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Abstract

Retroviral nucleocapsid proteins harbor nucleic acid chaperoning activities that mostly rely on the N-terminal basic residues
and the CCHC zinc finger motif. Such chaperoning is essential for virus replication, notably for genomic RNA selection and
packaging in virions, and for reverse transcription of genomic RNA into DNA. Recent data revealed that HIV-1 nucleocapsid
restricts reverse transcription during virus assembly – a process called late reverse transcription – suggesting a regulation
between RNA packaging and late reverse transcription. Indeed, mutating the HIV-1 nucleocapsid basic residues or the two
zinc fingers caused a reduction in RNA incorporated and an increase in newly made viral DNA in the mutant virions.
MoMuLV nucleocapsid has an N-terminal basic region similar to HIV-1 nucleocapsid but a unique zinc finger. This prompted
us to investigate whether the N-terminal basic residues and the zinc finger of MoMuLV and HIV-1 nucleocapsids play
a similar role in genomic RNA packaging and late reverse transcription. To this end, we analyzed the genomic RNA and viral
DNA contents of virions produced by cells transfected with MoMuLV molecular clones where the zinc finger was mutated or
completely deleted or with a deletion of the N-terminal basic residues of nucleocapsid. All mutant virions showed a strong
defect in genomic RNA content indicating that the basic residues and zinc finger are important for genomic RNA packaging.
In contrast to HIV-1 nucleocapsid-mutants, the level of viral DNA in mutant MoMuLV virions was only slightly increased.
These results confirm that the N-terminal basic residues and zinc finger of MoMuLV nucleocapsid are critical for genomic
RNA packaging but, in contrast to HIV-1 nucleocapsid, they most probably do not play a role in the control of late reverse
transcription. In addition, these results suggest that virus formation and late reverse transcription proceed according to
distinct mechanisms for MuLV and HIV-1.
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Introduction

The retroviral nucleocapsid (NC) corresponds to the C-terminal

domain of the Gag polyprotein precursor and found as mature

protein upon Gag processing by the viral protease (PR) during

virus formation and budding. NC has nucleic acid chaperone

activities supported by its basic residues and the zinc finger (ZF)

motif (for review, [1,2]). The basic residues and the ZF domain

mediate tight nucleic acid binding in vitro [3,4]. While NC of

betaretroviruses (i.e. Mason-Pfizer Monkey Virus, MPMV),

alpharetroviruses (i.e. Rous Sarcoma Virus, RSV) and lentiviruses

(i.e. Human Immunodeficiency Virus; HIV) have two ZFs,

gammaretroviruses, such as the prototypic Murine Leukemia

Virus (MuLV), have only one NC ZF. This unique ZF and the

basic residues on its N-terminal side are required for MuLV

infectivity [5,6,7,8]. This region plays critical roles in the late

phase of MuLV replication since mutating the ZF or deleting the

N-terminal basic residues of NC impair packaging of the genomic

RNA (gRNA) and virion formation [7,9,10,11,12,13]. Dimeriza-

tion of the gRNA induces a structural RNA switch that exposes

conserved UCUG elements that bind NC with high affinity

[14,15,16]. Such genome recognition by NC promotes the specific

packaging of the gRNA in a dimeric form into newly made viral

particles [17,18].

Early after virus infection of target cells, the gRNA is copied by

the viral Reverse Transcriptase (RT) to generate the viral DNA in

a process called Reverse Transcription (RTion). It is a multistep

process initiated from a cellular tRNA annealed to the 59 end PBS

(Primer Binding Site) of the gRNA and subsequently requires two

DNA strand transfers to synthesize the complete double-stranded

viral DNA flanked by the two long terminal repeats (LTR). Several

steps of RTion require nucleic acids remodeling reactions that are

chaperoned by NC, notably primer tRNA annealing to the PBS

and the two obligatory DNA strand transfers (for review see

[19,20,21]. Viral DNA synthesis can occur during retrovirus

assembly as shown for RSV, MuLV and HIV-1, but at low level

([22,23,24]. Recently, mutations in the NC basic residues and ZFs

were found to cause extensive RTion in the course of virus
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assembly in HIV-1 producing cells [25,26]. Similarly to HBV and

foamy viruses, we called this process ‘‘late RTion’’. Thus, our data

further support a role for NC in the control of RTion and its

timing throughout the HIV-1 replication cycle [27,28].

