R. Y. Tsien, Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture), Angew. Chem. Int. Ed, vol.48, pp.5612-5626, 2009.

D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, Fluorescent proteins and their applications in imaging living cells and tissues, Physiol. Rev, vol.90, pp.1103-1163, 2010.

E. Betzig, Nobel lecture: Single moleciles, cells, and super-resolution optics, Rev. Mod. Phys, vol.87, 1153.

S. W. Hell, Nobel lecture: Nanoscopy with freely propagating light, Rev. Mod. Phys, vol.87, 1169.

W. E. Moerner, Nobel lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy, Rev. Mod. Phys, vol.87, 1183.

S. J. Sahl, S. W. Hell, and S. Jakobs, Fluorescence nanoscopy in cell biology, Nat. Rev. Mol. Cell. Biol, vol.18, pp.685-701, 2017.

R. T. Borlinghaus, H. Birk, and F. Schreiber, Detectors for sensitive detection: HyD, Current Microscopy Contributions to Advances in Science and Technology, vol.2, pp.818-825, 2012.

X. Michalet, A. Cheng, J. Antelman, M. Suyama, K. Arisaka et al., Hybrid photodetector for single-molecule spectroscopy and microscopy, Proc. SPIE Int. Soc. Opt. Eng, vol.6862, 2008.

A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser et al., Ru(II) polypyridine complexes: Photophysics, photochemistry, eletrochemistry, and chemiluminescence, Coord. Chem. Rev, vol.84, pp.85-277, 1988.

V. Fernández-moreira, F. L. Thorp-greenwood, and M. P. Coogan, Application of d6 transition metal complexes in fluorescence cell imaging, Chem. Commun, vol.46, pp.186-202, 2010.

Q. Zhao, C. Huang, and F. Li, Phosphorescent heavy-metal complexes for bioimaging, Chem. Soc. Rev, vol.40, pp.2508-2524, 2011.

C. Andraud and O. Maury, Lanthanide complexes for nonlinear optics: From fundamental aspects to applications, Eur. J. Inorg. Chem, pp.4357-4371, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01320579

M. Sy, A. Nonat, N. Hildebrandt, and L. J. Charbonnière, Lanthanide-based luminescence biolabelling, Chem. Commun, vol.52, pp.5080-5095, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02400088

J. C. Bünzli, Lanthanide luminescence for biomedical analyses and imaging, Chem. Rev, vol.110, pp.2729-2755, 2010.

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals, Biomaterials, vol.29, pp.937-943, 2008.

J. Shen, L. Zhao, and G. Han, Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy, Adv. Drug Deliv. Rev, vol.65, pp.744-755, 2013.

H. Dong, S. R. Du, X. Zheng, G. M. Lyu, L. D. Sun et al., Lanthanide nanoparticles: From design toward bioimaging and therapy, Chem. Rev, vol.115, pp.10725-10815, 2015.

A. Reisch and A. S. Klymchenko, Fluorescent polymer nanoparticles based on dyes: Seeking brighter tools for bioimaging, vol.12, 1968.

B. Mettra, F. Appaix, J. Olesiak-banska, T. Le-bahers, A. Leung et al., A fluorescent polymer probe with high selectivity toward vascular endothelial cells for and beyond noninvasive two-photon intravital imaging of brain vasculature, ACS Appl. Mater. Interfaces, vol.8, pp.17047-17059, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01378703

E. Petryayeva, W. R. Algar, and I. L. Medintz, Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging, Appl. Spectrosc, vol.67, pp.215-252, 2013.

J. Zhou, Y. Yang, and C. Zhang, Toward biocompatible semiconductor Quantum Dots: From biosynthesis and bioconjugation to biomedical Application, Chem. Rev, vol.115, pp.11669-11717, 2015.

R. Bilan, F. Fleury, I. Nabiev, and A. Sukhanova, Quantum Dot surface chemistry and functionalization for cell targeting and imaging, Bioconjug. Chem, vol.26, pp.609-624, 2015.

G. Hong, S. Diao, A. L. Antaris, and H. Dai, Carbon nanomaterials for biological imaging and nanomedicinal therapy, Chem. Rev, vol.115, pp.10816-10906, 2015.

O. S. Wolfbeis, An overview of nanoparticles commonly used in fluorescent bioimaging, Chem. Soc. Rev, vol.44, pp.4743-4768, 2015.

J. Yao, M. Yang, and Y. Duan, Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy, Chem. Rev, vol.114, pp.6130-6178, 2014.

E. A. Lemke and C. Schultz, Principles for designing fluorescent sensors and reporters, Nat. Chem. Biol, vol.7, pp.480-483, 2011.

Y. Suzuki and K. Yokoyama, Development of functional fluorescent molecular probes for the detection of biological substances, Biosensors, vol.5, pp.337-363, 2015.

M. W. Lewis, I. V. Robalino, and N. O. Keyhani, Uptake of the fluorescent probe FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus Beauveria bassiana, Microbiology, vol.155, pp.3110-3120, 2009.

M. N. Levine, T. T. Hoang, and R. T. Raines, Fluorogenic probe for constitutive cellular endocytosis, Chem. Biol, vol.20, pp.614-618, 2013.

Y. T. Chow, S. Chen, R. Wang, C. Liu, C. W. Kong et al., Single cell transfection through precise microinjection with quantitatively controlled injection volumes, Sci. Rep, 2016.

H. Sahoo, Fluorescent labeling techniques in biomolecules: A flashback, vol.2, pp.7017-7029, 2012.

K. M. Dean and A. E. Palmer, Advances in fluorescence labeling strategies for dynamic cellular imaging, Nat. Chem. Biol, vol.7, pp.512-523, 2014.

J. A. Fornwald, Q. Lu, F. M. Boyce, and R. S. Ames, Gene expression in mammalian cells using BacMam, a modified baculovirus system, Methods Mol. Biol, vol.1350, pp.95-116, 2016.

J. Icha, M. Weber, J. C. Waters, and C. Norden, Phototoxicity in live fluorescence microscopy, and how to avoid it, Bioessays, vol.39, 2017.

P. A. Santi, Light sheet fluorescence microscopy: A review, J. Histochem. Cytochem, vol.59, pp.129-138, 2011.

K. Chatterjee, F. W. Pratiwi, F. C. Wu, P. Chen, and B. C. Chen, Recent progress in light sheet microscopy for biological applications, Appl. Spectrosc, vol.72, pp.1137-1169, 2018.

D. R. Miller, J. W. Jarrett, A. M. Hassan, and A. K. Dunn, Deep tissue imaging with multiphoton fluorescence microscopy, Curr. Opin. Biomed. Eng, vol.4, pp.32-39, 2017.

S. M. Van-den-wildenberg, B. Prevo, and E. J. Peterman, A brief Introduction to single-molecule fluorescence methods, Methods Mol. Biol, vol.1665, pp.93-113, 2018.

C. A. Combs and H. Shroff, Fluorescence microscopy: A concise guide to current imaging methods, Curr. Protoc. Neurosci, vol.79, 2017.

N. J. Turro, V. Ramamurthy, and J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules, pp.978-979, 2010.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, p.954, 2006.

