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Abstract

We present a zonal grid based numerical method applicable to two-phase

flows. The method is aimed at reducing the computational costs for interfa-

cial flows involving local high velocity gradients such as those encountered in

atomization systems. The objective is to fully resolve the primary atomization

region while at the same time limiting the number of grid points in secondary

or dispersed zones where a very fine grid is not required, along with the ability

to use a local zone based time step. Calculations of a rising bubble and liquid

jet atomization configurations were performed on a coarse grid with a fine zone

superimposed on small domains with the strongest gradient. The results show

good agreement with simulations carried out with a complete refined mesh with

only a fraction of the CPU time. The results indicate that the two-phase zonal

grid model approach introduced here has the potential to provide an accurate

and cost-effective approach for modeling two-phase flow problems that have

multiple temporal and spatial scales.

Keywords: zonal grid, multi-phase, multi-solver, interface

1. Introduction

Two-phase flows are frequently encountered in nature or industrial devices

such as, for example, in wave breaking, fluidized beds, chemical reactors, phase
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change heat exchangers, etc. These flows are characterized by the presence of an

interface between two or more phases and one of their common characteristics5

is the presence of a wide range of temporal and spatial characteristic scales.

The atomization of a liquid jet is a perfect example to illustrate these scales. In

such a configuration, the destabilization of the gas-liquid interface occurs on a

large length scale compared to the size of ligaments and droplets that follows the

break-up of the interface, the thickness of which is smaller than the Kolmogorov10

length scale. Despite significant progress during the past decade, the modeling

and simulation of two-phase flows with moving interfaces and a wide range of

characteristic scales in complex geometries remains a challenging problem from

both the physical and the numerical point of view.

Among several other imperatives, a fine mesh resolution is crucial to obtain15

an accurate estimation of the temporal and spatial evolution of the interfacial

flow. However, computational resources are limited. Consequently, the use of

a uniform fine mesh covering the whole geometry is far too costly in practical

or industrial configurations. To overcome this difficulty, it is possible to refine

the mesh only when necessary at very specific locations. Grid refinement is the20

adaptation of a computational grid to a flow solution by locally dividing the grid

cells into smaller cells. It is an efficient way to address flow scaling problems.

Another difficulty is the diversity of the physical phenomena involved in such

flows. A unique set of models to capture the flow evolution is not necessarily an

optimal choice since the capture of the interface with large scale destabilization25

on the one hand and the computation of a vaporizing dispersed spray on the

other hand need very different physical and numerical approaches to be correctly

predicted by any simulation.

This is why the local grid refinement is only part of the solution. One

should also be able to solve locally different physical and numerical models30

when necessary. Let’s have a general overview of the existing techniques able

to address these major points.

Grid refinement techniques may be broadly divided into two groups: Adap-

tive Mesh Refinement (AMR) and Domain Decomposition Methods (DDM).
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Adaptive mesh refinement methods dynamically refine the mesh to capture35

sharp discontinuities and steep gradients according to the flow dynamics. A

mesh broadening operation is also applied in areas with weak variations of the

flow properties. Apart from minimizing the number of grid cells, which reduces

the computational cost, a major advantage is the automation of the procedure,

which eases the meshing work.40

Among existing families of AMR, the most common and basic ones consist

of locally refining a single mesh by dividing the grid cells considered. The main

drawback of the procedure is the automatic division of the time step. This

time step dependency comes from the reduced cell size in locally refined region.

Thus, even if the number of cells is optimized, it leads anyway to a high com-45

putational cost. To gain computer resources, refined regions can be considered

as independent blocks with a specific time step that does not impact the global

time step. This kind of AMR is called AMR with subcycling in time. Refine-

ment is performed in time as well as in space so that the ratio of the time step

to the grid spacing is kept constant. This approach is based on the original50

method proposed by Berger and Oliger [1]. A series of studies have investigated

this topic: Almgren et al. [2], Bell et al. [3], Martin et al. [4, 5] treated several

important aspects of the Navier-Stokes solution, in particular the conservative

aspects. This AMR methodology with refinement in time has been implemented

in the AMR library AMReX [6] and can be used for various applications. The55

term adaptive means that refined regions are constructed or destroyed every few

time-steps, based on given error criteria. This operation is called book keeping

and it has an additional cost, especially in the framework of parallel computing,

where intergrid connectivity has to be updated after each book keeping opera-

tion. Furthermore, book keeping is unnecessary in configurations where the size60

and location of zones needing refinement are a priori known before the begin-

ning of the simulation. In this case, a static local mesh refinement technique is

a better candidate as one of the domain decomposition methods.

The Domain Decomposition Method (DDM), also called multizonal ap-65
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proach, is a favorable candidate to handle complex flows and geometries. In

DDM, the whole domain is divided into a number of geometrically simple zones

or subdomains in which independent meshes can be generated. Different gov-

erning equations or numerical solvers can be applied on these meshes and a zone

can be easily refined without affecting its neighbors. Each subdomain can be70

connected to a neighboring zone with a simple patch (patched grids) or they can

share a common region (overlapping grids). A third possibility is to define a grid

that can fully overlap a larger region (zonal grid). These connection methods

are now detailed.

The patched grids method employs disjoint subdomains that share a simple75

interface or patch without overlapping. It was proposed by Rai [7] for the

finite difference method and extended to the finite volume method by Walters

et al. [8]. One of the main advantages of neighboring blocks that have neat

interfaces is their ability to have a better conservative description than, for

instance, in the overlapping grids method. Many studies have exploited this80

conservative property [9, 10] and improved it [11, 12]. On the other hand, this

method is less efficient at handling complex geometries because of the interface

constraint.

The overlapping grids method, also called the Chimera method, was in-

troduced by Benek et al. [13, 14] in 1983. This method is used to perform85

simulations involving multiple bodies in relative motion and multiple grids that

overlap. Its development was also motivated by the possibility of selectively

refining the mesh in regions of interest and solving different flow models on

each mesh. For example, it is possible to solve Navier-Stokes (NS) equations in

near-wall areas and Euler equations in zones far from the walls. This NS/Euler90

hybrid approach has since been applied in many studies [15, 16, 17]. In the con-

text of multiphase flows, an overlapping grids methods has been developed by

Tu [18] to model complex turbulent two-phase flows with irregular geometries.

It was recently applied by Nguyen et al. [19] to moving bodies to enter water or

by Castro et al. [20] and Wan et al. [21] about to ship hydrodynamic problems.95

In some specific cases, a given zone can fully overlap a larger region. This is

4



called the zonal grid method. It uses a successive refinement of grids where a

coarse grid solution constitutes the boundary conditions for the next finer grid

level. It is similar to patch-structured AMR, with the difference that grids are

static. It was used to improve the resolution of near wall boundary layers in100

[22] and [23] using respectively Large Eddy Simulation (LES) and Direct Nu-

merical Simulation (DNS). Hybrid schemes with various turbulence models can

also be used, as in the work of Richez et al. [24] where a Reynolds averaged

Navier Stokes (RANS) turbulence model is used in the main domain while LES

describes the walls’ boundary layer. It has also been widely used in meteoro-105

logical applications [25, 26, 27] to refine the mesh inside high velocity gradient

structures such as hurricanes.

The objective of the present work is to extend the zonal grid approach in

order to simulate two-phase flows, with refinement in space and time. This new

TPZG (Two-Phase Zonal Grid) approach aims to combine most of the positive110

features of some of the previously described methods:

1/ Use the sub-cycling in time of the AMR to reduce the computational cost

of the fine mesh zones.

2/ Adopt the coincident interfaces method from the patched grids approach

for a better conservation of the flow properties between neighboring zones.115

3/ When necessary, use the possibility of DDM to solve various flow models

with adapted numerical schemes in each zone.

4/ Use the original zonal grid topology feature that keeps one global mesh

for the overall computational domain adding when and where necessary

embedded refined subgrids.120

In the TPZG method detailed in this work, a coupling between one coarse

domain and a refined region is considered. An extension to multiple refined

regions is straightforward if necessary. This coupling is two-way and explicit.

It means that matrices dedicated to each grid are defined and solved separately

and then followed by an explicit coupling, which is the only way to obtain125
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subcycling in time between domains. The coarser domain is solved first and

provides boundary conditions for the refined region that is then solved with,

possibly, a smaller time-step until it reaches the same time state as the coarse

region. The fine grid solution is finally interpolated onto the coarse grid and

additional corrections are performed.130

In the following section, two different multiphase solvers are described in de-

tail. The first one uses an Interface Capturing Method (ICM) to follow the flow

evolution while the second one does not define the interface but uses a Turbu-

lent Diffusion Flux (TDF). The two-phase zonal grid method is then described.

It uses these two solvers as a basis to demonstrate the ability of the procedure135

to capture different kinds of flow. In the last section of this paper, results are

shown where TPZG is applied on three different test cases: a rising bubble and

two liquid jet atomization configurations.

