S. Bak, Boosted human re-identification using Riemannian manifolds, Image and Vision Computing, vol.30, pp.443-452, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00645588

L. Bazzani, M. Cristani, and V. Murino, Symmetry-driven accumulation of local features for human characterization and re-identification, Comput. Vis. Image Underst, vol.117, pp.130-144, 2013.

M. Cuturi, Fast Global Alignment Kernels, Proceedings of the 28th International Conference on Machine Learning (ICML-11). Ed. by Lise Getoor and Tobias Scheffer. ICML '11, pp.929-936, 2011.

. Cheng-dong-seon, Custom Pictorial Structures for Re-identification, Proceedings of the British Machine Vision Conference (BMVC), vol.11, pp.68-69, 2011.

M. Farenzena, Person re-identification by symmetry-driven accumulation of local features, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2360-2367, 2010.

D. Haussler, Convolution Kernels on Discrete Structures, 1999.

M. E. Mohamed-ibn-khedher, B. Yacoubi, and . Dorizzi, Fusion of appearance and motionbased sparse representations for multi-shot person reidentification, In: Neurocomputing, vol.248, pp.94-104, 2017.

. Svebor-karaman, Leveraging local neighborhood topology for large scale person re-identification, Pattern Recognition, vol.47, pp.3767-3778, 2014.

M. Köstinger, Large scale metric learning from equivalence constraints, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.2288-2295, 2012.

A. Mahboubi, Tracking System with Reidentification Using a RGB String Kernel, Structural, Syntactic, and Statistical Pattern Recognition-Joint IAPR International Workshop, pp.333-342, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083074

R. Nock and F. Nielsen, Statistical Region Merging, IEEE Trans. Pattern Anal. Mach. Intell, vol.26, issue.11, pp.1452-1458, 2004.

B. Prosser, Person Re-Identification by Support Vector Ranking, Proceedings of the British Machine Vision Conference, vol.11, pp.21-22, 2010.

W. R. Schwartz and L. S. Davis, Learning Discriminative Appearance-Based Models Using Partial Least Squares, Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image Processing, pp.322-329, 2009.