B. Valeur and M. N. Berberan-santos, Molecular Fluorescence: Principles and Applications, p.592, 2012.

M. Kivala and F. Diederich, Acetylene-derived strong organic acceptors for planar and nonplanar push?pull chromophores, Acc. Chem. Res, vol.42, pp.235-248, 2009.

A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, and G. B. Behera, Cyanines during the 1990s: A review, Chem. Rev, vol.100, 1973.

M. Taniguchi and J. S. Lindsey, Database of absorption and fluorescence spectra of >300 common compounds for use in photochemCAD, Photochem. Photobiol, vol.94, pp.290-327, 2017.

Z. Yang, J. Cao, Y. He, J. H. Yang, T. Kim et al., Macro-/micro-environment-sensitive chemosensing and biological imaging, Chem. Soc. Rev, vol.43, pp.4563-4601, 2014.

Y. E. Kim, J. Chen, J. R. Chan, and R. Langen, Engineering a polarity-sensitive biosensor for time-lapse imaging of apoptotic processes and degeneration, Nat. Methods, vol.7, pp.67-73, 2010.

G. Signore, R. Nifosì, L. Albertazzi, B. Storti, and R. Bizzarri, Polarity-sensitive coumarins tailored to live cell imaging, J. Am. Chem. Soc, vol.132, pp.1276-1288, 2010.

I. López-duarte, T. T. Vu, M. A. Izquierdo, J. A. Bull, and M. K. Kuimova, A molecular rotor for measuring viscosity in plasma membranes of live cells, Chem. Commun, vol.50, pp.5282-5284, 2014.

M. A. Haidekker, T. Ling, M. Anglo, H. Y. Stevens, J. A. Frangos et al., New fluorescent probes for the measurement of cell membrane viscosity, Chem. Biol, vol.8, pp.123-131, 2001.

A. Vy?niauskas, M. Balaz, H. L. Anderson, and M. K. Kuimova, Dual mode quantitative imaging of microscopic viscosity using a conjugated porphyrin dimer, Phys. Chem. Chem. Phys, vol.17, pp.7548-7554, 2015.

M. Ipuy, C. Billon, G. Micouin, J. Samarut, C. Andraud et al., Fluorescent push-pull pH-responsive probes for ratiometric detection of intracellular pH, Org. Biomol. Chem, vol.12, pp.3641-3648, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01245464

M. Gutscher, A. L. Pauleau, L. Marty, T. Brach, G. H. Wabnitz et al., Real-time imaging of the intracellular glutathione redox potential, Nat. Methods, vol.5, pp.553-559, 2008.

D. Gross, L. M. Loew, and W. W. Webb, Optical imaging of cell membrane potential changes induced by applied electric fields, Biophys. J, vol.50, pp.339-348, 1986.

C. Barsu, R. Cheaib, S. Chambert, Y. Queneau, O. Maury et al., Neutral push-pull chromophores for nonlinear optical imaging of cell membranes, Org. Biomol. Chem, vol.8, pp.142-150, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00695877

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J, vol.16, pp.1055-1069, 1976.

A. S. Klymchenko, Solvatochromic and fluorogenic dyes as environment-sensitive probes: Design and biological applications, Acc. Chem. Res, vol.50, pp.366-375, 2017.

M. H. Lee, J. S. Kim, and J. L. Sessler, Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules, Chem. Soc. Rev, vol.44, pp.4185-4191, 2015.

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart et al., Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications, Chem. Rev, vol.117, pp.536-711, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02281950

O. Shimomura, F. H. Johnson, and Y. Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol, vol.59, pp.223-239, 1962.

D. A. Shagin, E. V. Barsova, Y. G. Yanushevich, A. F. Fradkov, K. A. Lukyanov et al., GFP-like proteins as ubiquitous metazoan superfamily: Evolution of functional features and structural complexity, Mol. Biol. Evol, vol.21, pp.841-850, 2004.

D. D. Deheyn, K. Kubokawa, J. K. Mccarthy, A. Murakami, M. Porrachia et al., Endogenous green fluorescent protein (GFP) in amphioxus, Biol. Bull, vol.213, pp.95-100, 2007.

D. M. Shcherbakova, O. M. Subach, and V. V. Verkhusha, Red fluorescent proteins: Advanced imaging applications and future design, Angew. Chem. Int. Ed. Engl, vol.51, pp.10724-10738, 2012.

P. J. Cranfill, B. R. Sell, M. A. Baird, J. R. Allen, Z. Lavagnino et al., Quantitative assessment of fluorescent proteins, Nat. Methods, vol.13, pp.557-562, 2016.

N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E. Palmer et al., Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein, Nat. Biotechnol, vol.22, pp.1567-1572, 2004.

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova et al., Bright far-red fluorescent protein for whole-body imaging, Nat. Methods, vol.4, pp.741-746, 2007.

D. Shcherbo, C. S. Murphy, G. V. Ermakova, E. A. Solovieva, T. V. Chepurnykh et al., Far-red fluorescent tags for protein imaging in living tissues, Biochem. J, vol.418, pp.567-574, 2009.

M. Y. Berezin and S. Achilefu, Fluorescence lifetime measurements and biological imaging, Chem. Rev, vol.110, pp.2641-2684, 2010.

W. Becker, Fluorescence lifetime imaging-Techniques and applications, J. Microsc, vol.247, pp.119-136, 2012.

L. C. Chen, W. R. Lloyd, C. W. Chang, D. Sud, and M. A. Mycek, Fluorescence lifetime imaging microscopy for quantitative biological imaging, Methods Cell Biol, vol.114, pp.457-488, 2013.

K. W. Suhling, P. M. French, and D. Phillips, Time-resolved fluorescence microscopy, Photochem. Photobiol. Sci, vol.4, pp.13-22, 2005.

K. Suhling, L. M. Hirvonen, J. A. Levitt, P. H. Chung, C. Tregidgo et al., Fluorescence lifetime imaging (FLIM): Basic concepts and some recent developments, vol.27, pp.3-40, 2015.

B. L. Sailer, J. G. Valdez, J. A. Steinkamp, and H. A. Crissman, Apoptosis induced with different cycle-perturbing agents produces differential changes in the fluorescence lifetime of DNA-bound ethidium bromide, Cytometry, vol.31, pp.208-216, 1998.

R. Cubeddu, G. Canti, P. Taroni, and G. Valentini, Time-gated fluorescence imaging for the diagnosis of tumors in a murine model, Photochem. Photobiol, vol.57, pp.480-485, 1993.

A. Picot, A. D'aléo, P. L. Baldeck, A. Grichine, A. Duperray et al., Long-lived two-photon excited luminescence of water-soluble europium complex: Applications in biological imaging using two-photon scanning microscopy, J. Am. Chem. Soc, vol.130, pp.1532-1533, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00226387

C. J. Yang, S. Jockusch, M. Vicens, N. J. Turro, and W. Tan, Light-switching excimer probes for rapid protein monitoring in complex biological fluids, Proc. Natl. Acad. Sci, vol.102, pp.17278-17283, 2005.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu et al., Tunable lifetime multiplexing using luminescent nanocrystals, Nat. Photonics, vol.8, pp.32-36, 2014.

W. Zhong, P. Urayama, and M. A. Mycek, Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: The potential for oxygen sensing, J. Phys. D Appl. Phys, vol.36, p.1689, 2003.

