zhang et al. 2012; Sun et al. 2018) have been introduced as
well as non-deformed meshes using 2-D immersed methods (Lom-
bard et al. 2008; Chiavassa & Lombard 2013; Blanc et al. 2014)
with specific operators applied at physical interfaces and at the free
surface (with mirror (Zhang & Chen 2006; Zhang et al. 2012) or
non-centred schemes (Lombard et al. 2008)). Also, recent develop-
ments in including Zener body attenuation models have been made
in the SEM (Blanc et al. 2016) for a constant quality factor.

Usually the linear viscoelastic behaviour is modelled by a mem-
ory variable formalism in order to ease the numerical implemen-
tation of the time convolution operator associated with the stress–
strain relation (Moczo et al. 1997; Xu & McMechan 1998; Hestholm
1999; Olsen et al. 2000; Day 1998; Day & Bradley 2001; Wang et al.
2001; Bohlen 2002; Saenger & Bohlen 2004). The excessive mem-
ory storage requirements associated to this material-independent
memory variable approach needed to be numerically optimized and
reduced by using coarse sampling approach for instance (Kristek &
Moczo 2003). The aim of this study is to avoid the use of memory
variables by extending an auxiliary differential equation (ADE) ap-
proach in three dimensions for a simple (quadratic term) but repre-
sentative non-linear behaviour. To our knowledge, for the first time
in 3-D seismic wave propagation modelling, the ADE formalism
is used for implementing a non-linear and viscoelastic constitutive
law. Such a formulation has been used with success for a linear vis-
coelastic case by Dhemaied et al. (2011) in an explicit FDTD-PML
scheme using a second-order spatial and time stepping accuracy and
a classic staggered grid for a single Zener body viscoelastic model.
The authors were inspired by an ADE electromagnetic application
in ground penetrating radar by Rejiba et al. (2003) and were moti-
vated by extending the ADE approach to the seismic wave equations
for a desired viscoelastic model.

Attenuation is commonly described mathematically by different
viscoelastic models defined as a combination of relaxation mech-
anisms (series and parallel settings of springs and dashpots) as in
Moczo & Kristek (2005) that allow different frequency dependent
formulations of the attenuation. Maxwell, Kelvin–Voigt or Zener
body models are generally used, and the reader can be referred to
Semblat & Pecker (2009) for more details about those models. The
Zener body model is used here and provides a simple stress–strain
formulation in the frequency domain and is defined as a Kelvin–
Voigt cell and a spring in series.

The use of ADE formalism in 3-D-FDTD, for non-linear and
dispersive material, is widely used for electromagnetic waves prop-
agation and particularly for photonics and active plasmonics appli-
cations where Lorentz–Drude, Raman and Kerr non-linear terms
are incorporated (Taflove & Hagness 2005; Greene & Taflove 2006;
Taflove et al. 2013). This approach is very uncommon (almost in-
existant) in seismic wave propagation despite its great potential,
except in rare modelling studies in 1-D dispersive and attenuated
fluid/acoustic biophysical media (Jiménez et al. 2016) or non-
destructive testing (Lombard & Piraux 2011). The only mention
of ADE formalism concerns the implementation of ADE-perfectly

matched layer (PML) absorbing boundary conditions (Martin et al.
2010; Zhang & Shen 2010; Moczo et al. 2014). The main specificity,
and probably the best asset of this method, is that it allows a clear
separation to be established between the set of propagation equa-
tions: the strain–velocity equation, the velocity–stress equation, and
the rheological model defined by the stress–strain relation. Then by
conviniently using the differentiation theorem for the Fourier trans-
form, an inverse Fourier transformation from the frequency to the
time domain can be performed for each term of the stress–strain
relation. As for all FDTD techniques the ADE approach rigorously
enforces the vector field boundary conditions at interfaces of dif-
ferent media associated to a small fraction of the impinging pulse
width : consequently it is an almost completely general approach
that permits the modelling of a broad variety of dispersive and even
non-linear materials. As a consequence, this method has particu-
larly the advantage of allowing the flexible implementation of any
dispersion law based on non-constant Q quality factor law and on
the complex expression of the desired viscoelastic modulus. More
generally, by using the ADE approach, the stress–strain relations are
not limited to expressions only based on linear dispersion laws or
quasi-constant quality factors and can also incorporate non-linear
rheological laws to take into account hysteretic, friction and dam-
aging effects for instance.

In this study, we will explain how the introduction of a strain–
stress relation, involving non-linearity and attenuation, can be
efficiently solved numerically in 3-D. We will present the nu-
merical implementation and the numerical and physical verifica-
tion of a simple Zener model associated with a quadratic non-
linear term by introducing an ADE-FDTD approach. Our 3-D
scheme includes a second order time-stepping and a fourth or-
der staggered-grid spatial discretization to limit the numerical dis-
persion and convolutional (Komatitsch & Martin 2007; Martin &
Komatitsch 2009; Martin et al. 2008, 2010; Bodet et al. 2014)
or non-convolutional (Martin et al. 2010) perfectly matched layer
boundary conditions designed for elastic, viscoelastic or poroelas-
tic seismic-wave modelling. We incorporate simultaneously these
conditions along with viscoelastic properties inside the stress–strain
formulations. It is worth noting that, in this study, non-convolutional
PML using ADE formalism is implemented (Martin et al. 2010) for
more efficiency with less memory storage and subsequently faster
computations.

