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A thermodynamically consistent phase diagram of a trimorphic 
pharmaceutical, L-tyrosine ethyl ester, based on limited 
experimental data 
Béatrice Nicolaï,a,b Maria Barrio,c Pol Lloveras,c Alain Polian,d Jean-Paul Itié,e Josep-Lluis Tamaritc 
and Ivo B. Rietveld*b,f 

Crystalline polymorphs possess different physical properties and phase changes between those polymorphs may affect the 
properties of engineered materials such as drugs. This is very well illustrated by the large effort that is put into the 
capability to predict phase behavior of pharmaceuticals to avoid the unexpected appearance of different crystal forms. 
Much progress has been made, but one of the remaining challenges is (the accuracy in) the prediction of phase behaviour 
as a function of temperature. Obviously, predictions should at a certain point be verified against experimental data, 
however, it may not always be easy to elucidate the phase behavior of a given compound experimentally, because 
thermodynamically and kinetically controlled phenomena occur in a convoluted fashion in experimental data. The present 
paper discusses the trimorphism of L-tyrosine ethyl ester as an example case of how experimental data in combination 
with the thermodynamic tenets lead to a consistent phase diagram, which can be used as the basis for pharmaceutical 
formulations and for comparison with polymorph predictions by computer. The positions of the two-phase equilibria I-II, I-
III, and I-L have been obtained experimentally. Using the Clapeyron equation and the alternation rule, it has been shown 
how the positions of the other equilibria II-L, III-L, and II-III can be deduced in combination with the stability rankings of the 
phases and the phase equilibria. The experimental data have been obtained by synchrotron X-ray diffraction, Raman 
spectroscopy, and thermal analysis as a function of pressure and temperature. Furthermore, laboratory X-ray diffraction as 
a function of temperature and differential scanning calorimetry have been used. At room temperature, form II is the most 
stable phase, which remains stable with increasing pressure, as it possesses the smallest specific volume. Form I becomes 
stable above 33 °C (306 K), but with increasing pressure it turns into form III. On thermodynamic grounds, form III is 
expected to have a stable domain at very low temperatures. 

 Introduction 
Stability ranking of crystalline polymorphs 

Phase behaviour is an important issue for materials that need 
to remain stable, such as active pharmaceutical ingredients 
and their drug formulations, explosives, and industrial 
installations that have to sustain large changes in temperature 
and or pressure.1 In cases, where failure is not acceptable, the 
phase behaviour of the materials has to be studied, because 
different phases have different properties. It involves on the 
one hand the prediction of the possible phases that may 
exist,2-4 and on the other hand, a ranking of those phases that 
are known to exist in the order of their relative stability as a 
function of the conditions that the system is submitted to.5-9 
Relative stability between different phases will indicate the 
possibility of phase change. Prediction of crystal structures in 
combination with their stability ranking is becoming a powerful 
method. However, the calculations have to be verified against 
experimental data to make sure that the approach is valid and 
this is not only true for the structural data10 but also for the 
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stability data as a function of temperature and pressure.11-13 It 
may be well known that adding temperature dependence to 
computer calculated stability rankings is difficult,14 but it 
should not be forgotten that the experimental determination 
of equilibrium temperatures can be problematic too.15 
 

Kinetics versus thermodynamics in an experiment 

In the ideal case, one would like to map precisely the 
thermodynamics and kinetics of the phase behaviour of a 
given substance (or mixture of substances). Phase equilibria 
are generally studied by observing the related phase 
transitions.16, 17 However, due to kinetics, certain phase 
transitions may be difficult to observe or the conditions of 
observation of the phase transitions are not the actual 
equilibrium conditions.15, 18-23 A convenient example to 
illustrate this point is the solid-solid transition of L-tyrosine 
ethyl ester (L-TEE). At a scanning rate of 10 K min-1 with a 
differential scanning calorimeter (DSC), the transition from 
solid form II to solid form I was observed around 65 °C (338 
K).23 Only by lowering the scanning rate of the DSC gradually, 
could it be observed that the transition temperature levelled 
off at around 33°C (306 K).23 Moreover, once L-tyrosine ethyl 
ester had converted into form I, it did not revert back into 
form II. This was observed experimentally by lack of any 
transition in the DSC or X-ray from form I into form II at room 
temperature and by the fact that L-tyrosine ethyl ester is 
commercially available as pure form I.23, 24 Such a finding may 
lead to the conclusion that form I is actually the stable form at 
room temperature, but the combination of two observations 
contradicts this. First of all form II can be kept at room 
temperature indefinitely, which became already clear during 
previous experiments23 and which is confirmed by the 
synchrotron measurements presented below. The second 
observation is that exposure of L-TEE form II to temperatures 
above 33°C (306 K) would cause it to convert into form I. As 
conversion rates generally do not change from significant to 
negligible unless some sort of transition has taken place, 
lowering the temperature would for a metastable form II 
simply lower the conversion rate into form I and not eliminate 
the conversion. Therefore, it can be concluded that form II is 
the stable form at room temperature (no formation of form I 
observed at RT), form I is the stable form at 33°C (306 K) and 
higher temperatures (transition observed from form II into 
form I at 33°C) even if the transition rate of form II into form I 
is not fast (scanning by DSC at 10 K min-1 tends to overshoot 
the transition temperature) and that the transition of form I 
into form II is kinetically inhibited (no transition of form I into 
form II observed at room temperature: commercial form is 
form I).23 In conclusion, it is important that the thermodynamic 
description of the system is in accordance with all the 
experimental observations. 
 
The system: L-tyrosine ethyl ester 

The subject of this study, the aforementioned L-tyrosine ethyl 
ester is a prodrug for the delivery of the amino acid L-tyrosine 
in the human body. The esterification increases the 

lipophilicity of the amino acid improving absorption in the 
intestines.25, 26 In addition, these short-chained esters tend to 
hydrolyse slowly reducing the rate of clearance in the liver and 
providing a gradual release of the amino acid in the body.26-28 
The molecule consists of a hydroxyl phenyl moiety linked 
through an additional carbon atom to the amino acid moiety 
and an ethyl ester group (see Figure 1). The ethyl ester tail 
exhibits two main conformations leading to crystalline 
trimorphism (Table 1).29 The first structure, that of polymorph 
I, was first described in 1970 for the stereoisomer D-tyrosine 
ethyl ester (Cambridge Structural Database (CSD): TYREST)*.30 
Its crystal system is orthorhombic with space group P212121, as 
is the case for the other two polymorphs. Its unit cell has a 
volume of 1146.4 Å3 at room temperature with Z = 4 (Table 1). 
More recently, from powder diffraction, the unit cell was 
found to be 1152.4 Å3.24 The second polymorph, whose 
structure was obtained from powder diffraction has a slightly 
smaller unit-cell volume of 1106.0 Å3 at room temperature and 
Z = 4, however, the molecular conformation is clearly different 
from polymorph I (CSD: XAVVIB).23 More recently and 
serendipitously, a third form was discovered while 
investigating the pressure-temperature phase diagram of the 

                                                             
 

 

 

 

 

*Even though TYREST represents the structure of D-TEE, which is the 
stereoisomer of L-TEE, their crystal system, space group, powder diffraction 
pattern and unit-cell volume are equivalent. A mathematical transformation 
of TYREST into its mirror image results in the crystal structure of L-TEE. The 
conformation of L-TEE form I in the graphical abstract has been obtained in 
this way. 