H. C. Gerritsen, R. Sanders, A. Draaijer, C. Ince, and Y. K. Levine, Fluorescence lifetime imaging of oxygen in living cells, J. Fluoresc, vol.7, pp.11-15, 1997.

E. Gatzogiannis, Z. Chen, L. Wei, R. Wombacher, Y. T. Kao et al., Mapping protein-specific micro-environments in live cells by fluorescence lifetime imaging of a hybrid genetic-chemical molecular rotor tag, Chem. Commun, vol.48, pp.8694-8696, 2012.

K. Carlsson, A. Liljeborg, R. M. Andersson, and H. Brismar, Confocal pH imaging of microscopic specimens using fluorescence lifetimes and phase fluorometry: Influence of parameter choice on system performance, J. Microsc, vol.199, pp.106-114, 2000.

K. M. Hanson, M. J. Behne, N. P. Barry, T. M. Mauro, E. Gratton et al., Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient, Biophys. J, vol.83, pp.1682-1690, 2002.

B. T. Bajar, E. S. Wang, S. Zhang, M. Z. Lin, and J. Chu, A guide to fluorescent protein FRET pairs, Sensors, vol.16, 1488.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, Two-photon absorption and the design of two-photon dyes, Angew. Chem. Int. Ed, vol.48, pp.3244-3266, 2009.

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, Multiphoton absorbing materials: Molecular designs, characterizations, and applications, Chem. Rev, vol.108, pp.1245-1330, 2008.

W. Denk, J. H. Strickler, and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science, vol.248, pp.73-76, 1990.

F. Helmchen and W. Denk, Deep tissue two-photon microscopy, Nat. Methods, vol.2, pp.932-940, 2005.

D. Kim, H. G. Ryu, and K. H. Ahn, Recent development of two-photon fluorescent probes for bioimaging, Org. Biomol. Chem, vol.12, pp.4550-4566, 2014.

H. M. Kim and B. R. Cho, Small-molecule two-photon probes for bioimaging applications, Chem. Rev, vol.115, pp.5014-5055, 2015.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow et al., Structure?property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives, J. Am. Chem. Soc, vol.122, pp.9500-9510, 2000.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, Two-photon absorption properties of fluorescent proteins, Nat. Methods, vol.8, pp.393-399, 2011.

R. S. Molina, T. M. Tran, R. E. Campbell, G. G. Lambert, A. Salih et al., Blue-shifted green fluorescent protein homologues are brighter than enhanced Green Fluorescent Protein under two-photon excitation, J. Phys. Chem. Lett, vol.8, pp.2548-2554, 2017.

S. W. Hell, Far-field optical nanoscopy, Science, vol.316, pp.1153-1158, 2007.

T. Müller, C. Schumann, and A. Kraegeloh, STED microscopy and its applications: New insights into cellular processes on the nanoscale, Chem. Phys. Chem, vol.13, 1986.

C. Eggeling, K. I. Willig, and F. J. Barrantes, STED microscopy of living cells-New frontiers in membrane and neurobiology, J. Neurochem, vol.126, pp.203-212, 2013.

M. V. Sednev, V. N. Belov, and S. W. Hell, Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: A review, Methods Appl. Fluoresc, 2015.

S. T. Hess, T. P. Girirajan, and M. D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys. J, vol.91, pp.4258-4272, 2006.

F. V. Subach, G. H. Patterson, S. Manley, J. M. Gillette, J. Lippincott-schwartz et al., Photoactivatable mCherry for high-resolution two-color fluorescence microscopy, Nat. Methods, vol.6, pp.153-159, 2009.

I. Schoen, J. Ries, E. Klotzsch, H. Ewers, and V. Vogel, Binding-activated localization microscopy of DNA structures, Nano Lett, vol.11, pp.4008-4011, 2011.

M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods, vol.3, pp.793-796, 2006.

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, Multicolor super-resolution imaging with photo-switchable fluorescent probes, Science, vol.317, pp.1749-1753, 2007.

M. Irie, T. Fukaminato, K. Matsuda, and S. Kobatake, Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators, Chem. Rev, vol.114, pp.12174-12277, 2014.

K. Nienhaus and G. U. Nienhaus, Fluorescent proteins for live-cell imaging with super-resolution, Chem. Soc. Rev, vol.43, pp.1088-1106, 2014.

D. M. Shcherbakova, P. Sengupta, J. Lippincott-schwartz, and V. V. Verkhusha, Photocontrollable fluorescent proteins for superresolution imaging, Annu. Rev. Biophys, vol.43, pp.303-329, 2014.

N. J. Yang and M. J. Hinner, Getting across the cell membrane: An overview for small molecules, peptides, and proteins, Methods Mol. Biol, vol.1266, pp.29-53, 2015.

P. Mobbs, D. Becker, R. Williamson, M. Bate, and A. Warner, Techniques for dye injection and cell labeling, Microelectrode Techniques, The Plymouth Workshop Handbook, pp.361-387, 1994.

J. J. Strouse, I. Ivnitski-steele, A. Waller, S. M. Young, D. Perez et al., Fluorescent substrates for flow cytometric evaluation of efflux inhibition in ABCB1, ABCC1, and ABCG2 transporters, Anal. Biochem, vol.437, pp.77-87, 2013.

P. D. Jobsis, E. C. Rothstein, and R. S. Balaban, Limited utility of acetoxymethyl (AM)-based intracellular delivery systems, in vivo: Interference by extracellular esterases, J. Microsc, vol.226, pp.74-81, 2007.

D. Bozyczko-coyne, B. W. Mckenna, T. J. Connors, and N. T. Neff, A rapid fluorometric assay to measure neuronal survival in vitro, J. Neurosci. Methods, vol.50, pp.205-216, 1993.

D. Vaudry, C. Rousselle, M. Basille, A. Falluel-morel, T. F. Pamantung et al., Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death, Proc. Natl. Acad. Sci, vol.99, pp.6398-6403, 2002.

E. Raoult, M. Bénard, H. Komuro, A. Lebon, D. Vivien et al., Cortical-layer-specific effects of PACAP and tPA on interneuron migration during post-natal development of the cerebellum, J. Neurochem, vol.130, pp.241-254, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01196821

E. Uenishi, T. Shibasaki, H. Takahashi, C. Seki, H. Hamaguchi et al., Actin dynamics regulated by the balance of neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) and cofilin activities determines the biphasic response of glucose-induced insulin secretion, J. Biol. Chem, vol.288, pp.25851-25864, 2013.

D. Schapman, C. Perraudeau, M. Bénard, T. Gallarvardin, A. Boulangé et al., Characterization of fluorescent synthetic epicocconone-based dye through advanced light microscopies for live cell imaging applications. Dyes Pigment, vol.141, pp.394-405, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02046308

J. Pasquier, L. Galas, C. Boulangé-lecomte, D. Rioult, F. Bultelle et al., Different modalities of intercellular membrane exchanges mediate cell-to-cell p-glycoprotein transfers in MCF-7 breast cancer cells, J. Biol. Chem, vol.287, pp.7374-7387, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02314806

A. D. Bantly, B. D. Gray, E. Breslin, E. G. Weinstein, K. A. Muirhead et al., CellVue Claret, a new far-red dye, facilitates polychromatic assessment of immune cell proliferation, Immunol. Investig, vol.36, pp.581-605, 2007.