In the following, we first give the governing equations of the non-
linear constitutive law used. For sake of simplicity and without loss
of generality for linear or non-linear stress–strain relations, we con-
sider a homogeneous medium and an associated rheology defined
by a single Zener body model for the viscoelastic part of the stress–
strain relation and an additional non-linear (quadratic) stress–strain
relation term in one direction of space. The 3-D medium can thus
be considered here as anisotropic in the direction of source polar-
ization. We then show a set of 3-D numerical experiments to check
for the accuracy and validity of the present numerical ADE-FDTD
scheme, particularly concerning viscoelastic and non-linearity ef-
fects. The numerical experiments are designed for three different
rheologies of the medium (elastic, viscoelastic and non-linear vis-
coelastic) to be compared if excited with the same source signal.
We concentrate our numerical (i.e. spectral) analysis and verifica-
tion process on the isotropic non-linear viscoelastic rheology. The
study of non-linear aspects is performed thanks to classical spectral
and dispersion analysis tools. Different amplitude factors and fre-
quency contents of the source excitation are tested to clearly exhibit
the non-linear response of the medium. The influence of the source
type on the non-linear effects is also discussed.
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2 G OV E R N I N G E Q UAT I O N S O F T H E
L I N E A R A N D N O N L I N E A R
V I S C O E L A S T I C E Q UAT I O N S

In this study, we aim at directly introducing linear or nonlinear
viscoelastic rheologies, but with a true constitutive law relating
the strain deformations to the stresses by writing, in the frequency
domain:

σ =
∑

i=1,N

σ L
i + σ N L

i

=
∑

i=1,N

aiεi +
∑

i=1,N

∑
j=1,M

bi ci jε
j
i , (1)

where σ L
i and σ N L

i are, respectively, the linear and non-linear parts
of the global effective tensor σ . ai are complex coefficients de-
pending on the physical and geometrical properties of the linear
viscoelastic part of the effective tensor. Subscript i refers to one of
the partial tensors σ i and j is the j-th polynomial degree of each
term of the non-linear part of each i-th partial tensor σ i . bi and cij

are the polynomial coefficients of the non-linear part of the effective
tensor. For simplicity, we will consider N = 1 in all cases, M = 1 in
the linear case and M = 2 in the non-linear case, the general effec-
tive tensor calculation being possibly treated in the same way. The
strong form of the linear viscoelastic wave propagation equation in
the time domain is given by:

ρ
∂2

∂t2
U = ∇ · σ,

(2)

where U = (ui)i = 1, D (D being the space dimension) is the solid
displacement vector and σ is the viscoelastic stress tensor. To in-
troduce a viscoelastic rheology, the stress tensor is defined by a
convolution product of the modulus tensor and the strain (Carcione
2007) as follows:

σi j = (C∗ ε)i j (3)

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (4)

where C is the modulus tensor of the viscoelastic solid matrix. In
the frequency domain, by applying a Fourier Transform, we can
write:

σ̂i j = F(C∗ ε)i j = (Ĉε̂)i j = λ∗δi j ˆεkk + 2μ∗ε̂i j

ε̂i j = 1

2

(
∂ ûi

∂x j
+ ∂ û j

∂xi

)
, (5)

where indices i and j can be 1, 2 or 3 here in 3-D, and with the
Einstein convention of implicit summation over a repeated index.
ε is the strain tensor of the viscoelastic solid matrix, and ρ is
the density of the solid material. μ∗ = μ( 1+iωτ0γμ

1+iωτ0
) is a complex

shear modulus and λ∗ = λ( 1+iωτ0γλ

1+iωτ0
) is a complex Lamé coefficient

parameter of the solid matrix. We can notice that μ∗ and λ∗ are
non-linear functions of the frequency ω.

After some algebraic manipulations, we can also compare the
numerical and the analytical compressible and shear moduli of the
viscoelastic medium, the expressions of the analytical moduli being
given by MP = λ∗ + 2μ∗ and MS = μ∗ and the expressions of the
numerical moduli by

MP = σ̂zz( ˆεzz + ˆεxx ) + ˆσyy( ˆεyy + ˆεxx )

ˆεzz( ˆεzz + ˆεxx ) + ˆεyy( ˆεyy + ˆεxx )
(6)

MS = ˆσyz

ˆεyz
. (7)

These expressions will allow us in the next section to validate the
numerical solutions at least for the linear viscoelastic case.

For simplicity, but without loss of generality, we add non-linear
behaviour to the stress–strain law and consider that the non-linearity
is only present in one direction of space (the longitudinal z direction
for instance). We make the assumption that the fluid part is missing
in the non-linear (quadratic) poroelastic formulation of Donskoy
et al. (1997) or Dazel & Tournat (2010) and that the elastic part
is replaced by the Zener linear viscoelastic strain–stress relation
of Dhemaied et al. (2011). The stress–strain σ̂ (ω) = M(ω)ε̂(ω)
relation in the frequency domain is given by:

σ̂ = (λP,S + λ̃P,Siω)ε̂ + H ε̂m

1 + τ0iω
,

(8)

where H is a non-linear tensor, m is an exponent that generally
depends on the nature of the non-linear rheology (due to ellipti-
cal/spherical cracks, inclusions or cavities distributions, ...), τ 0 is
the stress relaxation time, λP, S and λ̃P,S are, respectively, the unre-
laxed (real) and relaxed (imaginary) parts of the Lamé parameters.
Once these rheological laws are given in the frequency domain,
they are expressed in the time domain after applying the inverse
Fourier transform to each term of the stress–strain relation, and
consequently the stress–strain equation yields:

σ + τ0∂tσ = λP,Sε + λ̃P,S∂tε + Hεm,

(9)

In a less compact form, the system of equations is developed as:

σi j + τ0
∂σi j

∂t
= λδi jεkk + 2μεi j + λ̃δi j∂tεkk + 2μ̃∂tεi j + Hi jδi jε

m
i j

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)

∂tεi j = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
, (10)

where vi (i = 1, 3 in 3-D) are the solid velocity vector components.
As stated earlier, we assume that Hxx = Hyy = Hxy = Hxz = Hyz = 0
and Hzz = D where the parameter D can take zero or non-zero value.
In the case of D = 0 we retrieve the linear isotropic viscoelastic case
and for D �= 0 we retrieve a non-linear anisotropic viscoelastic stress
tensor in the frequency domain with a non-linear anisotropy in one
direction of space. A power m = 2 is chosen now in this study for the
additional non-linear term without loss of generality. The relaxed
Lamé coefficients λ̃ and μ̃ are expressed as follows:

λ̃ = τ0λγλ

μ̃ = τ0μγμ (11)

with

γλ = 1

λ

(
τp

τ0
(λ + 2μ) − 2μγμ

)

γμ = τs

τ0
, (12)

where τ p and τ s are the P and S-wave relaxation times. Eq. (10)
is the required ADE defining the stress tensor σ (t) in the time
domain. It has been easily implemented in an FDTD code using a
semi-implicit scheme centred at time step n + 1 wherein yet-to-be
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Figure 1. Simplified illustration of our numerical setup (a). A dominant frequency of 1500 Hz for a Ricker wavelet point-force source has been implemented
in the longitudinal (z) direction with several excitation amplitudes in the non-linear viscoelastic case (black diamonds correspond to picked maxima) (b).
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Figure 2. Seismograms (a) and spectrograms (b) of vertical component particle velocity (raw amplitude) recorded along the simulated models for: elastic,
linear viscoelastic and non-linear viscoelastic rheologies medium (source excitation amplitude × 1).
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458 R. Martin et al.

computed velocity and displacement fields at time n + 1/2 are used
to create an update formula for a field known at time-step n; almost
exactly as detailed in Dhemaied et al. (2011) for the 2-D case. This
ADE-FDTD integration scheme is detailed in the next section.

3 N U M E R I C A L E X P E R I M E N T

3.1 Setup

A second order displacement formulation is chosen and a fourth or-
der staggered-grid FD spatial discretization in space (Graves 1996)
as well as a second order time-stepping algorithm are used to solve
the whole set of equations. The ADE system of equations is dis-
cretized in time at the second order using a semi-implicit scheme
as follows:

ρ v
n+1/2
i = ρ v

n−1/2
i + �t(∂ jσ

n
i j + Fi )

un+1/2
i = un−1/2
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i
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∂xi
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(
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∂x j
+ ∂v

n+1/2
j

∂xi

)

σ n+1
i j (τ0/�t + 0.5) = σ n

i j (τ0/�t − 0.5) + λδi jε
n+1/2
kk + 2με

n+1/2
i j

= +λ̃δi j∂tε
n+1/2
kk + 2μ̃∂tε

n+1/2
i j

= +Hi jδi jε
2
i j |n+1/2, (13)

where ui and vi (i = 1, 3 in 3-D) are the, respectively the solid
displacement and velocity vector components.

We implement the following FD operator of each gradient of a
variable f in a given direction x, similar operators being applied in
the other two directions y and z:

∂ f

∂x
|i+1/2, j,k≡ − fi+1, j,k + 27 fi, j,k − 27 fi−1, j,k + fi−2, j,k

24
. (14)

Optimized convolution (Komatitsch & Martin 2007) or non-
convolution (Martin et al. 2010) frequency shift perfectly matched
layers absorbing boundary conditions complete the implementation
to efficiently truncate the computational domain and mimic this way
an infinite medium. The advantage of this non-convolution PML is
that we have more flexibility to implement different time-stepping
schemes when compared to CPML formulation.

For the sake of clarity, we use here, respectively, second and
fourth order discretization operators in time and space to inte-
grate the equations as well as CPML boundary conditions. Be-
sides, without loss of generality, higher order operators can also be
used to solve the elastodynamic equations and add non-convolution
PML conditions as in Martin et al. (2010), where we introduced
eighth order Holberg space operators and fourth-order Runge–Kutta
(RK4) time-stepping integration. The discretization could also be
replaced by more sophisticated space discretizations in space and
time on deformed meshes and collocated grids as those mentionned
in the introduction. But here, the fourth-order staggered grid nu-
merical discretization and second-order time-stepping we choose
are enough for the purpose of this study because we just want to
exhibit attenuation and non-linear effects in 3-D with reasonable
accuracy. In addition, it should be emphasized that, to regularize
possible sharp shocks related to the non-linearity introduced, we
use non-centred fourth-order spatial discretization of the quadratic

term ε2 involved in the strain–stress law and applied in the source
polarization direction z only (here only the component Hzz = D
is non-zero in the H non-linear tensor, and εzz is denoted by ε to
alleviate notations). To avoid possible high order spurious modes,
we denote by εi, j,k+1/2 = 0.5(εL

i, j,k + εR
i, j,k) the average strain com-

puted at a cell face discontinuity where two strain deformation
states L (left) and R (right) are defined. We assume that ε2

i, j,k+1/2 =
εi, j,k+1/2ε

L
i, j,k+1/2 if εi, j,k+1/2 > 0, and ε2

i, j,k+1/2 = εi, j,k+1/2ε
R
i, j,k+1/2

if εi, j,k+1/2 < 0. Here we choose εL
i, j,k+1/2/ = εi, j,k and

εR
i, j,k+1/2 = εi, j,k+1.