Figure 1. (a) L-tyrosine ethyl ester (209.24 g mol-1). (b) The packing 
of the three polymorphs.23,24,29 

a 

b 
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two previously discovered polymorphs. Form III, a high-
pressure form, whose structure was resolved from a high-
pressure powder diffraction pattern, has a unit-cell volume of 
1057.6 Å3 at 323K and 600 MPa with Z = 4 (CSD: XAVVIB01). In 
this case the molecular conformation is very close to that of 
the first form; its identity as a separate polymorph is defined 
by a single additional hydrogen bond.29 Thus, L-TEE exhibits 
conformational polymorphism1, 5, 6, 31 and both conformations 
(polymorphs I and II) exist or persist under ambient 
conditions.23 

Table 1. Crystallographic data at room temperature (except for polymorph III a) of the 
L-TEE polymorphs,b which all exhibit an orthorhombic crystal system, a P212121 space 
group and Z = 4 

For
m 

Unit cell parameters (Å) 
V (Å3) Densit

y 
(g/cm3) 

Re
f 

 a b c    

I 12.788(5) 
16.982(5) 5.279(5) 1146.4

2 
1.2123 30 

II 
12.8679(8

) 
14.7345(8

) 
5.8333(4) 1106.0

1 
1.2566 23 

III 12.655(4)a 
16.058(4)a 5.2045(12)

a 
1057.6a 1.3141

a 
29 

a at 580 MPa and 323 K; b CSD Refcodes: I TYREST (D-TEE see text), II XAVVIB, III 
XAVVIB01 

 
Experimental construction of a pressure-temperature phase 
diagram 

In the present paper it will be demonstrated how a complete 
topological phase diagram can be constructed using the 
trimorphism of L-TEE as an example. Topological in this context 
signifies a structural phase diagram in which the positions of 
the different phase domains relative to each other are 
provided. The accuracy of the coordinates of the involved 
phase equilibria depends on the quantity and quality of the 
data on which they are based and on the level of extrapolation 
that has been used to obtain the coordinates. The data have 
been obtained through DSC,23 X-ray diffraction as a function of 
temperature,23 high-pressure thermal analysis,23 synchrotron 
diffraction as a function of pressure and temperature,29 and 
Raman spectroscopy as a function of temperature and 
pressure. Only the solid-solid transitions between I and II and 
between I and III and the melting equilibrium of form I have 
been experimentally observed.23, 29 The rest of the diagram has 
been obtained using thermodynamic relationships. 

 
The Clapeyron equation 

The three most important elements in the topological 
approach are the Clapeyron equation, the alternation rule, and 
the concept of “ordinary conditions”. The Clapeyron equation 
is well known: 

   (1) 

It provides the slope of a phase equilibrium dP/dT if the 
differences in entropy, ∆S, and in volume, ∆V, between the 
two involved phases are known. The volume differences can 
be obtained through volumetric measurements or by X-ray 
diffraction preferably as a function of temperature.32 The 
entropy difference can be obtained from thermal 
measurements, as the entropy is equal to the enthalpy 
difference between the phases, ∆H, divided by the equilibrium 
temperature, T, at which the enthalpy change has been 
obtained. 
 
The alternation rule 

Because triple points are intersections of three different two-
phase equilibria, the triple points form the backbone of any 
(topological) phase diagram; once their positions are known, 
the phase equilibria can be traced as straight lines in a first 
approximation connecting the triple points. Stable two-phase 
equilibria intersecting a triple point will decrease in stability 
ranking, due to the fact that on the opposite site of the triple 
point it enters a domain, in which a third phase -not involved 
in the two-phase equilibrium- is the most stable phase. This is 
all related to the fact that a pressure-temperature phase 
diagram is nothing more than the projection on the pressure-
temperature plane of the intersections of the Gibbs free 
energy surfaces of the different phases (see also Figure 2 in ref 
9). As a result, around a stable triple point, one will always find 
alternatingly a stable and a metastable two-phase equilibrium 
(the alternation rule) as illustrated later on in this paper (see 
for example Figure 9 in the discussion of this paper). If the 
triple point itself is metastable, the stability ranking of the 
involved two-phase equilibria will be lowered accordingly 
resulting in alternating metastable and supermetastable two-
phase equilibria around the metastable triple point (see for 
example the grey circles in Figure 11a). 
 
“Ordinary conditions”: dealing with real systems 

 

dP
dT

= ΔS
ΔV

= ΔH
TΔV
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The last important notion is that of “ordinary conditions”. 
Thermodynamics deals with the equilibrium state; thus under 
a given pressure and temperature, it indicates which phase is 
the most stable. This may be a solid under pressure, an 
equilibrium between a solid and a liquid and so on; however, 
what happens to a solid substance in open air? As this 
substance is free to sublime, it is in principle not in equilibrium 
(it would be once it has filled the entire atmosphere with its 
vapour). However, we all know what happens to a sugar cube, 
salt, or even our desk out in the open. They remain intact, 
because practically, their vapour pressures are so low, that 
sublimation does not occur or is at least negligible on our 
timescale. Therefore the term “ordinary conditions” is used to 
indicate that the system under consideration is in thermal 

equilibrium with its surroundings and that it has basically 
saturated its close surroundings with its vapour phase, which is 
considered in equilibrium with the condensed phase. The term 
“ordinary conditions” also indicates that the thermodynamic 
pressure of the system is equivalent to its own (partial) vapour 
pressure. This can also be applied to substances in DSC pans 
and X-ray capillaries, which contain a finite space. Even if 
vapour pressures are low, the dead volumes in these 
containers can be considered occupied with the vapour phase 
that is practically in equilibrium with the solid or the liquid 
phase. It implies that measurements carried out with DSC pans 
and capillaries not subjected to any applied hydrostatic 
pressure practically follow the solid-vapour equilibrium line 
and after melting the liquid-vapour equilibrium line. This in 
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298K, 450 MPa

 

I (
ar

b.
 u

ni
ts

)

2q  (°)

Form I
298K, 270 MPa

Figure 2. X-ray diffraction patterns of L-TEE (a) of forms I, II, and III 
under similar temperature and pressure conditions and (b, c, d) of 
form II for various pressures at (b) 200, (c) 250, and (d) 294 K. The 
additional peak at 4.8° in the patterns at 200 and 250 K is due to the 
experimental setup containing kapton windows of the cryostat 
(patterns have been shifted vertically for clarity). 
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turn implies that melting points and solid-solid transitions 
obtained by DSC or X-ray diffraction are practically the same as 
triple points, because three phases are in equilibrium with 
each other: the vapour phase and two condensed phases. This 
approach is strictly speaking an approximation, but for 
substances with a low vapour pressure, in the order of a few 
pascals or less, the error is negligible. 

Materials and Methods 
L-Tyrosine ethyl ester 

L-Tyrosine ethyl ester (M = 209.24 g mol–1) was purchased 
from Sigma–Aldrich (Spain) (98%) and used as provided. Phase 
II was obtained as described in a previous paper by melting 
and recrystallization from the undercooled melt.23 Phase III 
exists under pressure in samples that originally contained 
phase I.29 
 
Diamond anvil cell 

High pressure was generated with a membrane driven 
diamond anvil cell.33 The anvil culet was 400 μm and the 
experimental volume drilled at the center of the imprint had a 
diameter of 200 μm. The gasket material was stainless steel in 
the case of the Raman experiments and CuBe for the 
synchrotron diffraction measurements. The pressure-
transmitting medium was silicon oil and the pressure was 
measured using the linear ruby fluorescence scale. 
 