Yet it is not known whether the involvement of NC in the

timing of RTion is specific for HIV-1 or is also valid for other

retroviruses, such as alpha- and gammaretroviruses with diverse

NCs. Late RTion was maximal when HIV-1 NC contained only

the proximal ZF (ZF1) without ZF2 (DZF2), indicating that the

two ZFs of HIV-1 are not functionally equivalent [26,29].

However, MuLV has a unique NC ZF that is critical for RTion

[30,31]. To get a better understanding of the role of NC in the late

steps of MuLV replication, we asked whether the conserved

features of MuLV NC, the basic residues and the unique ZF, are

functionally equivalent to those of HIV-1 NC (Fig 1). We revisited

by quantitative RT-PCR and PCR analyses the role of MuLV NC

in gRNA packaging and we asked whether the basic residues and/

or the unique ZF could control RTion during virus assembly. To

this end, we studied the impact of mutating or deleting these

conserved domains of MuLV NC. Our results show that the basic

residues and the unique ZF play a major role in gRNA packaging,

and the basic residues (aa16–23, Fig 1) are important determinant

for virus release, underlying the similarity between MuLV and

HIV NC’s. In contrast, MuLV NC, unlike HIV-1 NC, did not

influence late RTion since mutating MuLV NC did not cause the

accumulation of a high level of viral DNA in mutant virions.

Materials and Methods

Plasmids and mutagenesis
The molecular clones pRR88-wt, pRR88-C39S, pRR88-D16–

23 of Mo-MuLV were provided by A. Rein and previously

described in [11,13,32]. The MuLV molecular clone PR- contains

a deletion of the protease (nt 2421– 2546) as previously described

[33]. The pRR88-DZF was constructed by substitution of the

XhoI-SalI fragment (nt 1560 to 7674 of MuLV) that was

previously inserted in a pSP72 vector and mutated with the

QuikChangeH Lightning Site-Directed Mutagenesis Kit (Strata-

gene) according to the manufacturer’s instructions. The mutated

oligonucleotides used were sense-DZF (59-CCCAACTC-

GATCGCGACAAGAAACCACGAGGA) and antisense-DZF
(59-CCTCGTGGTTTCTTGTCGCGGATCGAGTTGGG) to

generate construct with deletion of ZF (nt 2127–2174). All

constructs were confirmed by sequencing.

The HIV-1 pNL4–3 molecular clone was used to generate the

mutant DZF2 with harbors a deletion of the second zinc finger

motif of the NC. As previouly described [34], this mutant was

obtained by site directed mutagenesis using the following

olignucleotides: 59CCTGTCTCTCAG-

TACCGCCCTTTTTCCTAG39 and 59CTTTCATTTGG-

CATCCTTCC39, respectively.

Cell culture, transfection and virus preparation
HEK293T cells were grown in DMEM medium (Dulbecco’s

modified Eagle’s medium) supplemented with glutamine (2 mM),

Figure 1. Primary structure of MuLV NC protein and schematic representation of the mutants used here. Numbers indicate amino acid
positions. The zinc finger is drawn with the Zn ion coordinated by the CCHC residues. The broken line represents the deleted amino acids.
doi:10.1371/journal.pone.0051534.g001
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penicillin (100 U/mL), streptomycin (100 mg/mL) and heat-

inactivated fetal calf serum (10% v/v) at 37uC. Transfections

were performed as previously described [35]. In a standard

experiment, 3.56106 cells were grown in 10 cm dishes. The next

day, 8 mg of plasmid DNA were transfected by phosphate calcium

precipitation. In all cases, in order to eliminate the plasmid in

excess in the medium, the cells were trypsinized 6 hours after

transfection, centrifuged and transferred in a new dish. The

supernatant was harvested 48h after transfection, centrifuged at

1500 rpm during 10 min and filtered at 0.45 mm. Cells were

collected by pipetting with PBS and centrifuged 5 min at

1500 rpm.