2. Governing equations

The complex nature of two-phase flows, characterized by turbulence, de-140

formable phase interface, phase slip and compressibility of the gas phase, makes

it difficult to obtain reliable flow models. First of all, the nature of the flow

needs to be characterized. A two-phase flow can be broadly classified into three

categories: separated flows, mixed flows and dispersed flows. Generally, the

description of each of these categories requires a dedicated approach.145

In separated flows, each phase is continuous and occupies a distinct region

of the domain; the volume fraction of the primary phase is high in one region

and low in the other one and the two phases are separated by an interface,

where surface tension force applies. In dispersed flows, one phase is assumed to

be dilute (with a volume fraction smaller than 10% of the global volume) and150

composed of finite spherical inclusions dispersed inside the other carrier phase.

All dispersed elements are assumed to be very small compared to the scale of

the system. Thus, they are considered pointwise and the flow around and inside

the particles does not need to be computed. Mixed flows are transitional states
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between the two above-mentioned flow regimes.155

Several families of solvers exist to describe the evolution of two-phase flows

at a macroscopic level. When modeling the evolution of two-phase flows, Euler-

Lagrange descriptions are often considered. However, they assume a very spe-

cific topology (dispersed spherical droplets) and the Lagrangian tracking of nu-

merous inclusions engulfed in a carrying phase. The carrier phase is solved by160

an Eulerian description which can lead to several numerical difficulties. On

the other hand, Euler-Euler methods can deal with both dense and dispersed

flows but with additional closure terms to account for the dynamics of the two

phases. Lastly, Eulerian methods consider a single-fluid approach, thus avoiding

the choice of both carrier and discrete phases [28]. In this study, the two-phase165

flow is considered as a single-fluid flow composed of two species with highly vari-

able density. To illustrate the ability of the TPZG, two different Eulerian solvers

have been coupled together. These solvers use a Volume-Of-Fluid (VOF) [29]

surface tracking method. VOF defines and tracks in time and space the portion

of primary phase present in a given cell. With a VOF description, the inter-170

face can be treated either with a resolved interface process that defines a sharp

boundary where surface tension applies or as a diffuse transition between each

phase. As these solvers are well-known, their algorithms are reported in Ap-

pendix B, along with the discretized equations in Appendix A. In both solvers,

evolution of the primary phase is described by a balance equation of a phase175

indicator, α. The first solver uses a VOF method to track the interface with a

specific algorithm surface compression method [30] to limit numerical diffusion.

It will be referred to as the Resolved Interface (RI) solver in the following. As

previously mentioned, the second solver does not consider any surface tension

and since turbulent flows are considered, it can be shown that the turbulent dif-180

fusion flux term prevails in the primary phase volume fraction evolution. Thus,

this solver is referred to as the Turbulent Diffusion Flux (TDF) solver.

Let’s consider a two-fluid flow with a high density fluid denoted by 1 and

a low density fluid by 2. Both fluids are incompressible and non miscible. In

the present work, phase 1 is taken as the reference fluid component followed185
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in space and time. The scalar field α represents the volume fraction of fluid 1.

Thus,

α =


1 in fluid 1

0 in fluid 2

0 < α < 1 at the interface

(1)

Considering incompressible flows, without mass transfer across the inter-

faces, the governing equations include continuity:

∇ ·U = 0 , (2)

where U is the velocity vector. The momentum balance is given by:

∂ρU

∂t
+ ∇ · (ρUU)−∇ · (µeff∇U) = −∇Prgh + ∇U ·∇µeff + Q , (3)

where ρ is the density and Prgh is the dynamic pressure defined as:

Prgh = P − ρg · x , (4)

where P is the pressure, g the gravitational acceleration and x the position

vector. The efficient dynamic viscosity term µeff = µ + ρνt is the sum of the

molecular dynamic viscosity µ and the turbulent effects ρνt. The turbulent190

kinematic viscosity νt is given by the chosen turbulence model. The source

term Q includes the gravitational acceleration g. Moreover, when a resolved

interface between the two fluids is considered, the surface tension is added to

Q. Then,

Q =

 QD = −g · x∇ρ ,

QI = −g · x∇ρ+ fσ ,
(5)

where the subscript ()D is specific to a turbulent diffusion flux solver (TDF)

and ()I stands for a resolved interface (RI) modeling. In the latter case, the

surface tension fσ is applied at the interface position. This force is defined by:

fσ = σκ∇αI , (6)
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where σ is the surface tension coefficient. The interface curvature κ is defined

as

κ = −∇ · n = −∇ ·
(

∇αI
|∇αI |

)
, (7)

the divergence of the normal vector n of the interface.195

The fluid density and viscosity are functions of the phase indicator α:

ρ = αρ1 + (1− α)ρ2 , (8)

and

µ = αµ1 + (1− α)µ2 , (9)

where density and viscosity in each separate phase 1 and 2 are considered con-

stant.

Besides the mass and momentum equations, the VOF method requires keep-

ing track of the volume fraction. This is performed by advecting the VOF field

with the incompressible velocity field through the following equation:

∂α

∂t
+ ∇ · (Uα) = 0 . (10)

Equation (10) transports the mixture properties and position of the interface.

In the case of a sharp interface, an interface capturing method is necessary to

define the geometric characteristics of the interface and correctly compute the200

surface tension term in the momentum equation (3).

Resolved interface (RI solver).

In the RI solver, equation (10) is solved with an additional surface compres-

sive term in order to keep the interface sharp [31]:

∂αI
∂t

+ ∇ · (UαI) + ∇ · [U cαI(1− αI)]︸ ︷︷ ︸
compressive term

= 0, (11)

where the αI(1−αI) term enforces the compressibility term to be concentrated

only at the interface region. Thus, it has no effect on the solution throughout

9



the rest of the domain. U c is a suitable velocity field selected to compress the

interfacial region [32], defined as a relative velocity between the two phases:

U c = min [Cα | U |,max (| U |)]n (12)

where the min operator is performed locally, at the faces surrounding the cells205

concerned and the max operator is performed globally, over the entire domain.

The order of magnitude of the compressibility coefficient Cα is unitary and

in this work, it was set to unity. As described by Rusche [31], the artificial

compressive term of equation 11 provides interface straightening without the

need to use an interface reconstruction method, with the advantage that the210

boundedness of α between 0 and 1 is respected.

Diffuse interface (TDF solver).

The TDF solver exploits a Reynolds averaged version of the balance equation

for the primary phase volume fraction (Eq.10) with an additional term namely

the turbulent diffusion liquid term:

∂αD
∂t

+ ∇ · (UαD) = −∇ ·Rα︸ ︷︷ ︸
turb. diff. liquid term

. (13)

This turbulent liquid flux defined as Rα = UαD −UαD represents the tur-

bulent transport of the liquid volume fraction induced by velocity fluctuations.

It is modeled thanks to a gradient-diffusion closure approximation

Rα = − νt
Sct

∇αD , (14)

where Sct is the turbulent Schmidt number set to 0.7.215

3. Numerical method

Both two-phase solvers introduced previously are generally used to solve the

evolution of two-phase flows on a single grid. Our objective is to use simultane-
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ously both solvers and interlink them on two different grids, thanks to a zonal

grid methodology, with separate refinement in time and space.220

Depending on the local characteristics of the flow, it is then possible to use

a particularly refined zonal grid making it possible to capture very high local

gradients while a coarse grid is used to describe the rest of the flow.

In this section, TPZG is developed in the framework of the OpenFOAM R©

library. The methodology may be applied for any solver. In this work, the225

interface (RI) tracking solver used is interFoam while the diffusive (TDF) solver

is twoLiquidMixingFoam. In both solvers, the distribution of the liquid volume

fraction field α is calculated ahead of the PISO algorithm [33] that updates the

velocity U and the pressure Prgh fields. The two solver algorithms are described

together in Appendix B.230

3.1. Notations

In the following, the considered domains are referred to as the Global Domain

(GD) and the Zonal Domain (ZD). GD is the complete geometry to be studied

while ZD is a local area fully superimposed on part of GD. The ZD mesh is finer

than the GD mesh, since its purpose is to capture physical processes finer than235

the resolution of GD (Fig. 1). The interface between ZD and GD is referred to

as Γ.

Concerning finite volume notations, in the following, subscript ()f indicates

the face values. The cell volume is V and the volumetric flow rate through one

of its faces f is defined as

F = Sf ·Uf , (15)

where Sf is the surface normal vector. More details about the finite volume

discretization of the governing equations can be found in Appendix A.240
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Global Domain (GD)

Zonal Domain (ZD)

Coupled boundaries
or ZD interface Г

Prolongation on ГP

Restriction R

Figure 1: Global and zonal domains. Global domain (GD) is the main computational domain

while Zonal Domain (ZD) is fully overlapped in GD. Communication from GD to interface Γ

is done via the prolongation P operator. Communication from the ZD field to the underlying

GD field is done via the restriction R operator.