Synchrotron X-ray diffraction  

Diffraction data were collected at the high-pressure diffraction 
beamline PSICHE at the synchrotron SOLEIL (Gif sur Yvette, 
France). The diffraction data were obtained in two separate 
experiment runs with different wavelengths: 0.4499 and 
0.4859 Å. The temperature was controlled with a liquid-
nitrogen cryostat and an in-house constructed heater. 
Diffraction images were treated with the program fit2D.34 
Measurements have been carried out by varying the pressure 
at a set temperature (200K, 250 K, 294 K, 323K, and 337 K, and 
a few measurements at 303 K). The sample was allowed to 

equilibrate before each measurement for about 15 minutes, 
which was extended to 1 hour at 200 and 250 K. 
Pawley refinement has been carried out using TOPAS-
Academic35, 36 on all diffraction profiles of forms I, II, and III and 
the unit-cell volumes have been extracted and presented 
below as a function of pressure and temperature. The 
respective crystal structures can be found in previous 
publications.23, 24, 29 

 
Raman spectroscopy 

High-pressure, high-temperature Raman scattering 
experiments have been carried out in the backscattering 
geometry using a Jobin-Yvon HR-460 single monochromator 
spectrometer with a 1500 grooves/mm grating and a CCD 
camera as a detector. The 514.5 nm wavelength radiation from 
an Ar laser was focused into a 2 μm spot. Single crystals of L-
TEE forms I and II were studied in separate experiments. 
Measurements were performed between 0 and 1.2 GPa and 
between 295 and 340 K. The spectra are limited to 1300 cm−1, 
because of the strong first order Raman mode of the diamond 
anvils. 

Results 
Diffraction patterns of form II as a function of temperature and 
pressure 

Synchrotron scattering data have been obtained as a function 
of temperature and pressure for form I and form II. The data of 
form I have been published previously together with the 
description of the structure of form III.29 The diffraction data of 
form II are presented in Figure 2. 
 
Specific volumes of forms I, II, and III as a function of pressure and 
temperature 

From these data and those published previously, the unit cell 
volumes of forms I, II, and III have been determined as a 
function of pressure and temperature. The unit cell volume of 
form I is presented in Figure 3a. It can be seen that the 
dependence for form I in the pressure interval up to 400 MPa 

Figure 3. (a) The unit-cell volume of form I as a function of pressure at various temperatures. The volumes appear to converge at ~1100 Å3 at a pressure of 400 
MPa. (b) The unit-cell volume of form II as a function of pressure from 0 to 1000 MPa at 200, 250, and 293 K. In this case the volume converges around 850 MPa at 
1020 Å3. 
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is linear. Only for 293 K and 337 K, enough data exist to 
determine linear expressions leading to: 
 
VI (293 K) = 1145.5(9) – 0.116(6) P       (2) 
VI (337 K) = 1168.4(1.4) – 0.176(6) P       (3) 
 
with VI the unit cell volume of form I in Å3, and P the pressure 
in MPa. 
The unit-cell volume of form II as a function of pressure and 
temperature is presented in Figure 3b for the pressure range 0 
– 1000 MPa and up to 4000 MPa in Figure 4a. The dependency 
could only be measured up to 293 K, because just above this 
temperature form II turns into form I. It can be seen that the 
unit-cell volume is slightly curved with pressure, however, they 
become virtually the same at about 850 MPa irrespective of 
the temperature. The following quadratic curves describe the 
pressure behavior of the volume of form II between 0 and 850 
MPa: 
 
VII (200 K) = 1067.6(1.4) – 0.088(8) P + 4.0(8) ×10−5 P2  (4) 
VII (250 K) = 1083.0(1.6) – 0.103(9) P + 3.7(9) ×10−5 P2  (5) 
VII (293 K) = 1092.8(8) – 0.120(6) P + 4.3(6) ×10−5 P2  (6) 
 
Above 850 MPa, the unit cell data fall roughly on a single line 
for all different temperatures: 
 
VII (>850 MPa) = 1053(3) – 0.0349(13) P      (7) 
 
The data is not necessarily exactly the same for the different 
temperatures, but within the present experimental setting the 
variation is indistinguishable. 
The unit-cell volumes of form III as a function of pressure and 
temperature are provided in Figures 4b and 5. At higher 
pressures, above 1000 MPa (Fig. 4b), all data appear to fall on 
a single line: 
 
VIII (>1000 MPa) = 1061(2) – 0.0339(7) P     (8) 
 
Below this pressure, also 250 K and 293 K appear to lie on the 
line given by 8 and the data points for these two temperatures 

have been used for the fit of expression 8 together with the 
data obtained above 1000 MPa. At 337 K and 323 K, there is 
enough data to observe a certain curvature, which has been 
fitted down from 1500 MPa, but it is hard to say with a lack of 
data between 1000 MPa and 1500 MPa, where the volume 
really significantly starts to deviate from the lower 
temperatures. In any case for 337 K and 323 K below 1500 
MPa, the unit-cell volumes can be described by the expression: 
 
VIII (323-337 K) = 1104(8) – 0.091(2) P + 1.9(8) ×10−5 P2 (9) 
 
The volumes of form III and those of form II are very close; 
however, it is difficult to precisely compare their volumes, 
because the pressure and temperature ranges at which the 
volumes of the two forms have been obtained are different in 
particular at lower pressure. Where the temperatures are the 
same for 250 K and 293 K, the scatter over the data of form III 
is too large to draw any solid conclusions. This scatter in the 
data is the result of a slowing transition rate between I and III 
resulting in diffraction patterns containing two phases from 
which the unit-cell volumes are more difficult to obtain. 
However, at pressures above 1000 MPa, it can be seen that 

Figure 4. (a) The unit-cell volume of form II up to 4000 MPa in the temperature range of 200 to 293 K. (b) Unit-cell volumes of form III as a function of 
pressure at various temperatures. 
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form III has a slightly larger volume (eq. 8) than form II (eq. 7) 
and that this remains the case over the entire upper pressure 
range as the slopes are basically the same. This is an important 
thermodynamic result, as it means that the transition from 
form II into form III coincides with an increase in volume. 

Birch-Murnaghan fits 

The equations relating the unit-cell volume (or specific 
volume) directly with the pressure are convenient to interpret 
and construct the phase diagram discussed below, however 
these simple polynomials do not provide any information on 
the bulk modulus. The latter can be obtained with the Birch-
Murnaghan expression of which the 4th order equation can be 
found in the supplementary information (SI. 21). Fits on the 
data have been carried out with the program EosFit7 by Angel 
et al.37,38 The resulting values are compiled in Table 2: the unit-
cell volume at zero pressure for a given temperature (V0T), the 
bulk modulus at zero pressure for a given temperature (K0T), its 
first derivative with respect to the pressure(K’0T), and its 
second derivative with respect to the pressure (K’’0T). 