E. Beem and M. S. Segal, Evaluation of stability and sensitivity of cell fluorescent labels when used for cell migration, J. Fluoresc, vol.23, pp.975-987, 2013.

Y. Takeshita, B. Obermeier, A. Cotleur, Y. Sano, T. Kanda et al., An in vitro blood-brain barrier model combining shear stress and endothelial cell/astrocyte co-culture, J. Neurosci. Methods, vol.232, 2014.

O. D. Hendrickson and A. V. Zherdev, Analytical application of lectins, Crit. Rev. Anal. Chem, vol.48, pp.279-292, 2018.

M. Monsigny, A. C. Roche, C. Sene, R. Maget-dana, and F. Delmotte, Sugar-lectin interactions: How does wheat-germ agglutinin bind sialoglycoconjugates?, Eur. J. Biochem, vol.104, pp.147-153, 1979.

N. Panchuk-voloshina, R. P. Haugland, J. Bishop-stewart, M. K. Bhalgat, P. J. Millard et al., Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates, J. Histochem. Cytochem, vol.47, pp.1179-1188, 1999.

J. E. Berlier, A. Rothe, G. Buller, J. Bradford, D. R. Gray et al., Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: Fluorescence of the dyes and their bioconjugates, J. Histochem. Cytochem, vol.51, pp.1699-1712, 2003.

M. Bénard, D. Schapman, A. Lebon, B. Monterroso, M. Bellenger et al., Structural and functional analysis of tunneling nanotubes (TnTs) using gCW STED and gconfocal approaches, Biol. Cell, vol.107, pp.419-425, 2015.

S. A. Latt, G. Stetten, L. A. Juergens, H. F. Willard, and C. D. Scher, Recent developments in the detection of deoxyribonucleic acid synthesis by 33258 Hoechst fluorescence, J. Histochem. Cytochem, vol.23, pp.493-505, 1975.

J. Bucevicius, G. Lukinavi?ius, and R. Gerassimaité, The use of Hoeschst dyes for DNA staining and beyond, vol.6, 2018.

J. Pasquier, B. S. Guerrouahen, H. Thawadi, P. Ghiabi, M. Maleki et al., Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance, J. Transl. Med, vol.94, issue.11, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00828594

A. Caicedo, V. Fritz, J. M. Brondello, M. Ayala, I. Dennemont et al., MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function, Sci. Rep, vol.5, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01834600

B. Nzigou-mombo, S. Gerbal-chaloin, A. Bokus, M. Daujat-chavanieu, C. Jorgensen et al., MitoCeption: Transferring isolated human MSC mitochondria to glioblastoma stem cells, J. Vis. Exp, vol.120, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01777706

R. P. Haugland, The Handbook: A Guide to Fluorescent Probes and Labeling Technologies, pp.978-0971063648, 2005.

Y. Han, M. Li, F. Qiu, M. Zhang, and Y. H. Zhang, Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions, Nat. Commun, vol.8, p.1307, 2017.

T. E. Mccann, N. Kosaka, Y. Koide, M. Mitsunaga, P. L. Choyke et al., Activatable optical imaging with a silica-rhodamine based near infrared (SiR700) fluorophore: A comparison with cyanine based dyes, Bioconjug. Chem, vol.22, pp.2531-2538, 2011.

G. Lukinavi?ius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang et al., Near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins, Nat. Chem, vol.5, pp.132-139, 2013.

M. Fong, J. Lesnik, G. Li, T. J. Antes, and B. Lu, Cyto-Tracers?: Novel lentiviral-based molecular imaging tools, Biotechiques, vol.49, 2018.

J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang et al., Copper-free click chemistry for dynamic in vivo imaging, Proc. Natl. Acad. Sci, vol.104, pp.16793-16797, 2007.

A. Niederwieser, A. K. Späte, L. D. Nguyen, C. Jüngst, W. Reutter et al., Two-color glycan labeling of live cells by a combination of Diels-Alder and click chemistry, Angew. Chem. Int. Ed, vol.52, pp.4265-4268, 2013.

M. Dumont, A. Lehner, B. Vauzeilles, J. Malassis, A. Marchant et al., Plant cell wall imaging by metabolic click-mediated labelling of rhamnogalacturonan II using azido 3-deoxy-d-manno-oct-2-ulosonic acid, Plant J, vol.85, pp.437-447, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01838000

P. V. Chang, X. Chen, C. Smyrniotis, A. Xenakis, T. Hu et al., Metabolic labeling of sialic acids in living animals with alkynyl sugars, Angew. Chem. Int. Ed, vol.48, pp.4030-4033, 2009.

J. Hoogenboom, N. Berghuis, D. Cramer, R. Geurts, H. Zuilhof et al., Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides, BMC Plant Biol, vol.16, 2016.

J. I. García-plazaola, B. Fernández-marín, S. Duke, A. Hernández, F. López-arbeloa et al., Autofluorescence: Biological functions and technical applications, Plant. Sci, vol.236, pp.136-145, 2015.

D. Millie, O. Schofield, G. Kirkpatrick, G. Johnsen, and T. Evens, Using absorbance and fluorescence spectra to discriminate microalgae, Eur. J. Phycol, vol.37, pp.313-322, 2002.

S. Elias, C. Delestre, S. Ory, S. Marais, M. Courel et al., Chromogranin A induces the biogenesis of granules with calciumand actin-dependent dynamics and exocytosis in constitutively secreting cells, Endocrinology, vol.153, pp.4444-4456, 2012.

S. Kube, N. Hersch, E. Naumovska, T. Gensch, J. Hendriks et al., Fusogenic Liposomes as nanocarriers for the delivery of intracellular proteins, Langmuir, vol.33, pp.1051-1059, 2017.

B. A. Griffin, S. R. Adams, and R. Y. Tsien, Specific covalent labeling of recombinant protein molecules inside live cells, Science, vol.281, pp.269-272, 1998.

A. Keppler, S. Gendreizig, T. Gronemeyer, H. Pick, H. Vogel et al., A general method for the covalent labeling of fusion proteins with small molecules in vivo, Nat. Biotechnol, vol.21, pp.86-89, 2003.

A. Gautier, A. Juillerat, C. Heinis, I. R. Corrêa, . Jr et al., An engineered protein tag for multiprotein labeling in living cells, Chem. Biol, vol.15, pp.128-136, 2008.

G. V. Los, A. Darzins, N. Karassina, C. Zimprinch, R. Learish et al., HaloTag TM interchangeable labeling technology for cell imaging and protein capture, Promega Cell Notes, vol.11, pp.2-6, 2005.

G. Crivat and J. W. Taraska, Imaging proteins inside cells with fluorescent tags, Trends Biotechnol, vol.30, pp.8-16, 2012.

B. R. Martin, B. N. Giepmans, S. R. Adams, and R. Y. Tsien, Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity, Nat. Biotechnol, vol.23, pp.1308-1314, 2005.