3.2. Subcycling in time

A specific time-step is defined for each domain: ∆t on GD and ∆τ on ZD.

Thus,

∆τ =
1

rt
∆t, (16)

where rt is the time-step ratio between ZD and GD. This ratio can be either

fixed or adaptive for each iteration. In the case of a fixed time-step ratio, rt

is defined when ∆t is fixed as well. In that case, rt is equal to the spatial

refinement ratio rx between ZD and GD, which is the ratio between the GD

average cell size (∆x)GD and the ZD average cell size (∆x)ZD:

rt = rx =
(∆x)GD
(∆x)ZD

. (17)
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On the other hand, for an adaptive time-step ratio, rt varies at each time-step

when GD and ZD time-steps are calculated based on a CFL constraint. An

adaptive GD time-step ∆t is calculated with the following relation [34]:

∆t = min

[
Comax
Co

∆tn,

(
1 + λ1

Comax
Co

)
∆tn, λ2∆tn,∆tmax

]
, (18)

where the face-computed Courant number Co is defined as ,

Co =
Sf ·Uf

Sf · dPN
∆t , (19)

with dPN = xP − xN the distance between the owner cell center P and the

neighbor cell center N (see figure A.19). ∆tn refers to the time-step at the

previous GD iteration (∆t being the one at the current iteration), Comax= 0.5,

∆tmax are user-defined parameters and λ1 = 0.1 and λ2 = 1.2 are two constant245

factors used to increase the time-step gradually and avoid unstable oscillations.

A provisional value ∆τ∗ for the zonal grid time step is determined with a similar

equation adapted to ZD.

Using relation (18) provides values for GD and ZD time-steps in the current

time loop, respectively ∆t and ∆τ∗. Since the time-step ratio between the two

domains is an integer, the ZD time-step is adjusted to fulfill this requirement.

First, the time step ratio is rounded to the upper integer bound:

rt = floor

(
∆t

∆τ∗

)
+ 1 , (20)

where floor(a) is a function to obtain the closest integer lower than a. Then,

the effective ZD time-step ∆τ is determined using equation (16).250

3.3. Solver algorithm

The principle for one GD time-step is now described in the following and

illustrated in figure 2. Details of the interpolation and correction steps are given

later. One starts from the solution on both domains at t = tn and seeks to find

the solution at tn+1 = tn + ∆t:255

(1) Solve entirely GD, for one global ∆t time step, using the single grid

solver algorithm.
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(2) Enter rt loops:

(2.1) Prolongation step: The coupled boundary conditions of ZD,

at the interface Γ, are updated based on interpolation in time and space260

of the GD solution at time tn+1.

(2.2) Solve entirely ZD, for one zonal ∆τ time step, using the single

grid solver algorithm.

(2.3) Go back to (2.1) until tn+1 is reached.

(3) Restriction step: ZD solution fields at tn+1 are transferred to GD cells265

through interpolation procedures.

(4) Correction of GD solution: 1) A Poisson equation is solved to correct

the volumetric face flux field. 2) Volume fraction values in cells along

the ZD interface (lying outside) are corrected. 3) Mixture properties are

updated.270

The single grid solver algorithms, for (RI) and (TDF) models, are detailed

in Appendix B.

3.4. Treatment of the zonal/global grid interface (step (2.1))

The values imposed on the coupled boundary conditions of ZD, at interface

Γ, are computed at step (2.1) of the TPZG algorithm. A coupled boundary275

condition means that some of the values imposed at the patch are interpolated

from the GD internal field. The two types of coupled boundary conditions

that are used will be detailed later. This interpolation process is called the

prolongation step, similarly to its denomination in the Multigrid method [35].

An illustration of the process is given in figure 4-(a). We now introduce the280

prolongation operator P(φ) that interpolates any variable φ from the GD field to

the zonal interface Γ. This operator combines the following three interpolation

steps:

• step 2.1.1: Interpolation from cell centroids to face centers in GD,

14



Global Domain (GD) Zonal Domain (ZD)

(U, Prgh, α, φ)n (U, Prgh, α, φ)n

(U, Prgh, α, φ)n+1

(U, Prgh, α, φ)n+1,corr

(U, Prgh, α, φ)n+ 1
r

(U, Prgh, α, φ)n+ 2
r

(U, Prgh, α, φ)n+1

(1) Single grid solver

for one GD time step

(see figure B.20)

(2.1) Update of ZD bound-

ary conditions by inter-

polation of GD fields

(2.2) Single grid solver

for rt ZD time steps

(see figure B.20)

(3) Interpolation of ZD

fields (U ,α and φ) to GD

(4) Divergence-free and

phase flux correction

steps, update of mixture

properties

Prolongation on GD/ZD boundaries P
Restriction R

Figure 2: Zonal methodology algorithm; rt is the time refinement ratio between ZD and GD.

U is the velocity field, Prgh is the pressure field, α the primary phase field and φ a transported

scalar quantity field. Subscript ()n is the index for time instant t and ()n+1 stands for the

time instant t+ ∆t after one time step.

• step 2.1.2: interpolation in time,285

• step 2.1.3: interpolation tangential to the zonal interface.

The first step (2.1.1) depends on the variable that is interpolated. The other

two are generic. We detail these procedures below.

step 2.1.1: In GD, cell centered fields are interpolated to the face center f :

290

Before interpolating from one domain to another, it is necessary to in-

terpolate cell centered fields to face centers. Variables that are already
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face centers, i.e. a surface normal gradient ∇⊥φ, do not require this step.

A surface normal gradient is the component, normal to the face, of the

gradient of values at the centers of the two cells that the face connects.295

Velocity:

The cell centered velocity field is interpolated with a linear scheme and a

correction is added to ensure mass conservation. It consists of adding to

the velocity vector magnitude the difference between the face flux value

(which is mass conservative) and the scalar product of the velocity vector300

with interface normal:

Uf = Ūf +

(
F

|Sf |
− Ūf · nf

)
nf , (21)

where Ūf is a linear interpolation of the neighbor cell center values at face

f (see figure A.19) and nf the face normal vector,

nf =
Sf
|Sf |

. (22)

In that way, by dot producting equation (21) with nf , one gets

Uf · nf =
F

|Sf |
. (23)

This approach ensures that an interpolated face velocity is coherent with

the volumetric flux at this face.

Phase indicator:

Mass conservative approaches are considered for the phase indicator field305

interpolation. It is thus interpolated differently depending on which single

grid solver is used:

– (RI) An expression for face center data is derived from the phase flux

equation (A.7), detailed in Appendix A:

Fα = F × αf + Fr × αf (1− αf ) . (24)
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Interface Γ|
i

Zonal Domain

|
I + 1

|
I (face center)

|
I − 1

Global Domain +
cell center

Figure 3: Interface Γ between the Zonal Domain (ZD) and the Global Domain (GD) for a

mesh resolution ratio rx of 2:1.

Equation (24) is rearranged to obtain the following expression:

αf =
Fα

F + Fr (1− αf )
. (25)

Equation (25) is solved iteratively starting from the last known value.

– (TDF) An explicit expression for the face center phase indicator field

is derived from equations (B.2) and (B.6) (Appendix B):

αf =
ρF − F × ρ2 − Fν,α × (ρ1 − ρ2)

F × (ρ1 − ρ2)
. (26)

Other variables:310

As far as other cell centered variables are concerned (Prgh, k or ε), a linear

interpolation scheme is employed.

step 2.1.2: Previous variables from (2.1.1) are interpolated in time:

As stated before, sub-cycling in time of the zonal solver is used to reduce

computational cost. Since GD is solved first, the solution is known at

time indices n and n+ 1. Thus, any quantity can be interpolated in time

between the bounds n and n+ 1, to solve the right part of the algorithm

in figure 2.
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Considering a kth time-step from instants n + (k−1)
rt

to n + k
rt

, bound-

ary values of φ at instant n + k
rt

are derived using a first order linear

interpolation:

φn+k/rt = φn +
k

rt

(
φn+1 − φn

)
, (27)

with k ∈ [1, rt].315

step 2.1.3: Previous variables from (2.1.2) are interpolated tangentially to the zonal

interface Γ:

We use left-skewed and right-skewed blended interpolation for its property

to conserve mass fluxes and its 2nd order accuracy [23]. An illustration

of this interpolation procedure is shown in figure 3 with a space ratio

rx = 2 : 1.

For a face centered value φf , blended left and right-skewed linear interpo-

lation to point i is expressed as a function of φf at face indexes I, I + 1

and I − 1:

(φf )i = (φf )I +
dI,i · dI,I+1

dI,I+1 · dI,I+1
(φf )I+1 +

dI,i · dI,I−1

dI,I−1 · dI,I−1
(φf )I−1 , (28)

where da,b is the vector between two points a and b.

For interface corners only and to ease implementation, a 1st order inter-

polation scheme is used, namely the injection scheme [23]. It consists of

associating the ZD boundary face value with its nearest neighbor GD face

value:

(φf )i = (φf )I . (29)

Boundary condition types at interface Γ.