Table 2. Birch-Murnaghan fit parameters (see SI. 21 for the 4th order equation) a 

Form T (K) V0T (Å3) K0T (GPa) K’0T K’’0T (GPa−1) 
I 250 1138.5(1.4) 16(5) [4] 

[−0.25] 
I 293 1145.3(1.4) 9.1(1.5) 

[4] [−0.43] 
I 337 1167(2) 5.9(5) 

[4] [−0.66] 
II 200 1066.9(2.1) 11.6(2.4) 26(10) [−44] 
II 250 1082(94) 9(62) 30(278) [−82] 
II 293 1091.9(1.4) 9(9) 11.7(2.0) [−7.9] 
III 323 1101(12) 12.5(4.1) 8.3(3.9) [−2.2] 
III 337 1118(13) 9.0(2.0) [4] [−0.43] 

a Values between brackets are implicit and the result of truncating the 4th order 
equation to a lower order version depending on the available data.37 

Plots of the parameters (V0T and K0T) obtained with the Birch-
Murnaghan fit are provided in the supporting information (S7 
and S8). It can be seen that the unit-cell volume of form I is 
significantly larger than those of forms II and III at zero 
pressure, whereas the volumes of forms II and III are very 
similar in accordance with the conclusions above. In the case 
of the bulk modulus, form II has the lowest bulk modulus, 
whereas form III seems to have the largest one for a given 
temperature, indicating that overall form III is the more rigid 
polymorph of the three. 

Raman data of forms I, II and III as a function of temperature 
and pressure 

Raman spectroscopy data of form I turning into form III as a 
function of pressure at 293 K are presented in Figure 6 and are 
used to complement39 the X-ray data of forms I and III in which 
this transition had been observed (Table S2).29 Observed 
wavenumbers of L-TEE (form I and II under ambient conditions) 
for the Raman data have been listed in Table S3 in the 
supplementary materials together with their assignments and 
comparison to a few other L-tyrosine esters. 

Refining the position of the I-III equilibrium line with the 
Raman data 

With the Raman data in Figure 6 (and Figures S1-S6 in the 
supplementary materials) and the synchrotron data as a 
function of temperature and pressure of forms I and III from a 
previous paper29 a more precise estimate could be obtained 
for the position of the I-III equilibrium line than a former result 
based on X-ray diffraction data alone.29 The observation of the 
appearance of form III with increasing pressure has been 
recorded in Figure 7 as well as the observation of the 
appearance of form I with decreasing pressure (see also Table 
S2). It can be seen that certain points almost overlap and that 
the hysteresis of the phase transition is very limited (the 
interval between the observation of form III and form I is 
mainly because it is very hard to control the pressure in the 
diamond anvil cell causing the pressure to change more than 
required for the phase change, while adjusting the pressure). 
Hysteresis does increase however at lower temperatures, 
because the phase transition becomes slower. To obtain an 
estimate of the position of the phase equilibrium, which must 
be a monotonically increasing function at the interface of the 
two domains,9 a straight line has been fitted through the five 
diamonds closest to the squares disregarding the diamonds at 
lower pressure (Figure 7): 
 
I-III: P = −439.3 + 2.483 T        (10) 
 
with P in MPa and T in K. 

Figure 6. Raman spectra from 200 to 1300 cm-1 at 293 K under pressure. Form I 
changes into form III between 430 and 480 MPa (see peaks at 200-300, 820-
830, 1220 cm-1), D: decompression. This figure is also provided in the 
supplementary materials (Figure S3) with data at 310 K (Fig S4), 320 K (Fig S5), 
and 340 K (Fig S6) in addition to ambient data for form II under pressure (Fig 
S2) and additional data of form I at ambient temperature (Fig S1).
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Discussion 
The relative stability ranking between the two-phase 
equilibria I-II and I-III 

In Figures 8a and b, the phase diagrams are provided of the 
dimorphic systems I-II and I-III containing the phase equilibria 
between the solids, the liquid (L) and the vapour phase (V). 
These two phase diagrams have been published previously.23, 

29 They look alike in the sense that both are enantiotropic 
systems that become monotropic by increasing pressure. The 
main difference is that the transition temperatures of form III 
under ordinary conditions III-I(-V) and III-L(-V) are much lower 
in temperature than for form II. The coordinates belonging to 
the triple points in the two figures can be found in Table 3, 
which will be discussed in the last section. The only 
information missing in the present trimorphic system is the 
location of the II-III equilibrium curve, because it is exclusive to 
the unknown II-III phase diagram. 
While combining the two dimorphic phase diagrams (Figure 8), 
it should not be forgotten that the stable and metastable 

phase equilibria depicted in the two phase diagrams are 
relative to the phases within each phase diagram. Thus, the 
absolute stability ranking can change for phase equilibria and 
phases when phase diagrams are merged, but the relative 
stability ranking between phases remains the same. It can be 
seen that the I-III equilibrium is located in a domain, where 
form I is metastable, because it is already supposed to have 
transformed into form II, which stable I-II equilibrium occurs at 
a lower pressure. It implies that the I-III equilibrium is 
metastable. 
This can also be judged from the melting equilibrium I-L. At 57 
MPa this melting equilibrium becomes metastable while 
crossing the I-II-L triple point. Therefore when meeting the I-III-
L triple point at 687 MPa, the I-L melting line will be 
metastable. It implies that the entire stability ranking around 
the triple point I-III-L decreases with one level rendering the I-
III equilibrium metastable. The III-L melting equilibrium in 
between the metastable I-III and I-L equilibria has therefore 
become supermetastable. 
Thus the I-II equilibrium is stable, whereas the I-III equilibrium 
is metastable at the positions in the phase diagram where they 
have been observed experimentally. This conclusion will be 
used in the next section to determine the global position of the 
intersection of the two equilibrium lines, the I-II-III triple point. 
 
The positions of the II-III phase equilibrium and the triple 
point I-II-III based on thermodynamic arguments 

Before placing the II-III phase equilibrium in the trimorphic 
phase diagram, its slope and the relative stabilities of the 
phases II and III at each side of the phase equilibrium will be 
determined. As mentioned in the introduction, the slopes of 
two-phase equilibria can be calculated with the Clapeyron 
equation (eq. 1), for which one needs the difference in entropy 
between the two phases and the difference in specific volume. 
In a previous publication,23 it has been reported that the 
enthalpy change from form II into form I at the equilibrium 
temperature of 306 K equals ∆II ®Ih = 8.355 J g-1.23 This leads to 
an entropy difference between the two forms I and II of ∆II ®Is 
= 0.0273 J g-1 K-1. The I-III equilibrium line, eq. 10 has a slope of 

Figure 8. (a) Pressure-temperature phase diagram for the phases I, II, L (liquid), and V (vapour).23 (b) Pressure-temperature phase diagram for the phases I, III, L, and 
V.29 The solid lines are stable phase equilibria, the grey broken lines are metastable phase equilibria, and the black dotted lines are supermetastable phase equilibria. 
For clarity only the stable part of the sublimation curves (solid-vapour) has been drawn. Solid circles are stable triple points and the grey circle is a metastable triple 
point. Stable and metastable are defined in relation to the phases present in the diagram; therefore the stability degree is not necessarily final. Pressure and 
temperature are to scale, except for the pressure part of the vapour phase (the part between the two zero’s on the pressure range) 