P. J. Bosch, I. R. Corrêa, . Jr, M. H. Sonntag, J. Ibach et al., Evaluation of fluorophores to label SNAP-tag fused proteins for multicolor single-molecule tracking microscopy in live cells, Biophys. J, vol.107, pp.803-814, 2014.

C. G. England, H. Luo, and W. Cai, HaloTag technology: A versatile platform for biomedical applications, Bioconjug. Chem, vol.26, pp.975-986, 2015.

X. Meng, J. Liu, X. Yu, J. Li, X. Lu et al., Pluronic F127 and D-?-tocopheryl polyethylene glycol succinate (TPGS) mixed micelles for targeting drug delivery across the blood brain barrier, Sci. Rep, 2017.

L. Galas, M. Lamacz, M. Garnier, E. W. Roubos, M. C. Tonon et al., Involvement of extracellular and intracellular calcium sources in TRH-induced alpha-MSH secretion from frog melanotrope cells, Mol. Cell. Endocrinol, vol.138, pp.25-39, 1998.

L. Galas, M. Garnier, and M. Lamacz, Calcium waves in frog melanotrophs are generated by intracellular inactivation of TTX-sensitive membrane Na+ channel, Mol. Cell. Endocrinol, vol.170, pp.197-209, 2000.

M. Bénard, B. J. Gonzalez, M. T. Schouft, A. Falluel-morel, D. Vaudry et al., Characterization of C3a and C5a receptors in rat cerebellar granule neurons during maturation. Neuroprotective effect of C5a against apoptotic cell death, J. Biol. Chem, vol.279, pp.43487-43496, 2004.

K. Gach, O. Belkacemi, B. Lefranc, P. Perlikowski, J. Masson et al., Detection, characterization and biological activities of [bisphospho-thr3,9]ODN, an endogenous molecular form of ODN released by astrocytes, Neuroscience, vol.290, pp.472-484, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01939267

H. Qu, W. Xing, F. Wu, and Y. Wang, Rapid and inexpensive method of loading fluorescent dye into pollen tubes and root hairs, PLoS ONE, vol.11, 2016.

T. Ona-jodar, N. J. Gerkau, S. Sara-aghvami, C. R. Rose, and V. Egger, Two-photon Na + imaging reports somatically evoked action potentials in rat olfactory bulb mitral and granule cell neurites. Front, Cell. Neurosci, vol.11, 2017.

L. Nejdl, A. Moravanska, K. Smerkova, F. Mravec, S. Krizkova et al., Short-sweep capillary electrophoresis with a selective zinc fluorescence imaging reagent FluoZin-3 for determination of free and metalothionein-2a-bound Zn 2+ ions, Anal. Chim Acta, vol.1017, pp.41-47, 2018.

Y. Suzuki, H. Komatsu, T. Ikeda, N. Saito, S. Araki et al., Design and synthesis of Mg 2+ -selective fluoroionophores based on a coumarin derivative and application for Mg 2+ measurement in a living cell, Anal. Chem, vol.74, pp.1423-1428, 2002.

A. Falluel-morel, N. Aubert, D. Vaudry, M. Basille, M. Fontaine et al., Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells, J. Neurochem, vol.91, pp.1231-1243, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00820050

A. Zahid, J. Despres, M. Bénard, E. Nguema-ona, J. Leprince et al., Arabinogalactan Proteins from Baobab and Acacia Seeds Influence Innate Immunity of Human Keratinocytes in vitro, J. Cell. Physiol, vol.232, pp.2558-2568, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01777659

R. Chennoufi, H. Bougherara, N. Gagey-eilstein, B. Dumat, E. Henry et al., Mitochondria-targeted triphenylamine derivatives activatable by two-photon excitation for triggering and imaging cell apoptosis, Sci. Rep, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02350542

R. Bortolozzi, S. Von-gradowski, H. Ihmels, K. Schäfer, and G. Viola, Selective ratiometric detection of H 2 O 2 in water and in living cells with boronobenzo[b]quinolizinium derivatives, Chem. Commun, vol.50, pp.8242-8245, 2014.

Y. Huo, J. Miao, L. Han, Y. Li, Z. Li et al., Selective and sensitive visualization of endogenous nitric oxide in living cells and animals by a Si-rhodamine deoxylactam-based near-infrared fluorescent probe, Chem. Sci, vol.8, pp.6857-6864, 2017.

T. Hayashi, N. Fukuda, S. Uchiyama, and N. Inada, A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines, PLoS ONE, vol.10, 2015.

J. A. Figueroa, K. S. Vignesh, G. S. Deepe, . Jr, and J. Caruso, Selectivity and specificity of small molecule fluorescent dyes/probes used for the detection of Zn 2+ and Ca 2+ in cells, Metallomics, vol.6, pp.301-315, 2014.

Z. Chen, T. M. Truong, and H. Ai, Illuminating brain activities with fluorescent protein-based biosensors, vol.5, 2017.

G. Bertolin, F. Sizaire, G. Herbomel, D. Reboutier, C. Prigent et al., A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells, Nat. Commun, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01394773

A. Miyawaki, Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer, Annu. Rev. Biochem, vol.80, pp.357-373, 2011.

C. Demeautis, F. Sipieter, J. Roul, C. Chapuis, S. Padilla-parra et al., Multiplexing PKA and ERK1&2 kinases FRET biosensors in living cells using single excitation wavelength dual colour FLIM, vol.7, p.41026, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01478382

K. J. Martin, E. J. Mcghee, J. P. Schwarz, M. Drysdale, S. M. Brachmann et al., Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments, PLoS ONE, vol.13, 2018.

C. M. Franck, J. Westermann, and A. Boisson-dernier, Imaging Ca 2+ dynamics in wild-type and NADPH oxidase-deficient mutant pollen tubes with yellow cameleon and confocal laser scanning microscopy, Methods Mol. Biol, vol.1669, pp.103-116, 2017.

A. A. Jazi, E. Ploetz, M. Arizki, B. Dhandayuthapani, I. Waclawska et al., Caging and photoactivation in single-Molecule Förster Resonance Energy Transfer experiments, vol.56, pp.2031-2041, 2017.

G. Fitzharris, Monitoring microtubule dynamics in the mouse egg using photoactivatable-GFP-tubulin, Methods Mol. Biol, vol.1818, pp.137-144, 2018.

L. A. Dyer and C. Patterson, A novel ex vivo culture method for the embryonic mouse heart, J. Vis. Exp, vol.75, p.50359, 2013.

M. E. Dailey, U. Eyo, J. Hass, and D. Kurpius, Imaging microglia in brain slices and slice cultures, Cold Spring Harb. Protoc, 2013.

E. Owusu-ansah, A. Yavari, and U. Banerjee, A protocol for in vivo detection of reactive oxygen species. Protocol Exch, 2008.

D. B. Cameron, L. Galas, Y. Jiang, E. Raoult, D. Vaudry et al., Cerebellar cortical-layer-specific control of neuronal migration by pituitary adenylate cyclase-activating polypeptide, Neuroscience, vol.146, pp.697-712, 2007.

J. K. Fahrion, Y. Komuro, Y. Li, N. Ohno, Y. Littner et al., Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca 2+ spike frequency, Proc. Natl. Acad. Sci, vol.109, pp.5057-5062, 2012.