DNA and RNA extractions
Nucleic acids extractions from virions were performed as

previously described [26]. Before ultracentrifugation, 400 ml of

HIV-1 mutant virions (DZF2) obtained as previously described in

[26] were systematically added to MuLV supernatants as a tracer

to check DNA extraction. However, no tracer was added to the

supernatants during the HIV-1 or the HIV-1/MuLV co-

expression assays. Then, virions were purified from 15 ml of

filtered culture supernatants by centrifugation through a 20%

sucrose cushion at 30 000 rpm for 1h 30 at 4uC in an SW32 rotor.

Pellets were resuspended in 160 ml of DMEM with 8 U of DNase

(RQ1, Promega). One aliquot of virion samples (25ml = 1/6) was

saved for virion quantification by Western-Blot analysis as

previously in reference [36] and the rest of virions was incubated

at 37uC for 45 min to reduce contamination by the transfecting-

plasmid DNA. Then, 44 mL of TES 4X (200 mM Tris pH 7.5,

20 mM EDTA, 0.4% SDS) and 20 mg of tRNA carrier were

added to the virions before extraction of the nucleic acids by

phenol/chloroform and ethanol precipitation.

DNA was extracted from cells with DNAzol (MRC) according

to the manufacturer’s instructions and as previously described

[26]. To avoid any contamination with viral cDNA associated with

the particles, cells were extensively washed with cold PBS before

DNA extraction. DNA was quantitated by measuring optical

absorption at 260 nm.

RT and qPCR
In vitro reverse transcription was performed as previously

described [36] with 1 mg of cellular RNA samples or 1/20 aliquot

of virion RNA. Oligo(dT) was used as RTion-primer. A control

experiment was systematically performed without RT to look for

the absence of DNA contamination. Quantitative PCR assay was

achieved with 2.5% of RT reaction or 125 ng of cellular DNA

sample and SYBR Green kit (Roche) using the RotorGene

(Labgene) systems. The products were amplified by 35 cycles:

95uC for 15s; 60uC for 15s and 72uC for 20s. The following

oligonucleotides pairs (0.5 mM) were used: for gRNA and Pol-

cDNA, sMLV3350: 59-TATCGGGCCTCGGCAAGAAAG

sense and aMLV3600: 59-AAACAGAGTCCCCGTTTTGGTG

antisense; for ss-cDNA, sensMLV+1: 59-GCGCCAGTCCTCC-

GATTGACTGAG sense and aMLV142: 59-GAAA-

GACCCCCGCTGACGGGTAGTC antisense; for FL cDNA,

sMLV-368 59-AGAATAGAGAAGTTCAGATC sense and

aMLV290 59- GCTAACTAGTACCGACGCAGGCGC; for

SD’, sMLV1450: 59-CTG CTG ACG GGA GAA GAA AAA

CA sense and aMLV5620 59-GCGGACCCACACTGTGTC

antisense; for GAPDH, sGAPDH721 59-GCTCACTGG-

CATGGCCTTCCGTGT sense and aGAPD931 59-TGGAG-

GAGTGGGTGTCGCTGTTGA antisense; for plasmid trans-

fected detection spRR88-784: 59-

CACAGAACTAGTCAGAGACAGCAT sense and aMLV-431:

CTTAAGCTAGCTTGCCAAACC antisense, and for specific

detection of HIV-1 multi-spliced cDNA (MS cDNA), sHIV5967=

59-CTATGGCAGGAAGAAGCGGAG sense and aHIV8527=

59-CAAGCGGTGGTAGCTGAAGAG antisense. A standard

curve was generated from 50 to 500 000 copies of pRR88-wt

plasmid. For each experiment, the DNA purified from virions was

checked by a q-PCR assay using the HIV primer pairs

(sHIV5967/aHIV8527) specific for the HIV-1 multispliced cDNA

forms as previously described [26] to monitor the viral DNA

contained in the HIV-1 virions added as tracer. Systematically,

cellular GAPDH gene level was determined for standardization of

the cellular DNA samples. The background measured from the

transfected pRR88 plasmid (spRR88-784/aMLV-431) was de-

duced to the ss-cDNA.