Figure 7. The observation of the appearance of form III with increasing 
pressure (squares) and the appearance of form I with decreasing pressure 
(diamonds) in synchrotron (open symbols) 29 and Raman measurements 
(filled symbols) (Figures 6 and S1-S6) at various temperatures (See also 
Table S2). Scatter is due to limited control over the pressure in the diamond 
anvil cell. The line is a linear fit to selected data (see text) and is an 
approximation of the I-III phase equilibrium. 
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2.483 MPa K-1. At 300 K, this equilibrium is located at 306 MPa. 
Inserting this pressure in the expressions 2 and 8, the volume 
for form I at 293 K is found to be 1110 Å3 and that of form III is 
1050 Å3, leading to the difference ∆III®IV = +59.9 Å3 and in 
terms of specific volume ∆III®Iv = 0.0431 cm3 g-1. The volume 
difference multiplied by the slope (eq. 1) will lead to the 
entropy of transition, in this case ∆III®Is = 2.483 × 0.0431 = 
0.1069 J g-1 K-1. Using the two consecutive transitions III ® I ® 
II (please note the change in sign for the values of the I ® II 
transition), which in terms of state functions is equivalent to III 
® II, the entropy of transition ∆III®IIs = 0.1069 − 0.0273 = 
0.0796 J g-1 K-1. 
The entropy increase going from form III to form II, indicates 
that form III contains less entropy than form II and in relation 
to the II-III equilibrium curve, form III will therefore be the 
more stable phase at low temperature and form II at high 
temperature relative to their equilibrium. In relation to the 
density, form II appears to have a slightly smaller specific 
volume (eq. 7 and 8). This implies that the change in volume 
on transition of form III into form II is a small, negative value. 
With the Clapeyron equation and the preceding values, the 
slope of the III-II equilibrium becomes negative and rather 
steep due to the small negative volume difference. For the 
sake of convenience the III-II equilibrium can be taken vertical 
with form III stable on the left at low temperature and form II 
stable on the right at high temperature (See Figure 9). 
 
What is the location of the steep and negative III-II transition in 
the trimorphic phase diagram? Necessarily this equilibrium 
intersects the I-II-III triple point determined by the intersection 
of the two equilibrium lines I-II and I-III (Figure 9). In the case 
that this triple point can be found at low temperature 
(scenario 1 in Figure 9), the I-II equilibrium is more stable at 
pressures and temperatures above the I-II-III triple point. Once 
the I-II equilibrium intersects the triple point towards lower 
pressures and temperatures, it will decrease in stability 
ranking. The I-III equilibrium has a lower ranking and will 

increase in ranking when intersecting the triple point. This 
leads to the relative stability ranking of the two-phase 
equilibria depicted in Figure 9, implying that the II-III 
equilibrium is more stable above the triple point than below in 
accordance with the alternation rule. It can be seen that 
scenario 1 is thermodynamically consistent as each phase 
possesses a stable phase region indicated in parentheses. It 
can also be seen that a limited change of the II-III equilibrium 
towards a more negative slope changes little in the overall 
position of the phase regions. 
It can be shown that the alternation rule forbids the 
intersection of the equilibrium lines I-II and I-III at high 
pressure and temperature (Figure 9, scenario 2). In that case, 
the I-II equilibrium would be stable below the triple point as 
indicated in Figure 9. Furthermore, equilibrium I-III would be 
metastable below the triple point and become stable above 
the triple point. The alternation rule still requires that the III-II 
equilibrium is stable above triple point I-II-III. However, 
because the position of relative stability at each side of the 
three two-phase equilibria does not change, the configuration 
at a high pressure/temperature triple point leads to an 
inconsistent picture, in which a stable I-II equilibrium requires 
a stable form II at the upper left corner of the triple point 
(Figure 9, scenario 2), whereas the stable equilibrium II-III 
requires that form III is stable under the exact same 
conditions. A similar inconsistency occurs at the upper right 
corner of the triple point. This is thermodynamically impossible 
and thus the triple point I-II-III can only be located at low (or 
negative) pressure and low temperature in accordance with 
scenario 1. 
 
The trimorphic pressure-temperature phase diagram obtained 
from observed data and direct inferences 

The entire trimorphic phase diagram will be constructed step 
by step as illustrated in Figure 10. In Figure 10a the 
experimentally observed II-I transition23 is placed in the 
pressure-temperature phase diagram following the expression 
(P in MPa and T in K):23 
 
I-II: P = −224.6 + 0.7339 T          (11) 
 
In the same way, the melting equilibrium of form I, reported in 
the same paper, is defined by the following equation (P in MPa 
and T in K, R is the Pearson correlation coefficient):23 
 
I-L: P = 16270 – 91.80 T + 0.1291 T2   R2 = 0.99  (12a) 
 
This leads to the (partial) phase diagram representing phases I 
and II (Figure 10b). This (part of the) phase diagram is based on 
experimental data; the melting equilibrium of form I has been 
obtained by high-pressure measurements and the 
temperature of the solid-solid transition II-I, its enthalpy, and 
the volume differences between the two phases have been 
obtained by direct measurement.23 The slope of the II-I 
equilibrium has been calculated with the Clapeyron equation 
with an error of about 8% leading to a straight equilibrium line 

Figure 9. Two scenario's for the intersection of the I-II (stable: solid black line) and the 
I-III (metastable: grey broken line) equilibrium lines. Only one intersection, triple point 
I-II-III (solid black circle), can exist. Scenario 1 at low pressure and low temperature 
results in a thermodynamically consistent triple point with a stable domain for each of 
the solid phases (marked in parentheses). In scenario 2, the triple point at high 
temperature and high pressure, forms II and III have to be stable under the same 
conditions, which is thermodynamically impossible. Thus triple point I-II-III must for 
thermodynamic consistency be found below ambient pressure and temperature. 
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as solid-solid phase equilibria are straight over considerable 
pressure and temperature ranges.21, 40-47 
Equation 12a, the melting equilibrium of form I, is problematic 
because the parabola is very suitable for interpolation; 
however, its curvature makes extrapolation for topological 
applications difficult. Because solid-liquid phase equilibria 
must be monotonically increasing functions,9 a linear 
approximation of eq. 12a will be used, which has been 
obtained by fitting a linear expression to the data points 
obtained for the melting of form I. This has led to the following 
equation: 
 
I-L (linear approx.): P = −3375 + 8.96 T  R2 = 0.98  (12b) 
 
Using equations 11 and 12b, the coordinates of the triple point 
I-II-L become 383 K, 57 MPa (Figure 10b and Table 3). 
Because the melting equilibrium of form I is stable, it follows 
that the melting equilibrium of form II lies in between the eqs. 
11 and 12 and that it is metastable up to the triple point I-II-L 
above which it becomes the stable melting equilibrium (Figure 
10c). The equilibria I-II and I-L become metastable above triple 
point I-II-L as indicated by the dashed lines in Figure 10b. 
Below the intersection with the temperature axis (P = 0 MPa), 
I-II and I-L also become metastable dashed lines as they meet 
the vapour phase (triple points I-II-V and I-L-V), which in Figure 
10 has been set equal to the T-axis for simplicity. 
There are several ways to obtain an expression for the II-L 
equilibrium, which evidently are all estimates. One approach is 
to calculate the melting temperature at ordinary pressure 
through the vapour pressure equilibrium lines expressed by 
the Clausius-Clapeyron equation. This approach has been 
described previously23 and will not be repeated here; it leads 
to a melting point for form II of 372 K together with a vapour 
pressure of 45 Pa. It should not escape the reader that this is 
another triple point in the phase diagram, namely II-L-V (Table 
3). Using the coordinates of the triple points I-II-L and II-L-V, 
the equilibrium line II-L can be defined by a linear expression: 
 
II-L: P = −1891 + 5.08 T          (13) 
 
This fully defines the lines in Figure 10c, which is topologically 
equivalent to Figure 8a. 
The two-phase equilibrium I-III was obtained through X-ray 
diffraction measurements in combination with the data 
obtained by the Raman measurements under pressure (see 
Figure 7 and 10d). This has led to a refined expression for the I-
III equilibrium (eq. 10) in relation to the line reported 
previously.29 
Since eq. 11 above describes the equilibrium between phases I 
and II, and eq. 10 the equilibrium between phases I and III, at 
the intersection, phases I, II, and III must be in equilibrium and 
this leads therefore to the coordinates of triple point I-II-III: T = 
123 K and P = −134 MPa. These coordinates are consistent 
with the conclusion reached independently above and based 
on the alternation rule that the I-II-III triple point must be 
located at low temperature and low pressure (here negative 
pressure) in the phase diagram (Figure 10e). 