A. Rakymzhan, H. Radbruch, and R. A. Niesner, Quantitative imaging of Ca 2+ by 3D-FLIM in live tissues, Adv. Exp. Med. Biol, vol.1035, pp.135-141, 2017.

D. B. Cameron, K. Kasai, Y. Jiang, T. Hu, Y. Saeki et al., Four distinct phases of basket/stellate cell migration after entering their final destination (the molecular layer) in the developing cerebellum, Dev. Biol, vol.332, pp.309-324, 2009.

S. L. Mironov, E. Skorova, G. Taschenberger, N. Hartelt, V. O. Nikolaev et al., Imaging cytoplasmic cAMP in mouse brainstem neurons, BMC Neurosci, vol.10, 2009.

N. Uesaka, M. Nishiwaki, and N. Yamamoto, Single cell electroporation method for axon tracing in cultured slices, Dev. Growth Differ, vol.50, pp.475-477, 2008.

O. Henri, C. Pouehe, M. Houssari, L. Galas, L. Nicol et al., Selective Stimulation of Cardiac Lymphangiogenesis Reduces Myocardial Edema and Fibrosis Leading to Improved Cardiac Function Following Myocardial Infarction, Circulation, vol.133, pp.1484-1497, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02296561

Y. L. Pak, K. M. Swamy, and J. Yoon, Recent progress in fluorescent imaging probes, Sensors, vol.15, pp.24374-24396, 2015.

J. Icha, C. Schmied, J. Sidhaye, P. Tomancak, S. Preibisch et al., Using light sheet fluorescence microscopy to image zebrafish eye development, J. Vis. Exp, vol.110, 2016.

S. L. Levy, J. J. White, E. P. Lackey, L. Schwartz, R. V. Sillitoe et al., Conjugates for Axonal Tracing, Curr. Protoc. Neurosci, vol.79, pp.1-28, 2017.

Y. Morishita, A. Kuroiwa, and T. Suzuki, Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development, vol.142, pp.1672-1683, 2015.

N. Porat-shliom, Y. Chen, M. Tora, A. Shitara, A. Masedunskas et al., In vivo tissue-wide synchronization of mitochondrial metabolic oscillations, Cell Rep, vol.9, pp.514-521, 2014.

T. Terai and T. Nagano, Small-molecule fluorophores and fluorescent probes for bioimaging, Pflugers Arch, vol.465, pp.347-359, 2013.

A. Tury, G. Mairet-coello, and E. Dicicco-bloom, The cyclin-dependent kinase inhibitor p57Kip2 regulates cell cycle exit, differentiation, and migration of embryonic cerebral cortical precursors, Cereb. Cortex, vol.21, pp.1840-1856, 2011.

P. Mehrotra, Biosensors and their applications-A review, J. Oral Biol. Craniofac. Res, vol.6, pp.153-159, 2016.

Y. Brudno, R. M. Desai, B. J. Kwee, N. S. Joshi, M. Aizenberg et al., In vivo targeting through click chemistry, vol.10, pp.617-620, 2015.

P. M. Kharkar, M. S. Rehmann, K. M. Skeens, E. Maverakis, and A. M. Kloxin, Thiol-ene click hydrogels for therapeutic delivery, ACS Biomater. Sci. Eng, vol.2, pp.165-179, 2016.

N. M. Smeets, E. Bakaic, M. Patenaude, and T. Hoare, Injectable poly(oligoethylene glycol methacrylate)-based hydrogels with tunable phase transition behaviours: Physicochemical and biological responses, Acta Biomater, vol.10, pp.4143-4155, 2014.

T. M. O'shea, A. A. Aimetti, E. Kim, V. Yesilyurt, and R. Langer, Synthesis and characterization of a library of in-situ curing, nonswelling ethoxylated polyol thiol-ene hydrogels for tailorable macromolecule delivery, Adv. Mater, vol.27, pp.65-72, 2015.

C. R. Somerville, S. Bauer, G. Brininstool, M. Facette, T. Hamann et al., Toward a systems approach to understanding plant cell walls, Science, vol.306, pp.2206-2211, 2004.

D. D. Mcclosky, B. Wang, G. Chen, and C. T. Anderson, The click-compatible sugar 6-deoxy-alkynyl glucose metabolically incorporates into Arabidopsis root hair tips and arrests their growth, Phytochemistry, vol.123, pp.16-24, 2016.

N. Bukowski, J. L. Pandey, L. Doyle, T. L. Richard, C. T. Anderson et al., Development of a clickable designer monolignol for interrogation of lignification in plant cell walls, Bioconjug. Chem, vol.25, pp.2189-2196, 2014.

J. L. Pandey, S. N. Kiemle, T. L. Richard, Y. Zhu, D. J. Cosgrove et al., Investigating biochemical and developmental dependencies of lignification with a click-compatible monolignol analog in Arabidopsis thaliana stems, Front. Plant. Sci, 1309.

C. T. Anderson, I. S. Wallace, and C. R. Somerville, Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls, Proc. Natl. Acad. Sci, vol.109, pp.1329-1334, 2012.

B. Wang, D. D. Mcclosky, C. T. Anderson, and G. Chen, Synthesis of a suite of click-compatible sugar analogs for probing carbohydrate metabolism, Carbohydr. Res, vol.433, pp.54-62, 2016.

P. V. Chang, J. A. Prescher, E. M. Sletten, J. M. Baskin, I. A. Miller et al., Copper-free click chemistry in living animals, Proc. Natl. Acad. Sci, vol.107, pp.1821-1826, 2010.

L. D. Lavis and R. T. Raines, Bright building blocks for chemical biology, ACS Chem. Biol, vol.9, pp.855-866, 2014.

L. D. Lavis, Chemistry is dead. Long live chemistry, vol.56, pp.5165-5170, 2017.

K. Umezawa, D. Citterio, and K. Suzuki, New trends in near-infrared fluorophores for bioimaging, Anal. Sci, vol.30, pp.327-349, 2014.

K. Kiyose, H. Kojima, and T. Nagano, Functional near-infrared fluorescent probes, Chem. Asian J, vol.3, pp.506-515, 2008.

G. Hong, A. L. Antaris, and H. Dai, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng, 2017.

R. Duval and C. Duplais, Fluorescent natural products as probes and tracers in biology, Nat. Prod. Rep, vol.34, pp.161-193, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02105818

F. De-moliner, N. Kielland, R. Lavilla, and M. Vendrell, Modern synthetic avenues for the preparation of functional fluorophores, Angew. Chem. Int. Ed, vol.56, pp.3758-3769, 2017.

R. Alford, H. M. Simpson, J. Duberman, G. C. Hill, M. Ogawa et al., Toxicity of organic fluorophores used in molecular imaging: Literature review, Mol. Imaging, vol.8, 2009.

J. W. Taraska, M. C. Puljung, and W. N. Zagotta, Short-distance probes for protein backbone structure based on energy transfer between bimane and transition metal ions, Proc. Natl. Acad. Sci, vol.106, pp.16227-16232, 2009.

T. Kowada, H. Maeda, and K. Kikuchi, BODIPY-based probes for the fluorescence imaging of biomolecules in living cells, Chem. Soc. Rev, vol.44, pp.4953-4972, 2015.