A simplified illustration of our numerical setup is presented on
Fig. 1(a). In all cases, we perform our simulations using a domi-
nant frequency of 1500 Hz for a Ricker wavelet point-force source,
implemented in the longitudinal (z) direction (see Figs 1a and b).
We have sampled the spatial and time steps in our simulations in
order to have access to a wide range of wavelengths compared to
the source signal. The time step is thus chosen as �t =0.4 μs and
the spatial step is �x = �y = �z = 0.0014 m. The grid mesh is
discretized by 1800 points along the longitudinal z-axis and, 200
points over the traversal x direction and 200 points over the depth
y. A source is located at z = 0.2324 m from the left boundary of
the thin slice and receivers are located at all discretization points
along the longitudinal length and in the middle of the medium (the
length of the models along the longitudinal axis z is 2.52 m). We
checked the accuracy of the numerical method for pure viscoelastic
and non-linear viscoelastic cases for two different sources (a Ricker
and a Gaussian-modulated sine pulse source) that will be used in
the next sections of this study. For sake of clarity, the reader is
referred to the appendix section for more details. In that section
P- and S-wave velocities are very well reproduced for both types
of sources in the viscoelastic case. Furthermore, in the non-linear
viscoelastic case, the σ zz component of the stress tensor (computed
using the non-centred discretization of the non-liner term at the cell
faces described before) is well reproduced in the frequency domain.

3.2 Numerical verification of the nonlinear viscoelastic
regime

3.2.1 Classical dispersion analysis using a wideband pulse

Now, we focus our attention to the physical aspects of our study. To
illustrate the effect of the current non-linear regime (Fig. 2a), we
first present the seismograms obtained for a reference elastic and
homogeneous medium characterized by a pressure-wave velocity
(Vp) of 245.63 m s−1, a shear-wave velocity (Vs) of 122.65 m s−1

and a bulk density ρ = 1610 kg m−3, these values corresponding
to experimental observations in unconsolidated granular media re-
cently studied in Bodet et al. (2014). A second simulation consid-
ers the viscoelastic case, based on similar homogeneous properties
but with stress and strain relaxation times, respectively, set to τ 0

=0.28 ms and τ p = τ s =0.3 ms. A third simulation finally presents
the non-linear case. The D parameter described earlier is set to
5 × 1013 × ρV 2

p to highlight non-linear regime effects.
The seismograms of particle velocity recorded in the z direction

are given as a function of offset (source-recording point distance
along the longitudinal z-axis) and time (presented on Fig. 2a). They
consist in 1634 traces of 50 000 amplitude samples. Except for vis-
ible variations in amplitude of particle velocity between the elastic
case and the two viscoelastic cases, distance–time data systemati-
cally depict two distinct events: a P- and a S-wave train (P and S
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Figure 3. Dispersion curves: maxima picked from frequency-phase velocity transforms of seismograms for both P and S waves compared to corresponding
theoretical dispersion curves.

Figure 4. Seismograms of particle velocity (raw amplitude) recorded along the simulated models for different source excitation amplitudes. S-wave muted.

on Fig. 2a) of similar apparent velocities for each rheology. How-
ever, the effect of viscoelasticity is clearly apparent on correspond-
ing spectrograms (Fig. 2b) which present important differences in
terms of amplitude and shape. The non-linear case typically presents
frequency-up conversions with at least two amplifications at higher
frequencies that are linked to the source peak frequency (1.5 kHz)

but could not be exactly and accurately associated to a specific
harmonic: the fundamental mode is located around a frequency of
1900 Hz, and the third harmonic is roughly 5700 Hz, but the second
harmonic that should be located around a frequency of 3800 Hz does
not appear clearly. In addition, the wavefield recorded for each case
has been transformed into the frequency-phase velocity domain (by
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460 R. Martin et al.

Figure 5. Amplitude spectrum of particle velocity (raw amplitude) recorded along the simulated models for different source excitation amplitudes. S-wave
muted.

a slant-stack in common shot gathers after correction for geometri-
cal spreading) to quantify the phase velocities of the P- and S-wave
events cited above. The resulting dispersion curves, presented on
Fig. 3 clearly show that the simulations perfectly describe imple-
mented phase velocities: constant velocity in the elastic case and, by
definition, dispersive relationship between velocity and frequency
in the viscoelastic case.

3.2.2 P-wave extraction using advanced preprocessing tools and
pulse modulation

We will consider the Ricker source described earlier as a reference in
term of amplitude. More runs involving exactly the same parameters
as the latter non-linear viscoelastic model are presented, but with
different amplitudes of the source (from 0.25 × to 2.25 × the
excitation amplitude of the first case, as shown on Fig. 1b). We will
focus on the longitudinal z direction, and consequently on the P-
wave train only. The seismograms, presented on Fig. 4 obtained for
each source excitation amplitude, are thus muted as soon as P- and
S-wave trains can be separated. Each corresponding spectrogram
on Fig. 5 clearly depicts the harmonics observed earlier resulting
from implemented non-linearities.