It should be realized that tracing the equilibrium I-III to the I-II-
III triple point, it intersects the solid-vapour equilibrium, which 
is the I-III-V triple point. Because the temperature is low, the 
pressure will be negligible and can be set to 0 MPa. In that 
case eq. 10 results in a temperature of 177 K for the I-III-V 
triple point. With this temperature and Clausius-Clapeyron 
data from a previous article29, the vapour pressure can be 
calculated leading to 1.5 ×10−14 MPa or 1.5 ×10−8 Pa, thus 
indeed negligible ≈ 0 Pa. Because the I-III equilibrium enters 
the domain in which the vapour is the most stable phase, the 
stability hierarchy of the I-III equilibrium will decrease one 
level. This is indicated in Figure 10d by a change in the type of 
line from dashed to dotted, just as the other two-phase 
equilibria decrease one stability level. 

Table 3. Triple point coordinatesa,b 

Phases T (K) P (Pa) Ref 
I-II-V 306 0.047 23 
I-L-V 376 57 23 
I-II-L 383 57 ×106 23 
II-L-V 372 45 23 
I-II-III 123 −134 ×106 This work 
I-III-V 177 0 29, this work 
II-III-V 112 0 This work 
II-III-L 185 −950 ×106 This work 
I-III-L 453 687 ×106 29, this work 
III-L-V 341 6.6 29, this work 

a I: solid phase I, II: solid phase II, III: solid phase III, L: liquid, V: vapour phase, b 
see also the supplementary information 

To place the II-III equilibrium in the phase diagram the triple 
point I-II-III will be used. An estimate of the slope of the 
equilibrium can be obtained with the Clapeyron equation.  
The entropy difference was obtained in the previous section 
and was found to be ∆III®IIs = 0.0796 J g-1 K-1. Strictly speaking, 
this entropy difference is valid at 300 K, where it has been 
determined, and going down in temperature, the entropy 
difference will most likely decrease as all absolute entropies 
decrease with decreasing temperature. Important to retain is 
however that the entropy change from form III to form II is 
positive. 
The change in volume for the transition of III into II has not 
been measured either, as the transition has not been 
observed. However, going down in temperature, which will 
cause shrinking of the unit cells, can be considered equivalent 
to going up in pressure. At high pressure the volume difference 
between form II and form III is constant and taking the two 
expressions 7 and 8 at 1000 MPa for example leads to ∆III®IIV = 
−8.45 Å3 or −0.0061 cm3 g-1. This volume difference must be 
close to the lower limit of the volume difference between the 
two solid forms II and III. 
The slope that is obtained from the volume and entropy 
differences with eq. 1 equals dP/dT = 0.0796/−0.0061 = −13.1 
MPa K-1. As was stated above, the entropy may actually be 
smaller at lower temperatures, indicating that the absolute 
value of the slope will most likely be lower, however, the slope 
is necessarily negative, because the volume difference is 
negative. With the slope the following expression can be 
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obtained for the II-III equilibrium line (knowing that it should 
pass through the triple point I-II-III: 123 K, −134 MPa, see 
Figure 10f): 
 
II-III: P = 1474 −13.1 T          (14) 
 
With this line, the position of two other triple points can be 
determined, that of II-III-V (Figure 10f), which is the 
intersection of II-III, II-V, and III-V, and that of II-III-L (Figure 
10g), which is the intersection of II-III, II-L and III-L. 
The triple point of II-III-V equals the intersection of the 
equilibrium II-III with the line P = 0, as the vapour pressure of 
the solids is again negligible. With eq. 14, the triple point is 
found at 112 K (see Table 3 and Figure 10f). 
The triple point II-III-L is the result of an extended 
extrapolation and will always contain a large margin of error. It 
can be obtained from the intersection of the II-L equilibrium, 
which is known (eq. 13) and the II-III equilibrium (eq. 14, Figure 
10g). This leads to a triple point at very large negative 
pressures, due to the steep slope of the II-III equilibrium: 185 K 

and −950 MPa for triple point II-III-L. 
As the equilibrium III-L also intersects the triple point II-III-L, 
this information can be used to place the last equilibrium curve 
III-L in the phase diagram. First, tracing the I-III equilibrium up 
to high positive pressures, it will intersect the I-L equilibrium 
leading to the triple point I-III-L (Figure 10g). Using eqs. 12b 
and 5, the coordinates for the I-III-L triple point are: T = 453 K 
and P = 687 MPa. This is the second point on the III-L 
equilibrium line. Tracing a straight line between the II-III-L and 
I-III-L triple points leads to the following expression for the III-L 
equilibrium (Figure 10h): 
 
III-L:  P = −2078 + 6.1 T        (15) 
 
Using eq. 15, the final triple point, III-L-V, in the phase diagram 
can be estimated by determining the temperature at which III-
L intersects P = 0 (Figure 10h). It leads to a triple point 
temperature of 341K and using the expression of the vapour 
pressure of the liquid23, it can be calculated that the actual 
pressure of the system would be 6.6 Pa (Through triple point 

Figure 10. The step-by-step construction of the topological phase diagram of trimorphic L-tyrosine ethyl ester (see text); the red lines represent newly 
added equilibrium lines, the green lines are obtained by extrapolation; solid lines: stable equilibria, dashed lines: metastable equilibria, dotted lines: 
supermetastable equilibria, dotted lines with large spacing: super-supermetastable equilibria and three intersecting lines represent triple points. 
Pressure and temperature axes are not to scale.
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III-L-V, an expression for the vapour pressure of solid form III 
can be obtained, see eq. SI.15 in the supplementary 
information). 
Even if the margins of error of the last four points in Table 3 
are quite large, the overall layout of the 10 triple points 
defines the basic phase behaviour in the system, which 
includes stable phase regions for all three solid forms, a stable 
melting equilibrium for form I at low pressure and a stable 
melting equilibrium for form II at high pressure. Form III does 
not have a stable melting equilibrium, because the slope of III-
L is slightly steeper than that of II-l, so with increasing pressure 
these two equilibria diverge. 

