A. Björklund and T. Hökfelt, Handbook of Chemical Neuroanatomy Part I, pp.1-463, 1984.

A. Björklund and T. Hökfelt, GABA and neuropeptides in the CNS, pp.1-638, 1985.

D. M. Simmons and L. W. Swanson, High-resolution paraventricular nucleus serial section model constructed within a traditional rat brain atlas, Neurosci Lett, vol.438, pp.85-89, 2008.

D. S. Richardson and J. W. Lichtman, Clarifying tissue clearing, Cell, vol.162, pp.246-257, 2015.

M. Dobosz, V. Ntziachristos, W. Scheuer, and S. Strobel, Multispectral fluorescence ultramicroscopy: three-dimensional visualization and automatic quantification of tumor morphology, drug penetration, and antiangiogenic treatment response, Neoplasia, vol.16, pp.1-13, 2014.

H. U. Dodt, U. Leischner, and A. Schierloh, Ultramicroscopy: threedimensional visualization of neuronal networks in the whole mouse brain, Nat Methods, vol.4, pp.331-336, 2007.

P. J. Keller and H. U. Dodt, Light sheet microscopy of living or cleared specimens, Curr Opin Neurobiol, vol.22, pp.138-143, 2012.

A. Erturk, K. Becker, and N. Jahrling, Three-dimensional imaging of solvent-cleared organs using 3DISCO, Nat Protoc, vol.7, pp.1983-1995, 2012.

A. Erturk, D. Lafkas, and C. Chalouni, Imaging cleared intact biological systems at a cellular level by 3DISCO, J Vis Exp, vol.89, pp.1-12, 2014.

N. Renier, Z. Wu, D. J. Simon, J. Yang, P. Ariel et al., simple, rapid method to immunolabel large tissue samples for volume imaging, vol.159, pp.896-910, 2014.

N. Renier, E. L. Adams, and C. Kirst, Mapping of brain activity by automated volume analysis of immediate early genes, Cell, vol.165, pp.1789-1802, 2016.

C. Pan, R. Cai, and F. P. Quacquarelli, Shrinkage-mediated imaging of entire organs and organisms using uDISCO, Nat Methods, vol.13, pp.859-867, 2016.

M. Belle, D. Godefroy, and C. Dominici, A simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system, Cell Rep, vol.9, pp.1191-1201, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083957

P. S. Launay, D. Godefroy, and H. Khabou, Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion, Exp Eye Res, vol.139, pp.136-143, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01172713

T. Liebmann, N. Renier, K. Bettayeb, P. Greengard, M. Tessier-lavigne et al., Three-dimensional study of Alzheimer's disease hallmarks using the iDISCO clearing method, Cell Rep, vol.16, pp.1138-1152, 2016.

M. Belle, D. Godefroy, and G. Couly, Tridimensional visualization and analysis of early human development, Cell, vol.169, pp.161-173, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01497677

C. Soderblom, D. H. Lee, and A. Dawood, 3D imaging of axons in transparent spinal cords from rodents and nonhuman primates, eNeuro, vol.2, issue.2, 2015.

K. Franklin and G. Paxinos, The mouse brain in stereotaxic coordinates, 1997.

N. E. Anden, A. Dahlstrom, K. Fuxe, and K. Larsson, Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon, Life Sci, vol.4, pp.1275-1279, 1965.

T. Hökfelt, R. Martensson, and A. Björklund, Distributional maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain, pp.277-379, 1984.

R. M. Buijs, D. N. Velis, and D. F. Swaab, Ontogeny of vasopressin and oxytocin in the fetal rat: early vasopressinergic innervation of the fetal brain, Peptides, vol.1, pp.315-324, 1980.

J. Hawthorn, V. T. Ang, and J. S. Jenkins, Comparison of the distribution of oxytocin and vasopressin in the rat brain, Brain Res, vol.307, pp.289-294, 1984.

M. Ludwig and G. Leng, Dendritic peptide release and peptide-dependent behaviours, Nat Rev Neurosci, vol.7, pp.126-136, 2006.

M. V. Sofroniew, Handbook of Chemical Neuroanatomy. GABA and Neuropeptides in the CNS, pp.93-165, 1985.

J. R. Epp, Y. Niibori, and H. H. Liz, Optimization of CLARITY for clearing whole-brain and other intact organs, eNeuro, vol.2, issue.3, 2015.

S. H. Yeo, V. Kyle, and P. G. Morris, Visualisation of Kiss1 neurone distribution using a Kiss1-CRE transgenic mouse, J Neuroendocrinol, vol.28, issue.11, 2016.

A. Bjorklund and S. B. Dunnett, Dopamine neuron systems in the brain: an update, Trends Neurosci, vol.30, pp.194-202, 2007.

M. Ugrumov, V. Melnikova, P. Ershov, I. Balan, and A. Calas, Tyrosine hydroxylase-and/or aromatic L-amino acid decarboxylase-expressing neurons in the rat arcuate nucleus: ontogenesis and functional significance, Psychoneuroendocrinology, vol.27, pp.533-548, 2002.

I. S. Balan, M. V. Ugrumov, A. Calas, P. Mailly, M. Krieger et al., Tyrosine hydroxylase-expressing and/or aromatic L-amino acid decarboxylase-expressing neurons in the mediobasal hypothalamus of perinatal rats: differentiation and sexual dimorphism, J Comp Neurol, vol.425, pp.167-176, 2000.