In order to clearly identify the non-linear effects, we extracted
traces from each seismogram and spectrogram along the line at four
different offsets, corresponding to two to five times the dominant
wavelength of the source (λP ≈ 0.18 m). These traces are presented

on top of Fig. 6. They correspond to the signals computed at each
different source excitation amplitude (from × 0.25 to × 2.25 the
amplitude of the reference run presented in Section 3.2.1; see colour-
scale on Fig. 1b). The corresponding spectra are presented on top
of Fig. 7, on which the main frequency peak A1 and two other
peaks A

′
and A′′ clearly appear (maxima are picked and shown as

black plus signs). These maxima are not in ratio 2 in frequency, but
seem to correspond to the third and fifth harmonics, respectively,
which poses the question of their correspondence with harmonic
wave components. These traces are then normalized to the source
maximum amplitude in both time and frequency domains (bottom
lines of Figs 6 and 7). When the normalization in time remains
equivalent (every normalized traces can be considered superim-
posed on Fig. 7), the ratio presented in frequency clearly shows
opposite behaviour as a function of source amplitude depending on
the considered peak. The black arrows, given on top of Fig. 7 as an
example, depict a non-monotonous behaviour of these harmonics
as a function of source amplitude.

We picked the amplitude of each peak and presented, on Fig. 8,
their ratios between the first peak and the other peaks. These spectral
ratios were computed at the 4 different offsets corresponding to
two to five times the dominant wavelength of the source (λP ≈
0.18 m) described above. The colours on Fig. 8 depend on these
offsets and ratio are given of course for every source excitation
amplitudes (from × 0.25 to × 2.25 the amplitude of the reference
run presented in Section 3.2.1). At far-field offsets, the ratio shows
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Figure 6. Traces recorded at four different offsets given as a function of the source-signal dominant wavelength (λP ≈ 0.18 m) presented for each different
source excitation amplitude (from × 0.25 to × 2.25; see colour-scale on Fig. 1b) with corresponding normalization to the amplitude at the source (A0). A is
the amplitude of the trace at corresponding offset.

strong variations with source amplitude and tends to remain stable
at near-field offsets. As stated earlier, picked maxima are not in
ratio 2 in frequency which suggests overlap (interferences) between
adjacent harmonics due to the wide frequency band of the Ricker
source and dispersion effects (a 1900 Hz fundamental frequency and
a 5700 Hz third harmonic frequency). This observation illustrates
as well the fact that non-linear effects accumulate over the distance
to the source, as these ratios increase at fixed amplitude A1 and
increasing distance.

Consequently, to exhibit and individualize the different peaks
more precisely, we introduce a narrow frequency band pulse source
implemented as a Gaussian-modulated sine pulse with a dominant
frequency of 1500 Hz. Fig. 9 compares normalized traces obtained
from both the Ricker pulse (with amplitude of the source 2 × the
excitation amplitude of the first case (3.2.1)) and the Gaussian-
modulated sine pulse (Fig. 10). From these seismograms (Figs 10a
and b), we computed amplitude (Figs 10c and d) and f−k spectra
(Figs 10e and f). The spectra clearly show that, within the same
propagation ranges and domains, the source modulation allows
the identification of all consecutive harmonics (frequency-up con-
versions in ratio 2 in frequency), corresponding to the expected
non-linear effect. In addition, for example in the case of strong
non-linearities arising from a high amplitude of the source, the su-
perimposition of all spectra corresponding to all successive offsets
along the analysed direction (Fig. 11) highlights the overlapping
process associated with wideband pulse. In the present case, all first

six successive modes are clearly defined in terms of peak frequency
location and amplitude. In this case of a Gaussian-modulated sine
pulse, we can observe that the amplitude maxima A1 have similar
non-linear effects (Figs 12a and b) as the A1 maxima in the Ricker
wavelet source case (Figs 11a and b), and are much better indi-
vidualized on a wider frequency range. However, the spectral ratio
amplitudes A3/A13 have almost the same exponentially increasing
patterns as A′′/A13 in the Ricker source case at almost similar off-
sets. In Fig. 11(b), the second and third peaks A

′
and A′′ are well

separated while in Fig. 12(b) the maxima A2 and A3 are almost
superimposed. The ratios of second and third harmonic amplitudes
A2 and A3 over first peaks A1, A12 and A13 present a more pro-
nounced non-linear behaviour (Figs 12b–d) at offsets closer to the
source location when compared to the Ricker wavelet source case.
More particularly, the ratios of second and third harmonic ampli-
tudes A2 and A3 over A12 and A13 show an increasing trend with
offset (Figs 12c and). Small oscillations of those spectral ratios for
the gaussian-modulated sine pulse appear at small offsets probably
due to near field effects, and seem to be mainly associated with
amplitude oscillations of A1. Finally, in both non-linear cases, we
can see that the spectral ratios are increasing (Figs 11e and f, 12e
and f) and are reaching similar high values for values of A1 close
to zero at very far offsets to the source while they are converging
asymptotically to a constant value for high values of A1 close to the
source.
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462 R. Martin et al.