Three types of boundary conditions are used at the zonal interface Γ and are320

detailed below. Their assignation to the field variables will be given later, de-

pending on the numerical test considered.
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(i) A coupled Dirichlet condition simply consists of imposing an interpolated

field quantity from the GD to the ZD interface Γ, by using the prolongation325

operator P previously defined.

(ii) A coupled inlet-outlet condition is a mixed Dirichlet-Neumann condition,

which switches between a coupled normal gradient when the fluid flows out of

ZD at a patch face, and a coupled Dirichlet, when the fluid is flowing into ZD.

A coupled normal gradient is defined by P(∇⊥φ), while a coupled Dirichlet is330

defined by P(φ). Table 1 describes this boundary condition.

Coupled inlet-outlet boundary condition

FΓ ≥ 0 (out of domain) apply P(∇⊥φ)

FΓ < 0 (into domain) apply P(φ)

Table 1: Description of a coupled inlet-outlet boundary condition at interface Γ in ZD for a

variable φ.

This approach makes it possible to benefit of the accuracy of the fine mesh

when information is leaving ZD. It will be used as a coupled boundary condition

for the phase indicator α and other transported scalars. It will also be used for

velocity U when a coupled Dirichlet boundary condition (i) is used for pressure.335

(iii) A Neumann null gradient boundary condition is used for dynamic pres-

sure Prgh, when a coupled Dirichlet boundary condition (i) is used for velocity.

3.5. Interpolation from zonal to global domain (step (3))

After resolution of the ZD solution over ∆t, part of the solution field is340

interpolated from ZD to GD, to correct the coarse solution at instant tn+1. This

step is numbered (3) in the zonal solver algorithm and in figure 2. This process

is called restriction, similarly to its denomination in the Multigrid method [35].

The cell centered restriction operator RP brings variables from a pack of fine

cells in ZD to an overlapped coarser cell in GD. We denoteRP (φ) a standard cell345

centered variable on a domain after the restriction operator has been applied.

We use a first order volume average for its simplicity and conservative property.
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interface Γ

f

Zonal Domain

Global Domain

(a) - Face-to-patch prolongation P

P

(b) - Cell center restriction RP

interface Γ

f

(c) - Face center restriction Rf

Figure 4: Three types of interpolation between Zonal Domain (in red) and Global Domain

(in blue), for a mesh refinement rx = 2.

The volume average restriction operator is expressed as:

RP
(
φGD

)
=

∑
i (φiVi)

ZD∑
i V

ZD
i

, (30)

where subscript index ()i denotes the subset of control volumes on the ZD level,

that forms the control volume considered on the coarse GD level. An illustra-350
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tion of cell center restriction is given in figure 4-(b).

Similarly, the face centered restriction operator Rf brings variables from a

group of fine faces of ZD to an overlapped coarser face in GD. Restriction of

fine face fluxes consists of summing over the group each face flux value to get

the coarser face flux value. The flux summing restriction operator is expressed

as:

Rf
(
FGD

)
=
∑
i

FZDi , (31)

where subscript index ()i denotes the subset of faces on the ZD level, that forms

the face considered on the coarse GD level. An illustration of face center re-

striction is given in figure 4-(c).355

The fields concerned by the restriction step are: the velocity field U , the

phase indicator field α,the volumetric face flux field F , the turbulent kinetic

energy k and turbulent dissipation ε fields, when the case is turbulent and a

k − ε RANS approach is used.360

Both cell center and face center restriction operators are applied on all cov-

ered cells and all covered faces in GD. The covered faces also include physical

external boundary conditions.

3.6. Treatment of global grid correction (step (4))

In the previous restriction step, the phase indicator α, velocity U , face flux365

F and transported scalar fields φ are interpolated from ZD to GD. The final step

(4) in solver algorithm in figure 2, now consists of correcting the GD solution at

time n+ 1. It is similar to active AMR [35] where the influence of local domain

is spread over the entire global domain.

First, since volumetric face fluxes F have been interpolated from ZD to GD,

major continuity errors can be observed at the interface between ZD and GD,

because of flux mismatches. It is crucial to correct GD fluxes to ensure a diver-

gence free velocity, low continuity errors and to obtain a converged solution. We
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refer to this correction step as the divergence free correction step. It consists of

”smoothing” the face flux field by solving a Poisson equation and in ensuring di-

vergence free constraint. A dummy pressure field Pcorr is solved using following

equation ,

∇ ·
(

1

aP
∇Pcorr

)
= ∇ ·U , (32)

where aP are the diagonal coefficients of the system matrix. Equation 32 is

expressed in discretized form as,

∑
f

Sf ·

[(
1

aP

)
f

(∇Pcorr)f

]
=
∑
f

F . (33)

Then, the face flux field is corrected following the relation:

Fcorr = F − Sf ·

[(
1

aP

)
f

(∇Pcorr)f

]
. (34)

This process will affect both face flux values in uncovered and covered parts370

of the domain, leading to different flux fields in zonal and global domains. How-

ever, it was observed that the impact of this correction is mainly focused outside

the covered region while fluxes in the covered region are weakly corrected. In

order to avoid any flux correction in the covered part, one could impose a zero

pressure gradient, or also increase drastically the weight coefficients 1/aP in375

the dummy pressure matrix. One could also solve this Poisson equation at both

levels to keep the fine and coarse flux fields coherent. This would require a more

complex algorithm and intergrid interpolations during the resolution, which has

a non negligible cost.

380

Second, it is important to take into account phase flux mismatch at the

interface and to correct the α values in coarse cells along the interface Γ, to

ensure mass conservation. We refer to this correction step as the phase flux

correction step. A coupled boundary conditions treatment in ZD imposes α

values when the flux is going in ZD and a normal gradient when the flux is

going out. Consequently, at the interface, phase fluxes in ZD do not match the

underlying phase fluxes in GD. The cell-centered restriction step will correct
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the α in the covered part of GD, but not in the coarse side of the ZD interface.

The current correction aims to correct α in these cells. To do so, a face-centered

restriction is operated at the interface. To explain this correction, we shall start

from equation (A.4) for the RI model and (A.8) for the TDF model. It is now

expressed independently of the model as:

αn+1 = αn − ∆t

V

∑
f

Fα,o , (35)

where Fα,o stands for the overall phase flux in each model, i.e. advective plus

compressive fluxes in the RI model and advective plus diffusive fluxes in the

TDF model. Now, one introduces a similar conservation equation that takes into

account the phase flux at the interface (Fα,o)Γ, after face-centered restriction ,

namely Rf (Fα,o)Γ, and the corrected phase value at the new instant αn+1
corr:

αn+1
corr = αn − ∆t

V

∑
f−1

Fα,o +Rf (Fα,o)Γ

 , (36)

where
∑
f−1 stands for the sum over all faces of the cell except the face under-

lying the interface. Rearranging equation (36) and including equation (35), one

obtains the following expression for αn+1
corr:

αn+1
corr = αn+1 − ∆t

V

[
Rf (Fα,o)Γ − (Fα,o)Γ

]
. (37)

Equation (37) is applied over all the cells along the zonal grid interface Γ.

Third and last, when the RI solver is used in GD, the interface geometry

properties, curvature and position, are corrected using new values of the liquid

volume fraction field α.385

4. Applications

To assess the accuracy of solutions calculated with the TPZG approach pre-

viously detailed, two 2D test cases and one 3D application were set up with the

proposed solver. The first 2D configuration is a rising bubble configuration set
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up by Hysing et al. [36]. The second 2D test case is a turbulent jet of liquid fuel390

into steady ambient air. For each of these two cases, validations of the TPZG

approach are based on comparisons between a simulation using a coarse global

mesh coupled with a refined zonal domain and a reference simulation using a

single fine mesh over the whole domain.

395

In a third and last application, the TPZG solver was used to predict the

primary breakup of a single cylindrical liquid jet in an air-blast atomizer con-

figuration. Numerical results will be compared with experimental results from

[37]. This configuration was chosen since experimental data are available about

the mean liquid volume fraction in the primary atomization region and it seems400

pertinent to use two different two-phase flow models in this configuration.