W. Sun, S. Guo, C. Hu, J. Fan, and X. Peng, Recent development of chemosensors based on cyanine platforms, Chem. Rev, vol.116, pp.7768-7817, 2016.

H. A. Shindy, Fundamentals in the chemistry of cyanine dyes: A review. Dyes Pigment, vol.145, pp.505-513, 2017.

J. R. Johnson, N. Fu, E. Arunkumar, W. M. Leevy, S. T. Gammon et al., Squaraine rotaxanes: Superior substitutes for Cy-5 in molecular probes for near-infrared fluorescence cell imaging, Angew. Chem. Int. Ed, vol.46, pp.5528-5531, 2007.

K. Podgorski, E. Terpetschnig, O. P. Klochko, O. M. Obukhova, and K. Haas, Ultra-bright and -stable red and near-infrared squaraine fluorophores for in vivo two-photon imaging, PLoS ONE, vol.7, 2012.

L. D. Lavis, Teaching old dyes new tricks: Biological probes built from fluoresceins and rhodamines, Ann. Rev. Biochem, vol.86, pp.825-843, 2017.

Y. Kushida, T. Nagano, and K. Hanaoka, Silicon-substituted xanthene dyes and their applications in bioimaging, Analyst, vol.140, pp.685-695, 2015.

T. Ikeno, T. Nagano, and K. Hanaoka, Silicon-substituted xanthene dyes and their unique photophysical properties for fluorescent probes, Chem. Asian J, vol.12, pp.1435-1446, 2017.

J. B. Grimm, T. A. Brown, A. N. Tkachuk, and L. D. Lavis, General synthetic method for Si-fluorescein and Si-rhodamines, ACS Cent. Sci, vol.3, pp.975-985, 2017.

J. B. Grimm, A. K. Muthusamy, Y. Liang, T. A. Brown, W. C. Lemon et al., A general method to fine-tune fluorophores for live-cell and in vivo imaging, Nat. Methods, vol.14, pp.987-994, 2017.

X. Zhou, R. Lai, J. R. Beck, H. Li, and C. I. Stains, Nebraska Red: A phosphinate-based near-infrared fluorophore scaffold for chemical biology applications, Chem. Commun, vol.52, pp.12290-12293, 2016.

X. Chai, X. Cui, B. Wang, F. Yang, Y. Cai et al., Near-infrared phosphorus-substituted rhodamine with emission wavelength above 700nm for bioimaging, Chem. Eur. J, vol.21, pp.16754-16758, 2015.

P. J. Bell and P. Karuso, Epicocconone, a novel fluorescent compound from the fungus epicoccum nigrum, J. Am. Chem. Soc, vol.125, pp.9304-9305, 2003.

P. Karuso, W. Loa-kum-cheung, P. A. Peixoto, A. Boulangé, and X. Franck, Epicocconone-hemycyanine hybrids: Near infrared flurophores for protein staining and cell imaging, Chem. Eur, vol.23, pp.1820-1829, 2017.

A. Boulangé, P. A. Peixoto, and X. Franck, Diastereoselective IBX oxidative dearomatization of phenols by remote induction: Towards the epicocconone core framework, Chem. Eur, vol.17, pp.10241-10245, 2011.

P. A. Peixoto, A. Boulangé, M. Ball, B. Naudin, T. Alle et al., Design and synthesis of epicocconone analogues with improved fluorescence properties, J. Am. Chem. Soc, vol.136, pp.15248-15256, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01150295

O. A. Syzgantseva, V. Tognetti, L. Joubert, A. Boulangé, P. A. Peixoto et al., Electronic excitations in epicocconone analogues: TDDFT methodological assessment guided by experiment, J. Phys. Chem. A, vol.116, pp.8634-8643, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00996386

O. A. Syzgantseva, V. Tognetti, A. Boulangé, P. A. Peixoto, S. Leleu et al., Evaluating charge transfert in epicocconone analogue: Toward a targeted design of fluorophores, J. Phys. Chem. A, vol.118, pp.757-764, 2014.

S. Chatterjee, P. Karuso, A. Boulangé, P. A. Peixoto, X. Franck et al., The role of different structural motifs in the ultrafast dynamics of second generation protein stains, J. Phys. Chem. B, vol.117, pp.14951-14959, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00996560

S. Chatterjee, P. Karuso, A. Boulangé, X. Franck, and A. Datta, Excited states dynamics of brightly fluorescent second generation epicocconone analogues, J. Phys. Chem. B, vol.119, pp.6295-6303, 2015.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann et al., The 2015 super-resolution microscopy roadmap, J. Phys. Appl. Phys, vol.48, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01390051

Q. F. Zheng, M. Juette, S. R. Jockusch, M. Wasserman, Z. B. Zhou et al., Ultra-stable organic fluorophores for single-molecule research, Chem. Soc. Rev, vol.43, pp.1044-1056, 2014.

B. W. Henderson and T. J. Dougherty, How does photodynamic therapy work?, Photochem. Photobiol, vol.55, pp.145-157, 1992.

M. C. Derosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev, pp.351-371, 2002.

A. N. Butkevich, G. Y. Mitronova, S. C. Sidenstein, J. L. Klocke, D. Kamin et al., Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells, Angew. Chem. Int. Ed, vol.55, pp.3290-3294, 2016.

S. Sreedharan, M. R. Gill, E. Garcia, H. K. Saeed, D. Robinson et al., Multimodal super-resolution optical microscopy using a transition-metal-based probe provides unprecedented capabilities for imaging both nuclear chromatin and mitochondria, J. Am. Chem. Soc, vol.139, pp.15907-15913, 2017.

G. Lukinavi?ius, Y. G. Mitronova, S. Schnorrenberg, A. N. Butkevich, H. Barthel et al., Fluorescent dyes and probes for super-resolution microscopy of microtubules and tracheoles in living cells and tissues, Chem. Sci, vol.9, pp.3324-3334, 2018.

A. N. Butkevich, H. Ta, M. Ratz, S. Stoldt, S. Jakobs et al., Two-Color 810 nm STED nanoscopy of living cells with endogenous SNAP-tagged fusion proteins, ACS Chem. Biol, vol.13, pp.475-480, 2018.

A. D. Thompson, J. Bewersdorf, D. Toomre, and A. Schepartz, HIDE probes: A new toolkit for visualizing organelle dynamics, longer and at super-resolution, vol.56, pp.5194-5201, 2017.

S. Saurabh, A. M. Perez, C. J. Comerci, L. Shapiro, and W. E. Moerner, Super-resolution imaging of live bacteria cells using a genetically directed, highly photostable fluoromodule, J. Am. Chem. Soc, vol.138, pp.10398-10401, 2016.

K. Kolmakov, C. A. Wurm, R. Hennig, E. Rapp, S. Jakobs et al., Red-emitting rhodamines with hydroxylated, sulfonated, and phosphorylated dye residues and their use in fluorescence nanoscopy, Chem. Eur. J, vol.18, pp.12986-12998, 2012.

S. Nizamov, M. V. Sednev, M. L. Bossi, E. Hebisch, H. Frauendorf et al., Reduced" coumarin dyes with an O-phosphorylated 2,2-dimethyl-4-(hydroxymethyl)-1,2,3,4-tetrahydroquinoline fragment: Synthesis, spectra, and STED microscopy, Chem. Eur. J, vol.22, pp.11631-11642, 2016.