Conclusions 
In figure 11a, the complete topological pressure-temperature 
phase diagram is presented that has been constructed step-by-

step in Figure 10. With the available experimental data23,24,29 
and thermodynamic constraints, it has been deduced that 
form III has a stable pressure-temperature domain at very low 
temperature. This result has been obtained without explicitly 
calculating the Gibbs free energy; however by using the 
Clapeyron equation and the alternation rule, the phase 
diagram –the projection of the intersections of the Gibbs free 
energy surfaces on the pressure-temperature plane- can be 
obtained. The result depicted in Figure 11a can be reduced to 
the stable phase diagram, which is provided in Figure 11b. 
The data to construct this phase diagram are the volume data 
from X-ray diffraction under ordinary pressure conditions for 
forms I and II23 and under pressure for forms I, II, and III in 
addition to the observation of the II-I and I-L transitions by DSC 
under ordinary pressure conditions23 and the I-L melting 
equilibrium by DTA under high-pressure conditions23. 
Furthermore, the I-III equilibrium line was obtained through X-
ray29 and Raman data under pressure for different 
temperatures. 
Thermodynamic arguments placed the I-II-III equilibrium at low 
pressure (negative pressure in this case) and low temperature 
while implying that the II-III equilibrium possesses a rather 
steep slope. The triple point position was independently 
confirmed by extrapolation of the two equilibrium lines I-II and 
I-III. Once the I-II, I-III, II-III, and the I-L phase equilibria were 
located, the rest of the phase diagram could be deduced 
through the triple points and the alternation rule. 
The phase diagram as presented in this paper is valid in 
relation to the three known solid phases of L-tyrosine ethyl 
ester. More high-quality data will improve the accuracy of the 
positions of the two-phase equilibrium lines, I-III and II-III in 
particular, and of the triple point coordinates, I-II-III in 
particular. Moreover, it is always possible that a new solid 
form is discovered at a later stage. It will not invalidate the 
phase diagram published here; it will simply change the 
ranking of certain phase equilibria relative to the new phase. 
As mentioned in the introduction, in addition to the phase 
diagram, the kinetic behaviour of the system is important. In 
the present case, form II transforms into form I on heating 
under ordinary conditions, however, form I has not been 
observed to revert back to form II. Although, this has been 
discussed in a previous article,23 it should be mentioned here 
that the determination of the solid-solid transition of form II 
into form I has not been straightforward. DSC measurements, 
in fact, tend to overshoot solid-solid equilibria and at a 10 K 
min-1 heating rate the transition occurs around 65°C. Only by 
using a series of different heating rates, can it be shown that 
the real equilibrium temperature from form II into form I is 
found at 33 °C, which has subsequently been confirmed by X-
ray diffraction. 
Form I readily transforms into form III on increasing pressure 
at high temperatures and form III transforms readily back into 
form I at high temperatures on releasing the pressure. Below 
ambient temperature, this transition rate rapidly declines and 
it becomes much harder to observe a clear transition between 
forms I and III. The fact that form II does not appear under 
pressure either from form I or from form III is caused by the 

Figure 11. (a) The complete topological pressure-temperature phase diagram of the 
trimorphism of L-tyrosine ethyl ester (scales are not linear) (b) The stable phase 
diagram of L-tyrosine ethyl ester (linear scales except for the pressure of the vapour 
phase). Solid lines: stable two-phase equilibria, grey dashed lines: metastable two-
phase equilibria, dotted lines: supermetastable two-phase equilibria, dotted lines with 
large spacing (red): super-super metastable two-phase equilibria. Black solid circles: 
stable triple points, grey circles metastable triple points, red circles: supermetastable 
triple points. 

a 

b 
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necessary conformational change as mentioned in the 
introduction between form II and the two forms I and III. The 
limited volume available under pressure effectively decreases 
the transformation kinetics rapidly to zero similar to the lack of 
conversion between two polymorphs of tolazamide.48 
Nonetheless, one would expect form II to crystallize under 
pressure if forms I or III could be dissolved as in the case of 
4,4’-bipyridinium.49 
Finally, are measurements under pressure necessary to 
construct this type of phase diagrams? For known polymorphs, 
this is not necessarily the case, as other examples attest that 
have been obtained with data based only on DSC and 
“ordinary” pressure X-ray data.17, 50-52 However, it is obvious in 
the present case that without pressure L-TEE polymorph III 
would never have been observed. In addition, the high-
pressure experiments have helped to position the phase 
equilibria more accurately in relation to the temperature and 
pressure conditions. Thus in the end, the answer to the 
question of whether to carry out measurements under 
pressure simply depends on how precisely one needs to 
understand the phase behaviour of the system. 

Conflicts of interest 
There are no conflicts to declare. 

Acknowledgements 
This work has been supported by the Spanish ministry MINECO 
(FIS2017-82625-P) and by the Catalan government (2017SGR-
42). 

Notes and references 
1. J. Bernstein, Polymorphism in Molecular Crystals, Oxford 
University Press, Oxford (UK), 2002. 
2. G. M. Day, W. D. S. Motherwell and W. Jones, Phys. Chem. 
Chem. Phys., 2007, 9, 1693-1704. 
3. M. A. Neumann, J. van de Streek, F. P. A. Fabbiani, P. Hidber 
and O. Grassmann, Nat. Commun., 2015, 6, 7793-7799. 
4. A. M. Reilly, R. I. Cooper, C. S. Adjiman, S. Bhattacharya, A. D. 
Boese, J. G. Brandenburg, P. J. Bygrave, R. Bylsma, J. E. Campbell, 
R. Car, D. H. Case, R. Chadha, J. C. Cole, K. Cosburn, H. M. 
Cuppen, F. Curtis, G. M. Day, R. A. DiStasio Jr, A. Dzyabchenko, B. 
P. van Eijck, D. M. Elking, J. A. van den Ende, J. C. Facelli, M. B. 
Ferraro, L. Fusti-Molnar, C.-A. Gatsiou, T. S. Gee, R. de Gelder, L. 
M. Ghiringhelli, H. Goto, S. Grimme, R. Guo, D. W. M. Hofmann, 
J. Hoja, R. K. Hylton, L. Iuzzolino, W. Jankiewicz, D. T. de Jong, J. 
Kendrick, N. J. J. de Klerk, H.-Y. Ko, L. N. Kuleshova, X. Li, S. 
Lohani, F. J. J. Leusen, A. M. Lund, J. Lv, Y. Ma, N. Marom, A. E. 
Masunov, P. McCabe, D. P. McMahon, H. Meekes, M. P. Metz, A. 
J. Misquitta, S. Mohamed, B. Monserrat, R. J. Needs, M. A. 
Neumann, J. Nyman, S. Obata, H. Oberhofer, A. R. Oganov, A. M. 
Orendt, G. I. Pagola, C. C. Pantelides, C. J. Pickard, R. Podeszwa, 
L. S. Price, S. L. Price, A. Pulido, M. G. Read, K. Reuter, E. 
Schneider, C. Schober, G. P. Shields, P. Singh, I. J. Sugden, K. 
Szalewicz, C. R. Taylor, A. Tkatchenko, M. E. Tuckerman, F. 
Vacarro, M. Vasileiadis, A. Vazquez-Mayagoitia, L. Vogt, Y. Wang, 
R. E. Watson, G. A. de Wijs, J. Yang, Q. Zhu and C. R. Groom, Acta 
Crystallogr. B, 2016, 72, 439-459. 