Protein analysis
Cells were lysed in presence of Protease inhibitor cocktail

(Roche) with the ProteoJet reagent according to the manufac-

turer’s instructions (Fermentas). Total protein concentration was

determined by Bradford protein assay using a BSA standard set

(Fermentas) and 200 mg of total protein were loaded on 12% SDS-

PAGE.

Viral proteins were extracted from 1/6th of virion samples and

prepared for gel loading by adding an equal volume of sample

buffer (12.5 mM Tris hydrochloride [pH 6.8], 2% SDS, 20%

glycerol, 0.25% bromophenol blue, 5% b-mercaptoethanol).

Proteins were analyzed by Western blotting as previously

described [36]. Gag proteins were detected with a rat anti-capsid

(p30) monoclonal antibody (HyR187; a kind gift from B.

Chesebro) used at a 1:50 dilution as the primary antibody, and

a peroxidase-conjugated (HRP) goat anti-rat antibody (1:2000) as

the secondary antibody (Sigma). HIV-1 Gag proteins were

detected with a anti-CA (Serotec) used at 1:4000 dilution and

a HRP anti-goat (1:2000) as the secondary antibody (Sigma). Actin

proteins were detected with a commercial anti-actin antibody

(Sigma) used at a 1:500 dilution and a HRP anti-rabbit (1:2000) as

secondary antibody. Fluorescence was recorded by a CCD

chemiluminescence camera system (Gnome, Syngene) and quan-

tified by ImageQuant software.

Results

Role of the NC basic sequence and zinc finger in virus
assembly
The conserved basic residues and the unique ZF of MuLV NC

are important functional determinants in virus replication (Fig 1).

To study their role in MuLV assembly, we used full-length

molecular clones with mutation or deletion in the NC domain of

Gag (called NC here) (Fig 1). The N-terminal basic residues of NC

(Fig 1) were deleted generating the NC D16–23 mutant clone

lacking residues R16 through R23. The ZF motif was either

mutated by changing Cys-39 to a Ser (C39S), or completely

deleted (DZF). In parallel, we used a molecular clone (PR-) where

the protease was inactivated by a deletion (nt 2421–2546).

Mutating the protease enzyme prevented processing of the two

Gag and GagPol precursors. Importantly, inactivating the HIV-1

protease has an impact on intravirion DNA level [29]. Each

MuLV molecular clone was transfected into 293T cells and levels

of Gag proteins in pelletable viral particles were monitored by

immunoblotting, as previously reported [37]. To detect Gag and

mature capsid (CA) in cellular and viral samples, immunoblotting

was conducted with an anti-CA primary antibody (Fig 2). When

virus release was efficient (wt and PR-), Gag did not accumulate in

cells. As shown in Fig 2B, the levels of Gag processing varied

Roles of the NC in HIV-1 and MuLV Replications
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somewhat, as illustrated by the ratios of CA to Gag proteins. To

determine the level of virus produced, signals were quantified with

ImageQuant software, normalized to wt level and average values

from three independent experiments are given in Fig 2B. Results

indicate that the ZF mutants, C39S and DZF, produced wt level of

viral particles in the culture medium, but these mutant particles

contained incompletely processed Gag. This partial Gag proces-

sing might explain, at least in part, the loss of MuLV infectivity

when mutating the NC cysteines in the zinc finger [8,38]. As

expected, the PR- mutant produced immature virions at wt level.

In contrast, deleting the N-ter basic residues (D16–23) induced
a severe decrease (86%) of MuLV production (Fig 2). The deletion

of the basic residues caused a dramatic release defect, while ZF

mutation or deletion induced only a default in Gag processing.

Quantitative analysis of the impact of NC mutations on
genomic RNA packaging into virions
NC is thought to drive the interaction of Gag with nucleic acids

and as such drives the specific incorporation of the gRNA into

assembling viral particles [12] by binding to the 59 UTR of the

gRNA with high affinity (for review [16,39]). Subsequently, Gag-

gRNA complexes reach the plasma membrane where formation of

viral particles is completed (for review [18]). As for other retroviral

NC’s [40,41] the NC packaging function primarily relies on its

ability to interact with nucleic acid sequences, notably the 59 UTR

of the gRNA in a very tight mode, which drives gRNA selection.