4.1. Rising bubble

4.1.1. Configuration

The rising bubble problem investigates the ascending motion of a bubble of405

gas inside a quiescent liquid. A benchmark of this configuration was set up by

Hysing et al. [36] and used later for studying the accuracy of interFoam solver

by Klostermann et al. [38]. Hysing et al. [36] identified two different set-ups of

the numerical experiment: ellipsoidal bubble and skirted bubble. They differ by

the density ratio and the viscosity ratio between the two phases. In this work,410

the skirted set-up was selected. Indeed, it is better adapted to mesh refinement

testing since in the finest mesh, the bubble forms thin filaments with small

satellite bubbles. These structure detachments do not occur when the mesh is

coarse [38]. It is thus pertinent to apply the current TPZG approach on this

configuration.415

On the basis of the benchmark definition of Hysing et al. [36], a two-dimensional

computational domain with an aspect ratio x : y = 1 : 2 was employed, see figure

5. The bubble is initially centered at (x, y) = (0.5, 0.5) with rb0 = 0.25 as the

initial radius. The domain is fully enclosed by no-slip walls at the top and the
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ρ1 ρ2 µ1 µ2 g σ Re

kg.m−3 kg.m−3 kg.m−1s−1 kg m−1s−1 m/s2 kgs−2 −

1000 1 10 0.1 0.98 1.96 35

Table 2: Physical properties of the rising bubble test case.

bottom and free slip walls on the left and right sides. The gravitational acceler-

ation g points towards the bottom of the domain. It is a laminar low-Reynolds

case, hence without turbulent modeling. The RI model was employed to follow

the interface. The primary phase α refers to the liquid. Physical properties of

the configuration are reported in table 2. The Reynolds number is defined as

Re =
ρ1UgL

µ1
, (38)

with the rising velocity Ug =
√
g2rb0 and the bubble characteristic length

L = 2rb0.

The fine zone is placed over the initial bubble position, as shown in figure 5,

in a region in which the highest gradients will occur during the bubble rising. In420

this configuration, at the interface Γ, a coupled Dirichlet condition is employed

for velocity, a coupled inlet-outlet condition for phase fraction α and a null

gradient condition for dynamic pressure Prgh.

The TPZG simulation is performed using a global coarse mesh coupled with

a fine zone. Two different grid spacings are employed: fine and coarse. The425

fine mesh refinement relative to the coarse refinement is 2 : 1. Mesh sizes with

these refinements are shown in table 3. The simulation time is tfinal = 3s with

a fixed time step. The zonal sub-cycling ratio rt is equal to the grid refinement

ratio rx = 2.

4.1.2. Results430

The final bubble interface, at t = 3s, obtained with coarse, fine and zonal

simulations are reported in figure 6. With the coarse simulation (left), the
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no-slip wall
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Ω2

α = 0.5

Zonal Domain

0.8

0.6

0.8

g

0.5

0.5 0.25

2

1

Γ

Figure 5: Simulation domain, boundary conditions and initial configuration of Hysing et al.

[36] rising bubble problem. The zonal domain, with interface Γ, is placed above the initial

position, with a mesh refinement of 2 : 1.

Configurations Main (global) domain Zonal domain

Mesh ref. Mesh size Two-phase model Mesh ref. Mesh size Two-phase model

Coarse Coarse 13k cells RI model − − −

Fine Fine 51k cells RI model − − −

Zonal Coarse 13k cells RI model Fine 13k cells RI model

Table 3: Two-phase numerical simulations performed in the rising bubble configuration. Red

and blue text colors respectively stand for coarse and fine mesh refinements.

main bubble structure is skirted and followed by two independent small struc-

tures. By decreasing the cell size (fine case, figure 6-central-(t = 3s)), two

additional satellite bubbles appear. The main mushroom shaped structure also435

shows shorter filaments. The bubble surface obtained with the zonal simulation

(right) is in good agreement with the fine one, since the two additional satellite

bubbles are present, with similar sizes. The size of the two lowest structures is
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t = 3s

t = 1.5s

Figure 6: Interface (α = 0.5) at (a) t = 1.5s and (b) t = 3s for three simulations of Hysing

skirted bubble configuration [36]. From left to right, the green line is the coarse mesh, the

black line is the fine mesh and the red line is the coarse mesh coupled with a fine zonal mesh.

The zonal interface Γ is shown with an orange rectangular box.

closest to that of the coarse ones, since they have not crossed the zonal interface

Γ. In figure 6, at t = 1.5s, it can be seen that the bubble shape crosses the zonal440

domain smoothly without being affected by the presence of the mesh refinement

discontinuity.

Quantitative results consist of the bubble rising velocity U , expressed as

U =

∫
Ω
αg (U · y) dΩ∫

Ω
αg dΩ

, (39)

with the gas volume fraction αg = 1 − α. The evolution of this quantity is

reported in figure 7, for the three cases. It can be seen that the two velocity445

peak values, Vmax1 and Vmax2, at times t = 0.7s and t = 2.0s, respectively, are

slightly higher with the fine simulation than with the coarse one (respectively

0.63% and 2.49% higher), as well as the final velocity at time t = 3s.

The decrease of the second peak Vmax2 is more noticeable on the zoomed
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Figure 7: Evolution of bubble rising velocity V . The vertical grey dashed line indicates the

time the bubble interface is in ZD.

profile. The zonal simulation gives results that are close to the fine and coarse450

ones. It is in good agreement with the fine simulation until the second peak.

Then, the rising velocity is governed by the two lowest gas structures. In the

zonal simulation, these structures stay outside ZD, i.e. in the coarse mesh. This

explains why, after t = 2 s, the rising velocity profile obtained with the zonal

simulation is closer to the coarse profile than the fine profile.455

The mass conservation property of the zonal scheme was checked. Since

the computational domain is closed, the initial mass should remain constant

during the whole simulation. The maximum mass error obtained with the zonal

simulation is 0.005%, which is in a very low and acceptable range.460

4.1.3. Performances

In comparison with a fully refined mesh, the zonal simulation reduce the

computational cost by 73%, i.e. a speedup of 3.7. During the CPU effort, the

percentages dedicated to the GD single grid solver, the ZD single grid solver, the

prolongation step, the restriction step and the correction step are respectively465

27%, 64%, 1.5%, 0.5% and 7%. Intergrid-communications and correction step

account for 9% of total CPU effort.
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Liquid injection Turbulent intensity Ti Turbulent length scale l Velocity U1 Injector diameter D

7.5 % 10 µm 100 m/s 100 µm

Property Surface tension σ Liquid density ρ1 Gas density ρ2 Liquid viscosity µ1

0.07 kgs−2 696 kgm−3 25 kgm−3 6.96×10−4 kg m−1s−1

Table 4: Properties of liquid and air in the liquid-air jet configuration.

4.2. Liquid-air jet

4.2.1. Configuration

This configuration deals with the turbulent injection of liquid into steady470

ambient air through a circular pipe. The mesh refinement inside the pipe has a

major influence over jet velocity at the nozzle exit. Liquid is injected through

the inlet boundary with a uniform velocity of 100 m/s. Its physical properties

are shown in table 4. The primary phase α will refer to the liquid. The Reynolds

number at the nozzle outlet Re = 105 demonstrates the turbulent character of475

the flow. Hence, a usual k − ε RANS model is used in this configuration to

account for the turbulence. This model solves two additional scalar fields (k

and ε), which will be coupled in the zonal approach. Turbulence intensity and

turbulent length scales at the inlet are equal to 7.5% and 10% of the mean outlet

velocity and the injection diameter respectively.480

The physical boundary conditions are shown in figure 8 along with the grids

and domain dimensions. A uniform velocity is prescribed at the inlet boundary

and total pressure is assigned on the atmosphere boundaries. Injector walls are

modeled with a no-slip condition and high-Reynolds standard wall-functions are485

employed for boundary layer modeling. An angular symmetry is considered and

slip conditions are used along the axis.

As aforementioned, the zonal grid is placed in the injection zone. Thus, two

mesh refinements are used: fine and coarse. The fine mesh refinement relative490

to the coarse refinement is 5 : 1 in the y-direction close to the jet center line

and 2 : 1 otherwise, as shown in figure 9. Mesh sizes with these refinements
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Figure 8: Configuration of the liquid-air jet configuration. The zonal domain (ZD), with

fine refinement, is shown in yellow. The main (global) domain (GD), with coarse refinement,

is shown in black. Γ stands for the zonal domain interface with the global domain and is

indicated by the yellow line.

Figure 9: Zoom on the fine zonal mesh, shown in yellow. The fine mesh refinement relative to

the coarse refinement is 5 : 1 in the y-direction close to the jet center line and 2 : 1 otherwise.

are shown in table 5, both for standard and zonal simulations, along with the

solvers employed.

The length of the zonal domain is set up to half of the global domain length.495

Its height is sufficient to avoid having high velocity gradients between the liquid

jet and the steady gas in the coarse mesh.

Boundary conditions of the zonal domain consists of physical (inlet, no-slip,
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Configurations Main (global) domain Zonal domain

Mesh ref. Mesh size Two-phase model Mesh ref. Mesh size Two-phase model

Fine TDF Fine 10k cells TDF model − − −

Fine RI Fine 10k cells RI model − − −

Zonal Hybrid Coarse 3k cells TDF model Fine 4k cells RI model

Table 5: Types of RANS performed in the liquid-air jet configuration. Red and blue text

colors respectively stand for coarse and fine mesh refinements.

wall and axis) and coupled (interface Γ) boundaries, as shown in figure 8. Along

Γ, pressure is imposed with values interpolated from GD. Thus, we use a coupled500

Dirichlet boundary condition for dynamic pressure Prgh and coupled inlet-outlet

boundary conditions for velocity U , α, k and ε. In this test case, the ability

of the zonal solver to handle two different two-phase solvers is tested. RI and

TDF solvers are used in the zonal and global domains, respectively. During

the prolongation step, the TDF phase fraction αD is used to obtain boundary505

conditions for the RI phase fraction αI at the zonal interface. Then, during

the restriction step, the TDF field in the covered region of GD is corrected

using the RI phase fraction αI . Simulations are carried out with a dynamic

GD time-step, following relation (18). Thus, the time-step ratio rt is adjusted

at each time-step by applying equation (20). Simulations show that this time-510

step ratio varies in a bounded range rt ∈ [2, 5] with an average value of |rt| = 3.1.