Figure 7. Amplitude spectra and spectral ratio of traces recorded at four different offsets given as a function of the source-signal dominant wavelength
(λP ≈ 0.18 m) presented for each different source excitation amplitude (from × 0.25 to × 2.25; see colour-scale on Fig. 1b). A is the amplitude of the trace at
corresponding offset, A0 the amplitude at source and A1, A

′
and A′′ are the amplitudes of the three first maxima detected in the spectrum at each offset. The

black arrows are just given on top as an example showing their non-monotonous behaviour as a function of source amplitude.

(a)

(b)

Figure 8. Spectral ratio computed at different offsets for every Ricker wavelet source excitation amplitudes (the four different offsets, corresponding to two to
five times the dominant wavelength of the source (λP ≈ 0.18 m), are given with colours depending offset from blue (2λP) to green (5λP)).
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Figure 9. Test comparing normalized traces obtained from the Ricker pulse and a gaussian-modulated sine pulse: (a) at the source location and (b) at near
offset (2λP).

3.3 Discussion on non-linear regimes using
non-dimensional analysis

In order to characterize better the regime (linear, weakly or strongly
non-linear) under which the numerical experiments studied in the
previous section are performed, we consider below the simplest non-
linear model and its associated non-dimensional numbers. The sim-
ulated problem corresponds to an oscillating point (dipolar) source
along the z-direction in a homogeneous elastic solid medium, show-
ing linear viscoelastic isotropy. The non-linearity, as described ear-
lier, is anisotropic (only acting on the σ zz and εzz relation) and
quadratic. The non-linear propagation is inspected along the z-
direction. To our knowledge, there is no analytical solution in this
configuration for the non-linear process of harmonic generation. We
therefore recall here the usual parameters for plane wave propaga-
tion of longitudinal waves in a homogeneous medium with quadratic
non-linearity. First, we define linear and non-linear time or length
scales denoted by τ a, τ nl, La, Lnl. La and τ a correspond to the char-
acteristic length and timescales over which the initial amplitude of
a wave is divided by e due to dissipation effects, and Lnl and τ nl

are the characteristic non-linear length and timescales over which
non-linear effects develop. If the receivers are located close to the
source then non-linearities cannot accumulate enough. If they are at
a distance to the source lower than Lnl then the non-linear effects can
be observed but are still in a regime of accumulation. If it is equal
to Lnl then the non-linearities are fully accumulated and developped
and Lnl denotes the shock front distance. If we non-dimensionalize
the non-linear equations, they can be expressed as:

ω2ρUoU′ = 1/Ladiv(
(λP,S + λ̃P,Siω)Uo/La ε̂′

1 + τ0iω
+ DU 2

o /L2
a ε̂

′2)

U′ = (λP,S + λ̃P,Siω)Uo/L2
a

ω2ρUo(1 + τ0iω)
div(ε̂′) + DU 2

o

ρω2Uo L3
a

div(ε̂′2)

(15)

where U = U
′ × Uo, xi = x ′

i × La , t = t
′
/ω, ε = ε

′ × Uo/La with ε
′

= 0.5(∇′
U

′ + ∇′
U

′ T). If we denote the modulus of the viscoelastic
seismic velocity by V pa = ( ||MP ||

ρ
)1/2, where MP is the complex

modulus associated to the P wave, then the (visco-)elastic length
scale can be considered homogeneous to the seismic wavelength La

= Vpa∗T = Vpa/ω. Then the previous equations can be simplified
as:

U′ = ρV p2
aUoω

2/V p2
a

ω2ρUo
div(ε̂′) + DU 2

o La

ρω2Uo L4
a

div(ε̂′2)

= div(ε̂′) + DU 2
o Laω

4

ρω2UoV p4
a

div(ε̂′2)

= div(ε̂′) + DUo Laω
2

ρV p4
a

div(ε̂′2)

= div(ε̂′) + La

Lnl
div(ε̂′2)

= div(ε̂′) + �div(ε̂′2), (16)

where we can consider the non-dimensional Goldberg number �

that measures the ratio between the linear attenuation effects and
the non-linear elastic effects. � can be expressed as

� = τa

τnl
= La

Lnl
, (17)

where the different lengths and timescales can be formulated as:

Lnl = ρV p4
a

ω2 DUo

τnl = Lnl

V pa

= ρV p3
a

ω2 DUo

τa = �τnl

La = V pa/ω

La = Lnl
τa

τnl
. (18)

Since we have D = D′ρV 2
p with D

′ = 5.1013 we can compute
�:

� = D′Uo Laω
2

V p2
a

� = D′ Vo

V pa
. (19)
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464 R. Martin et al.

Figure 10. Seismograms (a, b), spectrograms (c, d) and f−k spectra (e, f) obtained for the Ricker pulse source (a, c, e) and the Gaussian-modulated sine pulse
source (b, d, f) are compared to show the impact of two different types of pulse source on the seismograms and the spectra. The source amplitude factor is
equal to 2 in both pulse source cases.