At the same time NC binding to the gRNA causes genome

dimerization chaperoned by the NC annealing activity [42].

Recently, we reported that mutating the NC ZF of HIV-1

resulted in virions where the newly made viral DNA replaced the

gRNA, due to the RTion of the gRNA before virus release. This

study also showed a correlation between intravirion levels of viral

DNA and gRNA among the HIV-1 NC-mutant particles [43]. To

determine whether this property was conserved in gammaretro-

viruses such as MuLV, we first examined the impact of NC

mutations on the level of gRNA packaging in a quantitative

manner by RT-qPCR.

For the first time, the ability of MuLV NC to package the

gRNA was monitored by RT-qPCR. Identical volumes of MuLV

containing medium were collected and MuLV particles pelleted by

centrifugation through a sucrose cushion. Next, MuLV samples

were treated by RNAse-free DNase before particle lysis to remove

any transfected plasmid DNA, which could interfere with the

qPCR assays. As an internal control, we used aliquots of NC-

mutant HIV-1 virions that contain a high level of viral DNA. This

allowed us to monitor the level of the MuLV particle recovery

after ultracentrifugation and DNase treatment. Nucleic acids were

purified by two successive phenol-chloroform treatments. The

recovered RNAs were reverse transcribed using an oligodT primer

and quantitative analyses were carried out using PCR primer pairs

that specifically target the intronic region of the viral unspliced

RNA (Fig 3, top-part). Two controls for the RT-qPCR reactions

were systematically included, (i) one to assess DNA contamination

by means of a RTion reaction in the absence of any added RT

followed by quantitative PCR amplification and (ii) another one to

monitor background amplification levels by real-time PCR with

a RNA sample purified from mock-transfected cells. The levels of

gRNA in virions were determined as copy numbers in virion

pellets. Average values are given in Fig 4A and are from 4

independent experiments. As expected, wt virions contain the

highest level of gRNA with 108 copies in total culture medium.

The MuLV PR- particles contained 80-fold less gRNA than wt

MuLV, while cells transfected with the MLV PR- DNA produced

a wt level of pelletable Gag in the medium. The MuLV C39S and

DZF mutants also showed a severe decrease in gRNA in-

Figure 2. Viral particles produced by MuLV producer cells. (A) MuLV expression was analysed in cells by immunoblotting with an anti-CA
antibody. Actin was probed as a loading control. (B) Mature capsid (CA) and Gag were detected in viral samples. Signals were quantified with
ImageQuant software. For each lane, signals corresponding to all the bands were added and normalized to wt level (right part). Error bars indicate SD
from at least three independent experiments.
doi:10.1371/journal.pone.0051534.g002

Roles of the NC in HIV-1 and MuLV Replications

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e51534



corporation, namely 80 and 40 fold less than in MuLV wt virions,

respectively (Fig 4A). As for MuLV PR-, such a decrease was not

due to a lower level of Gag in the medium. The MuLV D16–23
mutant particles had a drop of 2-orders of magnitude of its gRNA

content (160-fold decrease). Such a dramatic decrease was partly

caused by a 7-fold decrease of Gag-associated particles combined

to a drastic default in gRNA packaging.

In conclusion, all the MuLV NC mutants examined here had

a defect in gRNA packaging, at a degree similar to that of the

MuLV PR- mutant. These results confirm the critical role of the

NC basic residues and ZF on MLV gRNA packaging.

NC mutations do not result in a high level of viral DNA in
MLV virions
We next asked whether NC mutation or deletion of the ZF

could promote late RTion resulting in the synthesis of viral DNA

and the production of DNA-containing MuLV as previously

observed with HIV-1 NC mutants [25,26]. HIV-1 experiments

conducted with a defective protease (PR-) provide evidences

supporting that proteolytic processing may cause, at least in part,

the late RTion process [29]. This prompted us to examine the

DNA content of immature MuLV virions produced by the PR-

mutant.