4.2.2. Results

Steady state liquid volume fraction fields are shown in figure 10.

One can observe the diffusion of the liquid jet under action of the turbulent515

diffusion flux in the TDF model (fig. 10-(a)). The liquid jet penetrates further

with the RI model (fig. 10-(b)). Indeed, the RI model requires a finer mesh

and a three dimensional computation among other characteristics to capture the

atomization process. The numerical diffusion is visible near the end of the do-

main. With the zonal simulation (fig. 10-(c)), diffusion of the liquid occurs after520

11 diameters, i.e. the position of the interface Γ, where the governing equations
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(a) - Fine TDF

(b) - Fine RI

(c) - Zonal hybrid

Figure 10: Steady state liquid volume fraction fields. The zonal domain interface Γ is indicated

by a white line.

switch from the RI to the TDF model.

Steady state velocity (a) and liquid volume fraction (b) profiles along the

jet center line are shown in figure 11. The TDF model diffusion starts after the525

interface Γ as shown in figure 11-(b). The zonal hybrid profile is bounded by

fine RI and fine TDF profiles. The zonal hybrid velocity profile (fig. 11-(a))

matches the reference fine RI profile upstream the zonal interface Γ, despite

the coarse mesh refinement, thanks to the coupling with the fine zonal mesh.

Downstream Γ, it tends toward the fine TDF profile. The transition between530

the two models is smoothed thanks to the mixed Dirichlet-Neumann boundary

condition at Γ for velocity.
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Figure 11: Steady state (a) velocity and (b) liquid volume fraction profiles along jet center

line. Zonal domain interface Γ at x = 11D is indicated by a vertical dashed line.

0 20 40 60 80
tU/D

0

2

4

6

8

vo
lu

m
e 

of
 li

qu
id

 (m
3 )

1e 13

Vin

Vout

V
Vout + V

Figure 12: Evolution of volume of liquid using the zonal grid solver.

Mass conservation is a crucial point. The two single-grid two-phase solvers

described in this work are strictly mass conservative; however, the zonal coupling

may degrade this property. Let’s monitor the conservation of liquid mass over

time in the zonal run. If liquid mass is conserved, then the following volumetric

relation should be satisfied in an incompressible flow:

Vin(t) = Vout(t) + ∆V (t), (40)

with Vin(t) the liquid volume injected into the domain at the inlet during a

time period t, the beginning of this period being set at t = 0, Vout(t) the liquid535

volume flowing out of the domain and ∆V (t) = V (t)− V (0) the liquid volume
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in the domain at time t. The first two quantities are computed from surface

integrals of the liquid volume fraction on the domain boundaries and the third

quantity by a volume integral within the domain.

540

Figure 12 shows the evolution of these three quantities in the zonal run.

Since the injected liquid mass flux is constant, Vin(t) increases linearly with

time. After tU1/D = 30, the simulation reaches a steady state and the amount

of liquid inside the computational domain is stabilized while the liquid outflow

rate increases linearly. The evolutions of Vin and Vout + ∆V are very close with545

a maximum relative error of 0.4%, showing that equation (40) is satisfied using

the zonal approach with the TDF and RI models in global and zonal domains

respectively.

These results show that the present zonal algorithm is able to handle a hybrid550

approach for two-phase flows in a simple test case. It will be applied to a more

complex configuration in the next section with the coaxial air-blast injector.

4.2.3. Performances

In comparison with a fully refined mesh, the zonal simulation reduces the

computational cost by 40%, i.e. a speedup of 1.7. During the CPU effort, the555

percentages dedicated to the GD single grid solver, the ZD single grid solver,

the prolongation step, the restriction step and the correction steps are respec-

tively 15.5%, 66.0%, 9.0%, 0.5% and 9.0%. Intergrid-communications and the

correction step thus account for 18.5% of total CPU effort. These performances

are independent of the two-phase solver employed, since the structure of the RI560

and TDF algorithms is very similar.

4.3. Coaxial air-blast injector

4.3.1. Configuration

The configuration considered here, taken from Stepowski et al. [37], consists

of injecting a low-speed liquid through a circular pipe and a high-speed gas
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through an annular pipe into a steady atmosphere. The liquid used is pure

water, and ambient gas is dry air, leading to a density ratio of approximately

1000. The sketch of the injector is presented in figure 13. The geometrical

DlDg

∆

Liquid : Ul, ρl

Gas : Ug, ρg

Figure 13: Schematic of the injector used by Stepowski et al. [37].

characteristics of the experimental device are as follows: Dl = 1.8 mm, Dg =

3.4 mm, ∆ = 0.25 mm, Ug = 115 m/s, ρg = 1.2 kg/m3, Ul = 1.3 m/s,

ρl = 1000 kg/m3. To obtain the near field of the liquid volume fraction, α,

the fluorescence emission of an additional species incorporated into the water

induced by a pulsed laser sheet was used [37]. The surface tension coefficient σ

is derived from the aerodynamic Weber number, defined as,

Weg =
ρg (Ug − Ul)2

Dl

σ
. (41)

Gas and liquid Reynolds numbers, respectively expressed as,

Reg =
ρgUg (Dg −Dl − 2∆)

µg
, (42)

and

Rel =
ρlUlDl

µl
, (43)
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are high enough for turbulent flows to be expected. The momentum flux ratio

J , expressed as,

J =
ρgU

2
g

ρlU2
l

, (44)

plays an important role in destabilization of the liquid jet and in the liquid core

length. The values of the previous characteristic non-dimensional numbers are565

reported in table 6.

Ug (m/s) Ul (m/s) We Reg Rel J

115 1.3 500 8000 2600 10

Table 6: Simulated flow conditions.

The WALE (Wall-Adapting Local Eddy-viscosity) model [39] is used in this

configuration. This LES model recovers the proper near-wall scaling for the

eddy viscosity without requiring a dynamic procedure. Moreover, this model570

does not need to solve an additional scalar transport equation. Hence, no addi-

tional variable coupling is necessary between global and zonal domains.

The global computational domain is defined as a cylindrical mesh with a

height of 16Dl and a diameter of 8Dl, as shown in figure 14.575

Independently of mesh refinement, the mesh is expanded in axial and ra-

dial directions to focus refinement efforts in a region of size [−0.1Dl, 3Dl] ×

[−1.1Dl, 1.1Dl] × [−1.1Dl, 1.1Dl] that covers the primary atomization area.

Three different mesh refinements will be used in the following simulations: one

coarse refinement to reduce computational cost; and one medium refinement to580

obtain, with a reasonable computational cost, correct predictive results regard-

ing the mean liquid volume fraction in the primary atomization region. Finally,

one fine refinement to get accurate predictive results. The refinement ratio be-

tween each level of refinement is rx = 2. Thus, a cell with coarse refinement is

split into 8 cells in medium refinement.585
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Figure 14: Dimensions and boundary conditions of the 3D computational domain. The zonal

domain, with medium refinement, is shown in yellow. The global domain, with coarse refine-

ment, is shown in black. Γ stands for the zonal interface with the global domain.

Concerning the zonal simulations, a coupled Dirichlet boundary condition is

used for pressure along the global-zonal interface Γ, while coupled inlet-outlet

conditions are used for velocity U and liquid volume fraction α. During the

prolongation step, the TDF phase fraction αD is used to obtain boundary con-590

ditions for the RI phase fraction αI at the zonal interface. Then, during the

restriction step, the RI phase fraction αI is used to correct the TDF field in the

covered region of GD. The zonal domain is placed in the primary atomization,

defined by [−0.1Dl, 3Dl]× [−2Dl, 2Dl]× [−2Dl, 2Dl], as shown in yellow in fig-

ure 14. The length of the zonal domain, equal to 3Dl, is chosen based on the595

experimental profile of the mean liquid volume fraction along the jet center line.

As shown in figure 17, it is approximatively equal to 0.1 at x = 3Dl. This value

is often considered as the transition value between separated and dispersed two-

phase flow zones [40]. Therefore, it is pertinent to switch from the RI to the

TDF model at this longitudinal location. The diameter of the zonal domain,600

equal to 4Dl, was chosen to avoid high gradients of velocity and liquid volume
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Figure 15: Three-dimensional snapshot of the phase indicator isosurface α = 0.5 obtained with

the fine zonal hybrid simulation, along with the dynamic pressure field. The zonal interface

Γ is shown with a black line.

fraction along the zonal-global interface.