In our simulations of the previous Section 3.2.2 and for a
source amplitude factor of 2.25, the particle velocity and the dis-
placement at the source are Vo = 2.1 × 10−11 m.s−1 and Uo

= 1.4 × 10−14 m. The values of these time and length scales
are τ a 	 0.3 ms (maximum viscoelastic relaxation time), τ nl 	
0.07714 ms, La 	 0.18 m (maximum viscoelastic wavelength), Lnl

	 0.04628 m. The non-dimensional Goldberg number is approxi-
mately equal to a value of 	4. Furthermore, the non-linear effects
can be measured also in terms of the rate of perturbation of the
linear stress tensor by the non-linear terms in the P-wave direc-

tion: σ nl
zz −σ l

zz

σ l
zz

= E∗εzz (1+D/E∗εzz )
E∗εzz

= D/E∗εzz , where E∗ = ρV 2
p . Here

D/E∗ = D
′ = 5 × 1013. Therefore if we take the initial strain εzz0

= 7.77 × 10−14 measured close to the source we have a ratio value
around 3.88. When compared to plane waves, in the 3-D simulated
problem it is expected that La is reduced due to geometrical attenu-
ation, and Lnl is increased due to decreasing wave amplitude along
distance. As a result, the Goldberg number of our problem (the non-
linear over linear ratio) is necessarily slighlty smaller than 4, and
exhibits clearly the non-linear propagation regime. The non-linear
effects on signal amplitudes depicted in Figs 11 and 12 correspond
to an amplitude source equal to 2.25 and to a very similar Goldberg
non-linear number.

If the wave problem would be for plane waves, the configura-
tion of viscoelastic parameters and the non-linear parameter would
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Offset presentation (a) of spectrograms of Fig. 10 for the Ricker pulse source. In semi-logarithmic scale: (b) Representation of the amplitudes of
the three first maxima A1, A

′
and A′′ detected in the spectrum at all offsets in the simulation. (c) and (d) represent spectral ratio between the three first maxima

computed at all offsets in (c) and (d), and versus the first peak A1 in (e) and (f).

(a) (b)

(c) (d)

(e) (f)

Figure 12. Offset presentation (a) of spectrograms of Fig. 10 for the Gaussian-modulated sine pulse source. In semi-logarithmic scale : (b) Representation of
the amplitudes of the three first maxima A1, A2 and A3 detected in the spectrum at all offsets in the simulation. (c) and (d) represent spectral ratio between the
three first maxima computed at all offsets in (c) and (d), and versus the first peak A1 at all offsets in (e) and (f).
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give a Goldberg number of 	4. This indicates that non-linear ef-
fects would appear in the direction of propagation of the viscoelastic
plane wave. However, in our specific problem, the three-dimensional
character of the oscillating point source introduces additional ef-
fects. First, a higher attenuation with distance from the source is
expected due to geometric losses. This leads to a localization of the
main non-linear effects closer to the source than in the plane wave
case. This also allows for the presence of near field effects such
as a non-monotonous evolution of the fundamental wave amplitude
along the z-axis, probably at the origin of the oscillations observed
in Fig. 12. In our configuration, the fact that the non-linearity op-
erates only on εzz, and is essentially anisotropic, necessarily leads
to a preferential accumulation direction for the non-linear effects
of harmonic generation. The harmonic generation process is thus
possible only in the z-direction, which may lead to the generation
of a ’beam’ of harmonics with less geometrical attenuation than
the fundamental wave. This unusually strong non-linear anisotropy,
which, to our knowledge, has not been observed in real systems ear-
lier, is only made possible here thanks to the developed simulation
method.

4 C O N C LU S I O N S

The simulation of seismic wave propagation in a 3-D viscoelas-
tic and non-linear media is presently performed using a 3-D
ADE-FDTD scheme. Comparing to classical recursive convolu-
tion schemes, the flexibility and its perfect suit for multi-threaded
execution of the ADE method must be weighted with the need of
implementing as many functions as constitutive laws to be tested.
However it offers the possibility to even define 3-D models made
of completely different non-linear behaviours. The choice of the
non-linear quadratic term in the constitutive law is adapted to the
granular media behaviour under consideration. Such constitutive
law represents fairly well the non-linear behaviour due to grain-to-
grain interaction which plays a significant role in earthquake strong
ground motion modelling.

In the present case, the non-linear constant value D, associ-
ated with a Gaussian-modulated sine pulse peak frequency of
1.5 kHz, generates harmonics that are multiple of 1.5 kHz. The
non-linearities detected in the displacement spectrograms highlight
several harmonics at frequencies that are multiples of the dominant
frequency of the excitation source only for narrow band pulse exci-
tations. In case of a wide band pulse, (i.e. when the peak frequency
is similar to the bandwidth) the different harmonics are not so well
described and individualized, and are overlapping each other. Such
aspects are rarely discussed, more likely because such wideband
sources are rarely encountered in reality whatever the scale and
type of the case study (i.e. seismology, near-surface seismic, non-
destructive testing). The results show that we are able to accurately
assess non-linear and dispersive behaviour in 3-D with an adequate
strategy of source excitation, that is going to a Gaussian-modulated
sine wave of narrower frequency bandwidth, which constitutes an
efficient tool to tackle for example seismic source inversion prob-
lems.