In order to monitor the level of recovery of intravirion MuLV

DNA after DNase treatment of the pelleted virions, a calibrated

amount of DZF2 HIV-1 was added to MuLV supernatant and not

to the HIV-1 assays (see methods). The DZF2 HIV-1 particles

contained 100-fold more viral DNA than wt HIV-1 particles,

resulting from an optimal late RTion activity (Fig 4C left part)

[26]. For each MuLV assay, a systematic q-PCR was performed to

monitor HIV-1 multispliced cDNA added as a tracer, as

previously described [26]. To perform an in-depth analysis of

the DNA content of the mutant MuLV particles, we used q-PCR

which is a sensitive quantitative approach to monitor the levels of

the minus strong-stop DNA (ss-DNA), Pol and FL cDNA forms

(Fig 3). In parallel, q-PCR amplifications were run with primer

pairs specific for the transfected plasmid (pRR88) but not for the

newly made viral FL cDNA (Fig 3). The FL and Pol cDNA forms

gave copy numbers similar to that obtained with the control

pRR88 primers (5656102 copies), indicating the absence of

detectable copies of FL and Pol DNAs in the wt and mutant

MuLV particles. In order to improve sensitivity, we used PCR

primer pairs specific for the R-U5 region (named ss-cDNA

primers) to sum up all RTion products (Fig 3). Indeed, the R-U5

region is included in the shortest reverse transcripts such as the ss-

cDNA in addition to all the intermediate (Pol-DNA) and the full

length (FL) cDNAs. Also there is a duplication in the FL DNA at

the 59 and 39 ends (Fig 3). The pRR88 copy numbers (representing

10% of the ss-cDNA cps) were substracted from the ss-cDNA

values and the results from at least 7 independent experiments

showed no variation of the ss-cDNA levels among the mutants

(Fig 4B). In conclusion there is no variation of the DNA content

Figure 3. Strategy of qPCR to monitor the MuLV nucleic acid species. Templates and primers used for qPCR analyses were schematically
represented. Only the spliced SD’ RNA (SD’/SA) important for this study and the gRNA are indicated. A color code was used to illustrate the specificity
of the PCR-primer pairs (arrows) that were used to quantify the pR88 plasmid (blue) which generates the MuLV gRNA transcript (orange) and the
spliced SD’ RNA (green). Numbers refer to the position of the elongation start. Bottom panel: Products of viral reverse transcription. The primer pairs
used to detect the intermediate ss-cDNA (red), Pol cDNA (orange), SD’ cDNA (green) and the final product FL DNA (purple) are shown.
doi:10.1371/journal.pone.0051534.g003
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between the virions with a mutated NC, a defective PR (PR-) and

the wt MuLV particles (Fig 4B). Previously, we showed that the

alternatively spliced SD’ RNA, generated by usage of the SD’ and

SA splicing sites (Fig 3), is specifically incorporated in wt MuLV

and is reverse transcribed as efficiently as the unspliced gRNA

[44]. Thus, the spliced SD’-cDNA would be a useful alternative for

specific viral DNA quantitation without the requirement to

remove the contaminant pRR88 cps. It was not possible to detect

specific SD’ cDNA forms in neither wt nor NC-mutant viruses.

Average levels of spliced SD’ cDNA measured in the DNA

samples (36102 copies) were not significantly different from the

background level measured with the mock control using culture

supernatant collected from mock-transfected cells (see methods).

The presence of MuLV cDNA (ss-cDNA and SD’ cDNA) in

producer cells was examined as previously described [26]. In

contrast to HIV-1, the viral cDNA was not found in cellular DNA

samples (data not shown). These results are consistent with those

on the virion viral DNA content and indicate the absence of active

late RTion in MuLV producer cells (Fig 4B).