Coarse mesh refinement will be used in the global domain to reduce the impact

of the mesh refinement in the dispersed spray zone on the computational cost.

605

Four different LES of the coaxial atomization configuration from Stepowski

et al. [37] were performed. Their mesh sizes and the two-phase model employed

are given in table 7. Simulations were carried out with a dynamic GD time-step,

following relation (18).

Configurations Main (global) domain Zonal domain

Mesh ref. Mesh size Two-phase model Mesh ref. Mesh size Two-phase model

Medium RI Medium 2.1M cells RI model − − −

Medium TDF Medium 2.1M cells TDF model − − −

Medium zonal hybrid Coarse 260k cells TDF model Medium 690k cells RI model

Fine zonal hybrid Coarse 260k cells TDF model Fine 5.5M cells RI model

Table 7: LES performed in the coaxial atomizer configuration of Stepowski et al. [37]. Brown,

red and blue text colors respectively stand for coarse, medium and fine mesh refinements.

4.3.2. Results610

The instantaneous liquid structures obtained with the fine zonal hybrid sim-

ulation are shown in figure 15 with the isosurface α = 0.5. The influence

of pressure in liquid detachments is highlighted. Over pressure destabilizes

and provokes the separation of structures from the liquid core. The isosurface
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(a) - Medium RI

(b) - Medium zonal hybrid

Figure 16: Instant liquid volume fraction fields. The isocontour α = 0.5 is shown with black

lines when the RI model is used. The interface of the zonal domain is shown with white a

rectangle.

α = 0.5 is cut by the zonal domain right interface Γ which defines the end of the615

region governed by the RI model. In figure 16-(a) is shown the instant liquid

volume fraction field using the RI model in the whole computational domain

(medium RI configuration). In the second half of the picture, i.e. dowstream

the primary atomization region, it is observed that the isolated liquid droplets

are not correctly captured by the RI method. Droplets are numerically diffused620

despite the medium mesh refinement. The compressive scheme of the RI model

also ensures that unresolved droplets remain smaller than the cell size they are

advected in. Thus, it is pertinent to switch to another model, hence the medium

zonal hybrid configuration shown in figure 16-(b), in which the TDF model is

used after x = 3Dl. The TDF model field shows a diffusive behavior that is625
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Figure 17: Mean liquid volume fraction axial profiles, along the injector central axis. The

vertical gray dashed line stands for the zonal grid interface Γ.

here not numerical but physical. This approach makes it possible to coarsen the

mesh in the dispersed spray region and thus to reduce the computational cost,

as discussed below.

We can carry out a quantitative comparison between the different computa-630

tions and the experiment [37] with the mean volume fraction axial profiles along

the jet center line shown in figure 17. The TDF model is shown to be unsuitable

for treating atomization in the primary zone, since, despite the medium mesh

refinement, the medium TDF profile is far from the experimental profile. On

the other hand, the medium RI profile shows a good agreement with experimen-635

tal liquid penetration in the primary atomization region. However, as shown

previously with qualitative results, this model is to be avoided in the dispersed

spray region.

The medium zonal hybrid profile is here in good agreement with the medium640

RI one, meaning that the coupling does not affect the flow in the zonal do-

main region. Refining the mesh close to the nozzle gives results closer to the
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experimental data: with the fine zonal hybrid configuration, the liquid core pen-

etration is accurately predicted.

645

The mass conservation property of the medium zonal hybrid was checked.

When it was judged that the initial transient period was over, e.g. tUl/Dl = 3.25,

the quantities Vin(t), Vout(t) and ∆V (t), previously detailed in the liquid-air jet

test case, were calculated.

Figure 18-(a) shows the evolution of these quantities, plus the sum Vout(t) +650

∆V (t), for a short period of time. Since the liquid mass influx is constant,

Vin(t) increases linearly with time. However, the rate of liquid volume exiting

the simulation varies due to turbulent fluctuations and the flapping of the liquid

jet. The calculated value of Vout(t) + ∆V (t) matches Vin(t) with a maximum

error of 0.4%.655

In order to examine the influence of the phase flux correction step (see sec-

tion 3.6 for more details), a simulation without this correction was run. The

result plotted in figure 18-(b) shows an increase of the liquid volume inside the

domain (∆V ), hence a higher liquid volume error (6.8%). This is due to the660

fact that since the phase flux mismatch along the coarse-fine interface is not

longer corrected, more liquid is accumulated inside the domain. It confirms the

importance of this correction step in the present numerical algorithm ensure

mass conservation.

4.3.3. Performances665

The computational costs of the medium RI and the medium zonal hybrid

simulations were compared. The medium zonal hybrid simulation requires a

global CPU effort of 520 h for a 10 ms simulation while the medium RI one

requires 1, 230 h. Thus, the zonal simulation reduces computational cost by

57%, i.e. a speedup of 2.4. This illustrates one the main advantage of this670

zonal approach, i.e. to lower the impact of the primary atomization resolution

on the global computational cost, by diminishing the number of grid points in
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Figure 18: Evolution of volume of liquid in the medium zonal hybrid simulation.

the secondary atomization and dispersed droplet zones that are far from the

injectors. The speedup of the fine zonal hybrid simulation compared to a fine

RI simulation with 17M cells was estimated to be 3.675

In the medium zonal hybrid CPU duration, the percentages dedicated to

the GD single grid solver, the ZD single grid solver, the prolongation step, the

restriction step and the global grid correction step are respectively 18%, 62%,

3%, 2% and 15%. The correction step is more costly compared to intergrid-680

communications since it involves solving implicitly a Poisson equation. Its cost

is in the same order as the part relative to the GD solver.

5. Conclusion

An algorithm that allows for the coupled multi-approach resolution of turbu-685

lent and laminar two-phase flows within the Finite-Volume framework OpenFOAM R©

has been presented. One advantage of the algorithm lies in sub-cycling in time

making it possible to refine the grid locally without impacting the global com-

putational time-step. Another advantage is the possibility to use two different

single grid solvers, a sharp interface solver in one part of the computational690

domain and a diffuse interface solver in the rest of the domain.
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Qualitative and quantitative measures were used to validate the zonal ap-

proach. Simulation of a rising air bubble was carried out, with a refined zone

placed above the initial bubble position. It shows good agreement with the fully695

refined solution, the bubble crossing the coarse-fine interface smoothly. RANS

modeling liquid jet atomization was also carried out with grid refinement in the

first half of the domain. Zonal solutions show good agreement with the fully

refined mesh, with both sharp and diffuse interface models. A hybrid model

was successfully applied , with a sharp interface in the refined zone and a dif-700

fuse interface in the rest of the domain. Lastly, LES of a coaxial air-blast

injector was performed. The zonal domain was placed near the nozzle injector

and extended up to 3 diameters further. Inside this domain, the sharp interface

solver captured well the liquid core penetration given by experimental results.

Downstream the zonal domain boundary, the diffuse interface solver managed705

to solve the dispersed two-phase flow topology with a coarse mesh refinement.

This method represents a speedup of 2.4 in comparison with a single grid solver.

Mass conservation was checked; the zonal coupling respects this conservative as-

pect inherent to finite volume solvers.

In the three applications, the benefit of the zonal approach in terms of com-710

putational cost is obvious in that the computational time is reduced.
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Figure A.19: The face f whose owner is cell center P and the neighbour cell center N .

Appendix A. Discretized model equations

The discretized forms, using finite volumes, of the momentum and transport

equations are detailed in this appendix since the coupling between the two grids720

on which two different solvers are used involves an exchange of information

between the discrete parameters such as the face fluxes or volume data.

Appendix A.1. Momentum equation

The discretized form of the momentum equation (3) is presented following

the standard OpenFOAM R© formalism :725

V

∆t

(
ρn+1Un+1 − ρnUn

)
+
∑
f

(ρF )n+1Un+1
f =

− V∇(Prgh
n) +

∑
f

(
µn+1
eff

)
f
Sf ·

(
∇Un+1

)
f

+
∑
f

Un
fSf ·

(
∇µn+1

eff

)
f

+ VQn,

(A.1)

where the superscripts ()n and ()n+1 identify instants t and t+∆t, respectively.