C. Wang, A. Fukazawa, M. Taki, Y. Sato, T. Higashiyama et al., A phosphole oxide based fluorescent dye with exceptional resistance to photobleaching: A practical tool for continuous imaging in STED microscopy, Angew. Chem. Int. Ed, vol.54, pp.15213-15217, 2015.

S. K. Yang, X. Shi, S. Park, T. Ha, and S. C. Zimmerman, A dendritic single-molecule fluorescent probe that is monovalent, photostable and minimally blinking, Nat. Chem, vol.5, pp.692-697, 2013.

J. H. Van-der-velde, E. Ploetz, M. Hiermaier, J. Oelerich, J. W. De-vries et al., Mechanism of intramolecular photostabilization in self-healing cyanine fluorophores, Chem. Phys. Chem, vol.14, pp.4084-4093, 2013.

E. Cortés, P. A. Huidobro, H. G. Sinclair, S. Guldbrand, W. J. Peveler et al., Plasmonic nanoprobes for StimulaTed Emission Depletion nanoscopy, ACS Nano, vol.10, pp.10454-10461, 2016.

S. J. Lord, N. R. Conley, H. D. Lee, R. Samuel, N. Liu et al., A photoactivatable push?pull fluorophore for single-molecule imaging in live cells, J. Am. Chem. Soc, vol.130, pp.9204-9205, 2008.

G. T. Dempsey, M. Bates, W. E. Kowtoniuk, D. R. Liu, R. Y. Tsien et al., Photoswitching mechanism of cyanine dyes, J. Am. Chem. Soc, vol.131, pp.18192-18193, 2009.

M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, Carbocyanine dyes as efficient reversible. single-molecule optical switch, J. Am. Chem. Soc, vol.127, pp.3801-3806, 2005.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging, Nat. Methods, vol.8, pp.1027-1036, 2011.

M. Minoshima and K. Kikuchi, Photostable and photoswitching fluorescent dyes for super-resolution imaging, J. Biol. Inorg. Chem, vol.22, pp.639-652, 2017.

B. Roubinet, M. Weber, H. Shojaei, M. Bates, M. L. Bossi et al., Fluorescent photoswitchable diarylethenes for biolabeling and single-molecule localization microscopies with optical superresolution, J. Am. Chem. Soc, vol.139, pp.6611-6620, 2017.

P. C. Rodriguez, D. B. Pereira, A. Borgkvist, M. Y. Wong, C. Barnard et al., Fluorescent dopamine tracer resolves individual dopaminergic synapses and their activity in the brain, Proc. Natl. Acad. Sci, vol.110, pp.870-875, 2013.

Z. Yu, T. Y. Ohulchanskyy, P. An, P. N. Prasad, and Q. Lin, Fluorogenic, two-photon-triggered photoclick chemistry in live mammalian cells, J. Am. Chem. Soc, vol.135, pp.16766-16769, 2013.

C. Jing and V. W. Cornish, A fluorogenic TMP-tag for high signal-to-background intracellular live cell imaging, ACS Chem. Biol, vol.8, pp.1704-1712, 2013.

F. M. Pimenta, G. Chiappetta, T. Le-saux, J. Vinh, L. Jullien et al., Chromophore renewal and fluorogen-binding tags: A match made to last, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01636496

V. Marx, Is super-resolution microscopy right for you?, Nat. Methods, vol.10, pp.1157-1163, 2013.

S. E. Webb, L. Zanetti-domingues, B. C. Coles, D. J. Rolfe, R. J. Wareham et al., Multicolour single molecule imaging on cells using a supercontinuum source, Biomed. Opt. Express, vol.3, pp.400-406, 2012.

V. K. Khanna and . Leds, OLEDs, and their applications in illumination and displays, Fundamentals of Solid-State Lighting

P. T. So, B. R. Masters, and K. M. Berland, Two-photon excitation fluorescence microscopy, Annu. Rev. Biomed. Eng, vol.2, pp.399-429, 2000.

R. Graf, J. Rietdorf, and T. Zimmerman, Live cell spinning disk microscopy, Adv. Biochem. Eng./Biotechnol, vol.95, pp.57-75, 2005.

P. Bethge, R. Chéreau, E. Avignone, G. Marsicano, and U. V. Nägerl, Two-photon excitation STED microscopy in two colors in acute brain slices, Biophys. J, vol.104, pp.778-785, 2013.

A. G. Godin, B. Lounis, and L. Cognet, Super-resolution microscopy approaches for live cell imaging, Biophys J, vol.107, pp.1777-1784, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01080729

N. Martini, J. Bewersdorf, and S. W. Hell, A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy, J. Microsc, vol.206, pp.146-151, 2002.

I. Gregor and J. Enderlein, Focusing astigmatic Gaussian beams through optical systems with a high numerical aperture, Opt. Lett, vol.30, pp.2527-2529, 2005.

J. M. Geusebroek, F. Cornelissen, A. Smeulders, and H. Geerts, Robust autofocusing in microscopy, Cytometry, vol.39, pp.1-9, 2000.

M. Bénard, A. Lebon, H. Komuro, D. Vaudry, and L. Galas, Ex vivo imaging of postnatal cerebellar granule cell migration using confocal macroscopy, J. Vis. Exp, vol.99, 2015.

T. Quan, S. Zeng, and Z. Huang, Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for super-resolution imaging, J. Biomed. Opt, vol.15, p.66005, 2010.

M. J. Deweert, J. B. Cole, A. W. Sparks, and A. Acker, Photon transfer methods and results for electron multiplication CCDs, Proc. SPIE, vol.5558, pp.248-259, 2004.

C. G. Coates, D. J. Denvir, E. Conroy, N. G. Mchale, K. Thornbury et al., Back-illuminated electron multiplying technology: The world's most sensitive CCD for ultralow-light microscopy, Manipulation and Analysis of Biomolecules, Cells, and Tissues, vol.4962, pp.319-328, 2003.

, To See or Not to See. Can Non-Cooled sCMOS Cameras Do the, p.13, 2018.

R. M. Zucker, Quality assessment of confocal microscopy slide-based systems: Instability, Cytometry A, vol.69, pp.659-676, 2006.

J. Adler and S. N. Pagakis, Reducing image distorsions due to the temperature-related microscope stage drift, J. Microsc, vol.210, pp.131-137, 2003.

A. Arbelle, J. Reyes, J. Y. Chen, G. Lahav, and T. A. Riklin-raviv, Probabilistic approach to joint cell tracking and segmentation in high-throughput microscopy videos, Med. Image Anal, vol.47, pp.140-152, 2018.

J. A. Helmuth, C. J. Burckhardt, P. Koumoutsakos, U. F. Greber, and I. F. Sbalzarini, A novel supervised trajectory segmentation algorithm identifies distinct types of human adenovirus motion in host cells, J. Struct. Biol, vol.159, pp.347-358, 2007.

F. P. Cordelières, V. Petit, M. Kumasaka, O. Debeir, V. Letort et al., Automated cell tracking and analysis in phase-contrast videos (iTrack4U): Development of Java software based on combined mean-shift processes, PLoS ONE, issue.8, 2013.