Analysis of the coexpression of MuLV and HIV-1
MuLV and HIV-1 NCs have similar functions in assembly

which is further highlighted by the production of chimeric MuLV-

HIV-1 VLPs. In addition, the HIV NC can recognize the MuLV

RNA genome although less efficiently than the HIV-1 gRNA

[12,45]. Based on these observations, we wanted to examine

whether in the context of complete viruses, the expression of the

DZF2 HIV-1 mutant, which produced DNA-containing particles,

could confer late RTion activity to MuLV. HIV-1 DZF2 NC could

recognize the MuLV gRNA, causing its reverse transcription as for

the HIV-1 gRNA. To this end, MuLV was cotransfected with the

wt or DZF2 HIV-1 molecular clone (pNL4-3). No HIV tracer was

added to the supernatants during these assays. First, we examined

the particles released by Western immunoblotting with anti-CA

antibodies specific for MuLV or HIV-1 (Fig 5A). Surprisingly,

MuLV production was impaired in presence of the DZF2 HIV-1

mutant, but not by the wt HIV-1. In contrast, DZF2 HIV-1

production remained unchanged with or without MuLV. Then,

we analyzed the DNA content of the released particles.

Examination of MuLV DNA in virion released when MuLV

and DZF2 were coexpressed, showed a reduction of the intravirion

DNA (Fig 5B). This result correlates with the failure to release

virions (Fig 5A). Upon MuLV expression, the level of HIV-1

intravirion DNA was higher in presence of DZF2 HIV-1 than with

wt HIV-1 (7.5-fold). However, in previous experiments with HIV-

1 alone (Fig 4C) the maximum differences observed between the

DZF2 and wt HIV-1 were about 100-fold. These results suggest

that the presence of MuLV impaired the late RTion activity of the

mutant HIV-1 (DZF2).

Discussion

NC is involved in the RTion reation with at least two key

partners, the RT enzyme and the genomic RNA template (gRNA).

In fact, NC molecules extensively coat the gRNA to form the

nucleocapsid structure (Darlix et al., 1995; 2011) where tight

interactions take place between NC molecules, the cellular tRNA

Figure 4. Quantitative analysis of the nucleic acid content of viral particles released fromMuLV producer cells. (A) Quantitation of viral
gRNA incorporated in wt or mutant viruses by RT-QPCR. Mock controls were subtracted from assays. Error bars indicate SD from at least four
independent experiments. (B) Viral DNA levels were determined by qPCR in the wt and mutant virions. DNA was extracted from same virion samples
as those used before for gRNA quantitation. Error bars indicate SD from at least seven independent experiments. (C) There is no correlation between
gRNA and viral DNA levels among the MuLV mutants. For comparative purpose, data obtained with HIV-1 virions deleted of the second ZF (DZF2) are
given (left part) [26,38]. To facilitate the comparison, levels of viral gRNA and ss-cDNA were normalized to those measured in wt virions.
doi:10.1371/journal.pone.0051534.g004
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primer and the RT enzyme [2]. The role of NC in RTion largely

relies on its nucleic acid chaperone activity, i.e. the ability to direct

nucleic acid conformational rearrangements [40,46]. Moreover,

NC exerts a control over the timing of RTion, in a spatio-temporal

manner. Indeed, mutating the N-terminal basic residues or the

zinc finger motifs (ZF) of HIV-1 NC caused late RTion in HIV-1

producer cells with a 10–100 fold enhancement of newly made

viral DNA found in virions as compared with wild-type virions

[25,26,43]. How HIV-1 controls this late RTion activity remains

a matter of debate. However, inactivating the HIV-1 protease or

slowing down virus release modulates intravirion DNA levels in

such HIV-1 mutants [29], indicating that these two late viral steps

are impacting on the timing of RTion.

Structural features of NC tend to be conserved among

retroviruses [47]. However, unlike most retroviruses that harbor

two ZF motifs, the gammaretroviruses such as MuLV have only

one ZF. This feature also distinguishes spumaretroviruses, DNA-

containing viruses, which have no NC ZF motif. Also the primary

structure of MuLV NC is different from that of HIV-1 since it is

more basic. Such MuLV NC unique features prompted us to

examine MuLV NC activities by mutating the N-terminal basic

residues and the unique ZF motif and monitoring their impact on

the late events of MuLV replication. The present study showed

that MuLV basic residues are an essential component for virus

assembly and gRNA packaging (Fig 2 and 4) and that MuLV

(Fig. 4) and HIV-1 [43] ZFs appear to play equivalent role in

gRNA packaging. Moreover, we recently reported that mutating

basic residues or the ZF of HIV-1 NC resulted in virions

containing large amounts of newly made viral DNA, which was

generated by RTion of the gRNA before virus release (late RTion)

[43]. Such correlation between gRNA and DNA levels was

investigated in MuLV NC mutants. We found major differences

between MuLV and HIV-1 NC for the temporal control of RTion

during virus assembly. Unlike HIV-1, mutations of NC’s basic

residues or ZF did not turn MuLV into a DNA-containing virus.