P. E. Sawchenko and L. W. Swanson, The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat, Brain Res, vol.257, pp.275-325, 1982.

M. V. Ugrumov, A. Tixier-vidal, J. Taxi, J. Thibault, and M. S. Mitskevich, Ontogenesis of tyrosine hydroxylase-immunopositive structures in the rat hypothalamus. Fiber pathways and terminal fields, Neuroscience, vol.29, pp.157-166, 1989.

M. Abramova, F. Marsais, A. Calas, J. Thibault, and M. Ugrumov, Dynamical study of tyrosine hydroxylase expression and its correlation with vasopressin turnover in the magnocellular neurons of the supraopticoposthypophysial system under long-term salt loading of adult rats, Brain Res, vol.925, pp.67-75, 2002.

M. A. Abramova, A. Calas, and M. Ugrumov, Vasopressinergic neurons of the supraoptic nucleus in perinatal rats: reaction to osmotic stimulation and its regulation, Brain Struct Funct, vol.215, pp.195-207, 2011.

M. V. Ugrumov, A. P. Popov, S. V. Vladimirov, S. Kasmambetova, and J. Thibault, Development of the suprachiasmatic nucleus in rats during ontogenesis: tyrosine hydroxylase immunopositive cell bodies and fibers, Neuroscience, vol.58, pp.151-160, 1994.

M. Beltramo, A. Calas, and E. Chernigovskaya, Postnatal development of the suprachiasmatic nucleus in the rat. Morpho-functional characteristics and time course of tyrosine hydroxylase immunopositive fibers, Neuroscience, vol.63, pp.603-610, 1994.

C. A. Wilson, C. L. Dakin, J. A. Rico, A. Golmohamad, Y. Ahmad-jauhari et al., The anti-dopaminergic agent, haloperidol, antagonises the feminising effect of neonatal serotonin on sexually dimorphic hypothalamic nuclei and tyrosine hydroxylase immunoreactive neurones, J Neuroendocrinol, vol.21, pp.648-656, 2009.

M. V. Sofroniew and A. Weindl, Projections from the parvocellular vasopressin-and neurophysin-containing neurons of the suprachiasmatic nucleus, Am J Anat, vol.153, pp.391-429, 1978.

R. M. Buijs, The development of vasopressin and oxytocin systems in the brain, pp.547-572, 1992.

F. Vandesande and K. Dierickx, Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretroy system of the rat, Cell Tissue Res, vol.164, pp.153-162, 1975.

A. J. Silverman, R. Goldstein, and C. A. Gadde, The ontogenesis of neurophysincontaining neurons in the mouse hypothalamus, Peptides, vol.1, pp.27-44, 1980.

M. Castel and J. F. Morris, The neurophysin-containing innervation of the forebrain of the mouse, Neuroscience, vol.24, pp.937-966, 1988.

M. Castel, N. Feinstein, S. Cohen, and N. Harari, Vasopressinergic innervation of the mouse suprachiasmatic nucleus: an immuno-electron microscopic analysis, J Comp Neurol, vol.298, pp.172-187, 1990.

V. Grinevich, M. G. Desarmenien, and B. Chini, Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders, Front Neuroanat, vol.8, p.164, 2014.

B. D. Rood, D. Vries, and G. J. , Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord, J Comp Neurol, vol.519, pp.2434-2474, 2011.

M. Otero-garcia, C. Agustin-pavon, E. Lanuza, and F. Martinez-garcia, Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice, Brain Struct Funct, vol.221, pp.3445-3473, 2016.

M. V. Ugrumov, Magnocellular vasopressin system in ontogenesis: development and regulation, Microsc Res Tech, vol.56, pp.164-171, 2002.

A. Hou-yu, A. T. Lamme, E. A. Zimmerman, and A. J. Silverman, Comparative distribution of vasopressin and oxytocin neurons in the rat brain using a double-label procedure, Neuroendocrinology, vol.44, pp.235-246, 1986.

C. Callewaere, G. Banisadr, and M. G. Desarmenien, The chemokine SDF-1/CXCL12 modulates the firing pattern of vasopressin neurons and counteracts induced vasopressin release through CXCR4, Proc Natl Acad Sci USA, vol.103, pp.8221-8226, 2006.

X. Jing, A. K. Ratty, and D. Murphy, Ontogeny of the vasopressin and oxytocin RNAs in the mouse hypothalamus, Neurosci Res, vol.30, pp.343-349, 1998.

A. Trembleau, M. Ugrumov, D. Roche, and A. Calas, Vasopressin and oxytocin gene expression in intact rats and under catecholamine deficiency during ontogenesis, Brain Res Bull, vol.37, pp.437-448, 1995.

S. Hyodo, C. Yamada, T. Takezawa, and A. Urano, Expression of provasopressin gene during ontogeny in the hypothalamus of developing mice, Neuroscience, vol.46, pp.241-250, 1992.

J. L. Cazemier, F. Clasca, and P. H. Tiesinga, Connectomic analysis of brain networks: novel techniques and future directions, Front Neuroanat, vol.10, p.110, 2016.