5. J. Bernstein and A. T. Hagler, J. Am. Chem. Soc., 1978, 100, 
673-681. 
6. A. T. Hagler and J. Bernstein, J. Am. Chem. Soc., 1978, 100, 
6349-6354. 
7. J. D. Dunitz and J. Bernstein, Acc. Chem. Res., 1995, 28, 193-
200. 
8. S. L. Price, Phys. Chem. Chem. Phys., 2008, 10, 1996-2009. 
9. R. Ceolin and I. B. Rietveld, Eur. Phys. J. - S.T., 2017, 226, 
1001-1015. 
10. M. Zilka, D. V. Dudenko, C. E. Hughes, P. A. Williams, S. 
Sturniolo, W. T. Franks, C. J. Pickard, J. R. Yates, K. D. M. Harris 
and S. P. Brown, Phys. Chem. Chem. Phys., 2017, 19, 25949-
25960. 
11. R. D. L. Johnstone, A. R. Lennie, S. F. Parker, S. Parsons, E. 
Pidcock, P. R. Richardson, J. E. Warren and P. A. Wood, 
CrystEngComm, 2010, 12, 1065-1078. 
12. M. Bujak, D. Blaser, A. Katrusiak and R. Boese, Chem. 
Commun., 2011, 47, 8769-8771. 
13. A. Gavezzotti, Cryst. Res. Technol., 2013, 48, 793-810. 
14. J. Nyman and G. M. Day, Phys. Chem. Chem. Phys., 2016, 18, 
31132-31143. 
15. M. Barrio, E. Maccaroni, I. B. Rietveld, L. Malpezzi, N. 
Masciocchi, R. Céolin and J.-L. Tamarit, J. Pharm. Sci., 2012, 101, 
1073-1078. 
16. J. Bauer, S. Spanton, R. Henry, J. Quick, W. Dziki, W. Porter 
and J. Morris, Pharm. Res., 2001, 18, 859-866. 
17. R. Céolin and I. B. Rietveld, Ann. Pharm. Fr., 2015, 73, 22-30. 
18. R. A. E. Castro, T. M. R. Maria, A. O. L. Evora, J. C. Feiteira, M. 
R. Silva, A. M. Beja, J. Canotilho and M. E. S. Eusebio, Cryst. 
Growth Des., 2010, 10, 274-282. 
19. R. Céolin, V. Agafonov, D. Louër, V. A. Dzyabchenko, S. 
Toscani and J. M. Cense, J. Solid State Chem., 1996, 122, 186-
194. 
20. S. Toscani, R. Céolin, L. Ter Minassian, M. Barrio, N. Veglio, J.-
L. Tamarit, D. Louër and I. B. Rietveld, Int. J. Pharm., 2016, 497, 
96-105. 
21. R. Ceolin, S. Toscani, I. B. Rietveld, M. Barrio and J.-L. 
Tamarit, Eur. Phys. J. - S.T., 2017, 226, 1031-1040. 
22. I. Gana, M. Barrio, C. Ghaddar, B. Nicolai, B. Do, J. L. Tamarit, 
F. Safta and I. B. Rietveld, Mol. Pharmaceut., 2015, 12, 2276-
2288. 
23. I. B. Rietveld, M. Barrio, J.-L. Tamarit, B. Nicolaï, J. Van de 
Streek, N. Mahé, R. Céolin and B. Do, J. Pharm. Sci., 2011, 100, 
4774-4782. 
24. B. Nicolaï, N. Mahé, R. Céolin, I. B. Rietveld, M. Barrio and J.-
L. Tamarit, Struct. Chem., 2011, 22, 649-659. 
25. A. H. Kahns, A. Buur and H. Bundgaard, Pharm. Res., 1993, 
10, 68-74. 
26. C. H. Huang, R. Kimura, R. Bawarshinassar and A. Hussain, J. 
Pharm. Sci., 1985, 74, 1298-1301. 
27. C. E. McDonald and A. K. Balls, J. Biol. Chem., 1956, 221, 993-
1003. 
28. A. N. Glazer, J. Biol. Chem., 1966, 241, 635-&. 
29. B. Nicolai, J.-P. Itié, M. Barrio, J. L. Tamarit and I. B. Rietveld, 
CrystEngComm, 2015, 17, 3974-3984. 
30. A. F. Pieret, F. Durant, M. Griffé, G. Germain and T. 
Debaerdemaeker, Acta Crystallogr. Sect. B: Struct. Sci., 1970, 26, 
2117-2123. 
31. A. J. Cruz-Cabeza and J. Bernstein, Chem. Rev., 2014, 114, 
2170-2191. 
32. M. Jenau, J. Reuter, J. L. Tamarit and A. Wurflinger, J. Chem. 
Soc. Faraday Trans., 1996, 92, 1899-1904. 
33. J. C. Chervin, B. Canny, J. M. Besson and P. Pruzan, Rev. Sci. 
Instrum., 1995, 66, 2595-2598. 
34. A. Hammersley, Fit2D v12.077 (Computer Software), 1987-
2005, 
http://www.esrf.eu/computing/scientific/FIT2D/fit2d_abstract.h
tml. 



ARTICLE Journal Name 

14  |  J. Name. , 2012, 00,  1-3  This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

35. A. A. Coelho, TOPAS Academic version 4.1 (Computer 
software), 2007. 
36. A. A. Coelho, J. Appl. Crystallogr., 2003, 36, 86-95. 
37. R.J. Angel, J. Gonzalez-Platas, M. Alvaro, Z. Kristallogr., 2014, 
229(5), 405-419. 
38. R.J. Angel, M. Mazzucchelli, M. Alvaro, P. Nimis, F. Nestola, 
Am. Mineral., 2014, 99, 2146-2149. 
39. C. Cappuccino, P. P. Mazzeo, T. Salzillo, E. Venuti, A. Giunchi, 
R. G. Della Valle, A. Brillante, C. Bettini, M. Melucci and L. Maini, 
Phys. Chem. Chem. Phys., 2018, doi: 10.1039/c1037cp06679a. 
40. I. Gana, M. Barrio, B. Do, J.-L. Tamarit, R. Céolin and I. B. 
Rietveld, Int. J. Pharm., 2013, 456, 480-488. 
41. P. Negrier, M. Barrio, J. L. Tamarit and D. Mondieig, J. Phys. 
Chem. B, 2014, 118, 9595-9603. 
42. B. B. Hassine, P. Negrier, M. Barrio, D. Mondieig, S. Massip 
and J. L. Tamarit, Cryst. Growth Des., 2015, 15, 4149-4155. 
43. P. Negrier, M. Barrio, M. Romanini, J. L. Tamarit, D. 
Mondieig, A. I. Krivchikov, L. Kepinski, A. Jezowski and D. 
Szewczyk, Cryst. Growth Des., 2014, 14, 2626-2632. 
44. J. L. Tamarit, M. Barrio, L. C. Pardo, P. Negrier and D. 
Mondieig, J. Phys.: Condens. Matter, 2008, 20, 244110. 
45. P. Negrier, M. Barrio, J. L. Tamarit, N. Veglio and D. 
Mondieig, Cryst. Growth Des., 2010, 10, 2793-2800. 
46. B. Parat, L. C. Pardo, M. Barrio, J. L. Tamarit, P. Negrier, J. 
Salud, D. O. López and D. Mondieig, Chem. Mater., 2005, 17, 
3359-3365. 
47. M. Barrio, J. L. Tamarit, P. Negrier, L. C. Pardo, N. Veglio and 
D. Mondieig, New J. Chem., 2008, 32, 232-239. 
48. A. Y. Fedorov, D. A. Rychkov, E. A. Losev, B. A. Zakharov, J. 
Stare and E. V. Boldyreva, CrystEngComm, 2017, 19, 2243-2252. 
49. M. Aniola and A. Katrusiak, Cryst. Growth Des., 2015, 15, 
764-770. 
50. I. B. Rietveld and R. Céolin, J. Therm. Anal. Calorim., 2015, 
120, 1079-1087. 
51. I. B. Rietveld and R. Céolin, J. Pharm. Sci., 2015, 104, 4117-
4122. 
52. R. Céolin and I. B. Rietveld, Ann. Pharm. Fr., 2017, 75, 89-94. 
 