Only short ss-cDNA forms were found in MuLV particles but not

in MuLV producer cells, while intermediate or full-length RTion

products remained undetectable (Fig 4C). The viral ss-cDNA

synthesis was likely initiated after virus release. It is known that

RTion can initiate in newly made viruses. Such natural

endogenous RTion activity (NERT) activity produces mainly ss-

cDNA, probably because retroviral particles contain insufficient

levels of deoxynucleotide triphosphates to complete synthesis of

long cDNA products [23,48,49]. Moreover, our experiments with

MuLV and HIV-1 coexpression (Fig 5) showed for the first time

that the DZF2 HIV mutant negatively interfered with MuLV

assembly or release, but could not promote late RTion in MuLV.

Interestingly, MuLV NC restricted the late RTion activity of the

DZF2 HIV mutant. Consequently, MuLV NC seems to modulate

late RTion during assembly of MuLV and HIV-1. Altogether,

these results imply that the late RTion and the virus assembly are

two linked events.

Why late RTion can take place during assembly of HIV-1 NC

mutants but not in the case of MuLV NC mutants? Yet it is not

known whether HIV-1 NC directly or indirectly controls the

timing of late RTion. As a simple gammaretrovirus, MuLV might

miss a cofactor essential for the temporal control of RTion during

assembly. In addition, MuLV and HIV-1 NC proteins exhibit

differences in their overall chaperone activities in vitro, with

a higher activity for HIV-1 NC compared to MuLV NC [42,50].

Furthermore, HIV-1 NC can directly interact with the RT

enzyme promoting RTion processivity [51,52]. Such NC/RT

interactions have never been reported for MuLV replicative

nucleoprotein complexes. One explanation could also rely on the

gRNA capacities to adopt particular conformation that regulates

viral functions. For instance HIV-1 gRNA forms U5:AUG

Figure 5. Coproduction of MuLV and HIV-1 virions. Supernatant were collected from cells cotransfected with MuLV and wt or DZF2 HIV-1
molecular clones (MuLV:HIV ratio of 1:3). Released virions were pelleted and proteins analyzed by Western blotting (A). The same blot was used to
probe the MuLV and HIV-1 CA proteins. The intravirion levels of MuLV and HIV-1 DNA were determined and calculated as in Fig 4C (B).
doi:10.1371/journal.pone.0051534.g005
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interaction that promotes NC binding and RNA packaging [53].

Such long-distance base-pairing was not reported in the MuLV

gRNA [16].

Another explanation might rely on differences in the assembly

of MuLV and HIV-1 Gag proteins. Assembly is a well-orchestred

process involving three domains of Gag: i) the membrane-binding

domain (M) located at the N terminus, ii) The Gag-Gag

interaction domain (I) located in the NC sequence and iii) the

late (L) domain needed for virus budding and release (for review

[17]). The NC basic residues are important for Gag assembly with

a possible role in the timing and location of the initial Gag

multimerization reaction Comparative studies on HIV-1 and

MuLV Gag assembly indicate that MuLV Gag molecules start to

interact at much later time after synthesis than those of HIV-1 [54]

and with a much weaker protein-protein interaction [55]. A recent

study reported that perturbation of the NC N-terminal region

caused the assembly of aberrant non-infectious HIV-1 particles

but directed the efficient assembly of MuLV particles [56]. This

different assembly requirement distinguishes MuLV from other

retroviruses and thus timing, Gag trafficking and the rate of virus

assembly can possibly impact on the control of RTion during the

late phase of virus replication.
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