Moreover, in three-dimensions the orders of magnitude of the
amplitudes simulated are lower than their equivalent in 1-D, which
make very difficult their interpretation when observed in rare oc-
casions as in laboratory sandbox experiments (Bodet et al. 2014).
It is worth noting, that the numerical verification process of the
current 3-D scheme has been performed considering a non-linear
viscoelastic behaviour along a single direction, while others were

kept simply associated with a viscoelastic model. It does not show
any sign of numerical instability, and thus illustrates also the ca-
pabilities of this numerical approach to appraise a whole range
of issues associated to the role of anisotropy associated with both
dispersion and non-linear behaviour (Saenger & Bohlen 2004). Fi-
nally, we have defined non-linear non-dimensional numbers like the
Goldberg number and the ratio of non-linear perturbations to linear
terms that are representative of the non-linear regimes.

The validity of our 3-D ADE-FDTD approach has been illustrated
on an anisotropic analog rather than on a heterogeneous model as the
main objective of defining a dispersive-non-linear constitutive law
is to model the behaviour associated with a naturally heterogeneous
medium at different scales. In the future an interesting goal would
consist in using such homogenized models (for dispersion and non-
linear behaviour) for several types of problems: at the mesoscale like
site effect issues (for example by adjusting the constitutive law of the
sedimentary filling) or at the laboratory scale for phenomenological
issues to analyse the attenuation parameters coming from the data
analysis. At the laboratory scale we could then try to see if non-linear
effects due to grain-to-grain contacts can explain acoustic modes
appearing on wider frequency ranges at different distances from the
source and how they are competing with attenuation effects.
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tion prediction equations for damping scaling factors and vertical-to-
horizontal spectral amplitude ratios for the broader Europe region, Bull.
Earthq. Eng., 12(1), 517–547.

Berjamin, H., Lombard, B., Chiavassa, G. & Favrie, N., 2017. Analytical
solution to the 1D non-linear elastodynamics with general constitutive
laws, Wave Motion, 74, 35–55.

Biot, M.A., 1956a. Theory of propagation of elastic waves in a fluid-
saturated porous solid. I: low-frequency range, J. acoust. Soc. Am., 28,
168–178.

Biot, M.A., 1956b. Theory of propagation of elastic waves in a fluid-
saturated porous solid. II: higher-frequency range, J. acoust. Soc. Am.,
28, 179–191.

Biot, M.A., 1973. Non-linear and semilinear rheology of porous solids, J.
geophys. Res., 23, 4924–4937.

Blanc, E., Chiavassa, G. & Lombard, B., 2014. Wave simulation in 2D
heterogeneous transversely isotropic porous media with fractional atten-
uation: a Cartesian grid approach, J. Comput. Phys., 275, 118–142.

Blanc, E., Komatitsch, D., Chaljub, E., Lombard, B. & Xie, Z., 2016.
Highly accurate stability-preserving optimization of the Zener viscoelas-
tic model, with application to wave propagation in the presence of strong
attenuation, Geophys. J. Int., 205(1), 427–439.

Bodet, L., Dhemaied, A., Martin, R., Mourgues, R., Rejiba, F. & Tournat, V.,
2014. Small-scale physical modeling of seismic-wave propagation using
unconsolidated granular media, Geophysics, 79(6), T323–T339.

Bohlen, T., 2002. Parallel 3-d viscoelastic finite difference seismic mod-
elling, Comput. Geosci., 28(8), 887–899.

Bonilla, L.F., Archuleta, R.J. & Lavallée, D., 2005. Hysteretic and dilatant
behavior of cohesionless soils and their effects on non-linear site response:
field data observations and modeling, Bull. seism. Soc. Am., 95(6), 2373.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/1/453/5145581 by U

niversite de C
aen Basse-N

orm
andie user on 14 January 2019



Nonlinear viscoelastic modelling using ADE 467

Bonilla, L.F., Tsuda, K., Pulido, N., Régnier, J. & Laurendeau, A., 2011.
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A P P E N D I X : V E R I F I C AT I O N A N D
A C C U R A C Y T E S T S O F T H E
N U M E R I C A L M E T H O D

In the linear viscoelastic case, it is important to check the accuracy
of the numerical method used. For this purpose, we compare, in
the frequency domain and at as 0.5 m distance from the source, the
analytical and the numerically computed compressional and shear
phase velocities defined as the norms of MP/ρ and MS/ρ, where
MP and MS are the moduli given in eq. (7) for a 1500 Hz dominant
frequency Ricker or Gaussian-modulated sine pulse wavelet source.
In Figs A1b–e), we can observe that P and S phase velocities are
very well represented numerically, particularly in a frequency range
between around 200 Hz and f0 	 4712 Hz. Maximum errors
of less than 0.3 and 0.2 per cent are obtained on P and S phase
velocities for the Ricker and Gauss-modulated sine source cases,
respectively, which is very good. In the non-linear case, we consider
the strain ε numerically computed at each time step and we use it
to compute the stress directly in the frequency domain after Fourier
transform of the desired stress–strain defined by eq. (9). We compare
this ’theoretical’ solution to the FD numerical stress solution in
the frequency domain. We can see in Fig. A1f that the numerical
solution of the σ zz component is very accurate.
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Figure A1. Similar numerical and analytical velocity component vz computed in the time domain for the Ricker source (a). Numerical and theoretical P- and
S-wave phase velocities for the Ricker (b and c) and the Gaussian-modulated sine (d and e) pulse source cases are compared for the linear viscoelastic case at
a 0.5 m distance from the source along the z axis. In (f), for the non-linear viscoelastic case and the Gaussian-modulated sine pulse source of 2.25 maximum
amplitude, the numerical and analytical values of the σ zz stress component are compared in the frequency domain with very good agreement.
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