Subscript ()f indicates the face values, interpolated between the center P of

the volume considered and a neighbor cell center N (see figure A.19). The cell

volume is V and the volumetric flow rate through one of its faces f is defined

as

F = Sf ·Uf , (A.2)

where Sf is the face normal vector.
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Appendix A.2. Phase indicator

RI solver. The transport equation for volume fraction αI (Eq. 11) can be semi-

discretized as,

αn+1
I = αnI −∆t{∇ · [UαI + U cαI (1− αI)]}n , (A.3)

and it is fully discretized as,

αn+1
I = αnI −

∆t

V

∑
f

[F × αI,f + Fc × αI,f (1− αI,f )] n , (A.4)

where Fc is the compressive face flux,

Fc = (Uc)f Ŝ . (A.5)

The magnitude of the interface normal face vector Ŝ is defined as:

Ŝ = n · Sf =
∇αI
|∇αI |

· Sf . (A.6)

For the sake of clarity, the two terms present in the RHS sum of equation

(A.4) are grouped together into one global phase flux term namely Fα,I :

Fα,I = F × αI,f + FC × αI,f (1− αI,f ) . (A.7)

TDF solver. The transport equation for the primary phase indicator αD is given

by equation (13). It is discretized as:

αn+1
D = αnD −

∆t

V

∑
f

 Fα,D
n︸ ︷︷ ︸

advective

+ Fνt
n+1︸ ︷︷ ︸

diffusive

 , (A.8)

where the turbulent diffusive phase flux Fνt is defined as,

Fνt = −
(
νt
Sct

)
f

Sf ·∇αD,f . (A.9)

and the advective phase flux as,

Fα,D = F × αD,f . (A.10)
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Appendix B. Segregated pressure-based solver730

In this section a joint description is proposed for both RI and TDF solvers,

their structures being very similar. Parts specific to the resolved interface solver

are highlighted by (RI) while parts specific to the turbulent diffusive flux solver

are denoted by (TDF) . The RI and TDF solvers are existing methods, re-

spectively named as interFoam and twoLiquidMixingFoam solvers, available735

in the OpenFOAM R© library. The RI solver has been detailed in the thesis

of Rusche [31] and studied for instance in [38, 41]. The TDF solver is based

on the Eulerian-Lagrangian Spray Atomization (ELSA) method from Vallet and

Borghi [42]. It is a single-fluid approach composed of two species. The modeling

approach employed in this work is similar to the turbulent mixing of two mis-740

cible fluids showing highly variable densities. It thus justifies th@incollectione

use of the twoLiquidMixingFoam solver as TDF solver.

(1) The first step of the algorithm consists in resolving recursively the

advection equation for the phase fraction α. This equation is de-

rived from equations A.4 and A.8 for (RI) and (TDF) solvers respectively,

except that the implicit diffusive term in equation A.8 is left aside for a

later resolution. It is common in VOF-based methods for the convergence

and stability of the solution procedure to be very sensitive with respect

to the phase fraction equation. Consequently, it is beneficial to solve the

phase fraction equation in several subcycles within a single time step. This

subcycle consists in solving the advection equation NαSC times and then

averaging the mass flux. This advection equation is defined as:

αi+1 = αi − δt

V

∑
f

Fα(αi) , (B.1)

with subcycle index i ∈ [1, NαSC ] and subcycle time-step δt = ∆t/NαSC .

The first αi is initialized with αi = αn. At the end of the loop, αn+1 =

αi+1. Depending on the solver, equation (A.7) or (A.10) is used to recur-745

sively determine Fα in equation (B.1). For each sub-cycle loop, equation
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(B.1) is solved to update the F iα value. In this work, NαSC is equal to

2 , to divide the CFL constraint by 2. The MULES (Multidimensional

Universal Limiter for Explicit Solution) [43] limiter is used to integrate

equation (B.1) to ensure boundedness of the solution.750

At the end of each sub-cycle loop, the advective mass flux ρF , necessary in

stages (4) and (5) when computing the momentum conservation equation,

is computed at sub-cycle index i thanks to the following expression:

ρF i = F iα × (ρ1 − ρ2)f + F × (ρ2)f . (B.2)

Finally, after the NαSC loops, the advective mass flux is computed by

time-averaging the previous sub-cycled mass fluxes:

ρFn+1 =

∑
i ρF

i

NαSC
. (B.3)

(2) (TDF) Transport equation of α with the TDF term of equation

(A.8) is now determined. We introduce αD,adv as the previous solution

of the advective transport equation (B.1):

αD,adv = αn − ∆t

V

∑
f

Fα(αn) , (B.4)

and insert it in equation (A.8) to obtain:

αn+1
D − αnD

∆t
− αD,adv − αnD

∆t
=
∑
f

Fn+1
νt . (B.5)

Once equation (B.5) has been solved, the turbulent diffusive mass flux

Fνt × (ρ1 − ρ2) is added to the advective mass flux,

ρFn+1 = ρFn+1 + Fn+1
νt × (ρ1 − ρ2) . (B.6)

(3) Update of mixture properties:755
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(3.1) Density and viscosity are then updated,

ρn+1 = αn+1ρ1 + (1− αn+1)ρ2 , (B.7)

µn+1 = αn+1µ1 + (1− αn+1)µ2 . (B.8)

(3.2) (RI) Curvature is also updated,

κn+1 = −∇ ·
(

∇αn+1
I

|∇αn+1
I |

)
, (B.9)

(4) Solving the momentum predictor:

This step is optional: it helps to get closer to the velocity solution at n+1

with an estimated velocity U∗. It involves an implicit resolution which

has a non negligible cost. The solution is derived from the pressure pn and

velocity face flux Fn fields at the previous time tn. Thus, this predicted760

velocity is not divergence-free, i.e. ∇ ·U∗ 6= 0. This will be corrected in

the next PISO loop stage.

Starting from semi-discretized momentum equation (A.1) and introducing

matrix coefficients, one gets the following expression for U∗:765

U∗ =
H(U∗)

aP
+
−∇(Prgh

n) + Q

aP
, (B.10)

where aP are the diagonal coefficients of the system matrix and H(U∗)

groups the source terms of the transient, advective and diffusive terms:

H(U∗)

aP
=

ρn

ρn+1
Un

− ∆t

ρn+1V

∑
f

(ρF )n+1U∗f


− ∆t

ρn+1V

∑
f

(
µn+1
eff

)
f
Sf · (∇U∗)f +

∑
f

Un
fSf ·

(
∇µn+1

eff

)
f

 .

(B.11)
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The source term expression depends on which model is used. In the RI

solver, it is expressed as:

QI = − (g · x) (∇ρn+1) + (σκ)f (∇αn+1) . (B.12)

and in the TDF solver:

QD = − (g · x) (∇ρn+1) . (B.13)

(5) The PISO loop is solved Ncorr times to obtain solutions for Un+1

and Pn+1
rgh :

The PISO loop index ()m is introduced in the following.770

(5.1) Computing pseudo-velocity:

So-called pseudo-velocity is computed without the pressure and source

terms contribution:

Ũ =
H(Um)

aP
, (B.14)

where Um is the last known solution for velocity, i.e.

∗ For the first PISO loop,

Um = U∗ if step (2) (momentum predictor) has been per-

formed,

Um = Un otherwise,775

∗ Otherwise, solution Um from step (5.5).

(5.2) Computing pseudo-volumetric face flux:

A pseudo-volumetric face flux is computed based on the pseudo-

velocity Ũ interpolated to face f .

F̃u = Ũf · Sf . (B.15)

Then, the face interpolated source term multiplied by the surface is

added to this flux:

F̃ = F̃u +
|S|Qf

(aP )f
. (B.16)
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(5.3) Pressure direct solution:

The Poisson equation for pressure is solved in order to compute pres-

sure at the iteration index m,

∑
f

Sf ·

[(
1

aP

)
f

(
∇Pmrgh

)
f

]
=
∑
f

F̃ . (B.17)

(5.4) Volumetric face flux corrector:

The pressure term is added to the volumetric face flux,

Fm = F̃ − Sf ·

[(
1

aP

)
f

(
∇Pmrgh

)
f

]
. (B.18)

(5.5) Velocity corrector:

Finally, velocity is computed by summing pseudo-velocity, the pres-

sure term at index m and the source term,

Um = Ũ +
1

aP

[
−∇Pmrgh + Q

]
. (B.19)

(5.6) After Ncorr loops in (5), velocity, face fluxes and dynamic pressure

are finally updated,

Un+1 = Um ,

Fn+1 = Fm ,

Pn+1
rgh = Pmrgh .

(B.20)

(6) Solving additional transport equations: kn+1 and εn+1 if it is tur-

bulent and the k − ε model is selected.

The RI and TDF single grid solver algorithms are synthesized in figure B.20,

following similar stage numbering.780
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(1) Explicitly solve advection equation of α, for NαSC subcycles.

(2) (TDF) Implicitly solve diffusion equation of αD.

(3) Compute density ρ and viscosity µ.

(4) (Optional) Implicitly solve predictor velocity U∗.

(5) Solve PISO loop for Ncorr cycles.

(6) Solve additional transport equations.

(5.1) Compute pseudo-velocity Ũ .

(5.2) Compute pseudo-face flux F̃ .

(5.3) Implicitly solve pressure Prgh.

(5.4) Compute face flux F .

(5.5) Compute velocity U .

(5.6) Go back to (5.1) or update solution at index n + 1.

.

Figure B.20: Algorithm structure of both single grid two-phase solvers.
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